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Calculation of QCD instanton determinant with arbitrary mass

Gerald V. Dunne*
Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA

Jin Hur† and Choonkyu Lee‡

Department of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea

Hyunsoo Minx

Department of Physics, University of Seoul, Seoul 130-743, Korea
Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA

(Received 10 February 2005; published 28 April 2005)
*Electronic
†Electronic
‡Electronic
xElectronic

1550-7998=20
The precise quark mass dependence of the one-loop effective action in an instanton background has
recently been computed [Phys. Rev. Lett. 94, 072001 (2005).]. The result interpolates smoothly between
the previously known extreme small and large mass limits. The computational method makes use of the
fact that the single instanton background has radial symmetry, so that the computation can be reduced to a
sum over partial waves of logarithms of radial determinants, each of which can be computed numerically
in an efficient manner. The bare sum over partial waves is divergent and must be regulated and
renormalized. In this paper we provide more details of this computation, including both the renormal-
ization procedure and the numerical approach. We conclude with comparisons of our precise numerical
results with a simple interpolating function that connects the small and large mass limits, and with the
leading order of the derivative expansion.
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I. INTRODUCTION

The computation of fermion determinants in nontrivial
background fields is an important challenge for both con-
tinuum and lattice quantum field theory. Explicit analytic
results are known only for very simple backgrounds, and
are essentially all variations on the original work of
Heisenberg and Euler [1–4]. For applications in quantum
chromodynamics (QCD), an important class of back-
ground gauge fields are instanton fields, as these minimize
the Euclidean gauge action within a given topological
sector of the gauge field. Furthermore, instanton physics
has many important phenomenological consequences [5–
9]. Thus, we are led to consider the fermion determinant,
and the associated one-loop effective action, for quarks of
mass m in an instanton background. Here, no exact results
are known for the full mass dependence, although several
terms have been computed analytically in the small mass
[5,10,11] and large mass [11,12] limits. Recently, in [13],
the present authors presented a new computation which is
numerical, but essentially exact, that evaluates the one-
loop effective action in a single instanton background, for
any value of the quark mass (and for arbitrary instanton
size parameter). The result is fully consistent with the
known small and large mass limits, and interpolates
smoothly between these limits. This could be of interest
for the extrapolation of lattice results [14], obtained at
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unphysically large quark masses, to lower physical masses,
and for various instanton-based phenomenology. Our com-
putational method is simple and efficient, and can be
adapted to many other determinant computations in which
the background is sufficiently symmetric so that the prob-
lem can be reduced to a product of one-dimensional radial
determinants. While this is still a very restricted set of
background field configurations, it contains many ex-
amples of interest, the single instanton being one of the
most obvious. It is well known how to compute determi-
nants of ordinary differential operators [15–19]; but in
higher-dimensional problems with partial differential op-
erators, one must confront the renormalization problem
since there are now an infinite number of 1-D determinants
to deal with (even when the partial differential operator has
a radial symmetry).

In this paper we present more details of the results of
[13]. In Sec. II we define the renormalized effective action
in the minimal subtraction scheme, as introduced by
’t Hooft [5], and summarize what is known about the small
and large mass limits. In Sec. III we review how the single
instanton background reduces the spectral problem to a set
of radial problems, and indicate how to regularize the
effective action. This reduces the computation to two parts,
one of which is analytic and the other is numerical. The
analytic part concerns the renormalization of the effective
action, and for this we use a WKB expansion as is devel-
oped in our earlier paper [20]. We stress that this renor-
malization computation, which constitutes Sec. IV, is
analytic and exact, even though we use a WKB expansion,
since we show that only the first two orders of the WKB
-1  2005 The American Physical Society
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expansion contribute. Section V presents details of the
numerical part of the computation and shows how to
combine the numerical part of the computation with the
renormalization part to obtain the finite renormalized ef-
fective action, which is plotted in Fig. 5. In Sec. VI we
present a simple interpolating function that has been fit to
our results, and we also compare our precise mass depen-
dence with the mass dependence of the leading derivative
expansion approximation, which was computed previously
in [20]. The final section contains some concluding com-
ments. In Appendix Awe give some details (not fully given
in [20]) which are needed in the approximate effective
action calculation using the WKB phase-shift method.
For this WKB analysis, the Schwinger proper-time frame-
work [2] provides a natural way to implement the renor-
malization procedure consistently. Appendix B confirms
that the same result is obtained in the regular and singular
gauges for the instanton background.

II. RENORMALIZED EFFECTIVE ACTION IN A
SELF-DUAL BACKGROUND

An instanton background field is self-dual, and self-dual
gauge fields have the remarkable property that the Dirac
and Klein-Gordon operators in such a background are
isospectral; that is, they have identical spectra, apart from
an extra degeneracy factor of 4 in the spinor case and zero
modes present in the spinor case [5,21,22]. Since the one-
loop effective action is proportional to the logarithm of the
determinant of the respective operator, this has the imme-
diate consequence that it is sufficient to consider the scalar
effective action to learn also about the corresponding fer-
mionic effective action, for any mass valuem. In particular,
for a quark in a background instanton field, the renormal-
ized one-loop effective action of a Dirac spinor field of
mass m (and isospin 1

2 ), �Fren�A;m�, can be related to the
corresponding scalar effective action, �Sren�A;m�, for a
complex scalar of mass m (and isospin 1

2 ) by [5,11,22]

�Fren�A;m� � �2�Sren�A;m� �
1

2
ln
�
m2

�2

�
; (2.1)

where � is the renormalization scale. The ln term in (2.1)
corresponds to the existence of a zero eigenvalue in the
spectrum of the Dirac operator for a single instanton
background.

The one-loop effective action must be regularized. We
choose Pauli-Villars regularization adapted to the
Schwinger proper-time formalism, and later we relate
this to dimensional regularization, as in the work of
’t Hooft [5]. The Pauli-Villars regularized one-loop scalar
085019
effective action is [11,12]

�S	�A;m� � ln
�
Det��D2 �m2�

Det��@2 �m2�

Det��@2 �	2�

Det��D2 �	2�

�
:

(2.2)

where D2 � D�D�, with D� � @� � iA��x�. In (2.2), 	
is a heavy regulator mass. We consider an SU(2) single
instanton in the regular gauge [5,23]:

A��x� � Aa��x�
�a

2
�
���a�

ax�
r2 � �2 ;

F���x� � Fa���x�
�a

2
� �

2�2���a�a

�r2 � �2�2
;

(2.3)

where ���a are the standard ’t Hooft symbols [5,8].
The regularized effective action (2.2) has the proper-

time representation

�S	�A;m� � �
Z 1

0

ds
s
�e�m

2s � e�	2s�

	
Z
d4x trhxje�s��D2� � e�s��@

2�jxi

� �
Z 1

0

ds
s
�e�m

2s � e�	2s�F�s�: (2.4)

The renormalized effective action, in the minimal subtrac-
tion scheme, is defined as [5,11]

�Sren�A;m� � lim
	!1

"
�S	�A;m� �

1

12

1

�4��2
ln
�
	2

�2

�

	
Z
d4x tr�F��F���

#

� lim
	!1

�
�S	�A;m� �

1

6
ln
�
	

�

��
; (2.5)

where we have subtracted the charge renormalization
counterterm, and � is the renormalization scale. By di-
mensional considerations, we may introduce the modified
scalar effective action ~�Sren�m��, which is a function of m�
only, defined by

�Sren�A;m� � ~�Sren�m�� �
1

6
ln����; (2.6)

and concentrate on studying the m� dependence of
~�Sren�m��. Then there is no loss of generality in our setting
the instanton scale � � 1 henceforth.

It is known from previous works that in the small mass
[5,10,11] and large mass [11,12] limits, ~�Sren�m� behaves as
~� S
ren�m� �

�
��12� �

1
2 �lnm� �� ln2�m2 � . . . ; m! 0

� lnm
6 � 1

75m2 �
17

735m4 �
232

2835m6 �
7916

148 225m8 � � � � ; m! 1
(2.7)
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FIG. 1. Plot of the analytic small and large mass expansions
for ~�Sren�m�, from Eq. (2.7). Note the gap in the region 0:5 �
m � 1, in which the two expansions do not match up.
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where

�
�
1

2

�
� �

5

72
� 2� 0��1� �

1

6
ln2 ’ 0:145 873 . . . ; (2.8)

and � ’ 0:5772 . . . is Euler’s constant [24]. The leading
behavior of the small mass limit in (2.7) was first computed
by ’t Hooft [5], and the next corrections were computed in
[10,11]. This small mass expansion is based on the fact that
the massless propagators in an instanton background are
known in closed form [25]. On the other hand, the large
mass expansion in (2.7) can be computed in several ways.
The O�1=m2� and O�1=m4� terms were computed in [12],
while the next two terms were computed in [11]. A very
direct approach is to use the small-s behavior of F�s�, the
proper-time function appearing in (2.4), as given by the
Schwinger-DeWitt expansion. In our case this expansion
reads [11]

s! 0� : F�s� � �
1

12
�

1

75
s�

17

735
s2 �

116

2835
s3

�
3958

44 675
s4 � � � � ; (2.9)

and using this series with (2.4) immediately leads to the
large m expansion for ~�Sren�m� in (2.7).

Equation (2.7) summarizes what is known analytically
about the mass dependence of the renormalized one-loop
effective action in an instanton background. This situation
is represented in Fig. 1, which shows a distinct gap ap-
proximately in the region 0:5 � m � 1, where the small
and large mass expansions do not match up. In this paper
we present a technique which computes ~�Sren�m� numeri-
cally for any value of the mass m. Our results interpolate
smoothly between the analytic small and large mass limits
depicted in Fig. 1.

III. RADIAL FORMULATION

Our computational approach makes use of the fact that
the single instanton background (2.3) has radial symmetry
085019
[5]. This has the important consequence that the computa-
tion of the regularized one-loop effective action (2.4) can
be reduced to a sum over partial waves of logarithms of
determinants of radial ordinary differential operators. Each
such radial determinant can be computed by a simple
numerical method, described in Sec. V. The physical chal-
lenge is to renormalize the (divergent) sum over partial
waves.

In the instanton background (2.3), with scale � � 1, the
Klein-Gordon operator �D2 for isospin 1

2 particles can be
cast in the radial form [5]

�D2 ! H �l;j� �

�
�
@2

@r2
�

3

r
@
@r

�
4l�l� 1�

r2

�
4�j� l��j� l� 1�

r2 � 1
�

3

�r2 � 1�2

�
;

(3.1)

where l � 0; 12 ; 1;
3
2 ; � � � , and j � jl� 1

2 j, and there is a
degeneracy factor of �2l� 1��2j� 1� for each partial wave
characterized by �l; j� values. [Note that l�l� 1� can be
identified with the eigenvalue of ~L2 � LaLa for La �
� i

2���ax�@�, and j�j� 1� with the eigenvalue of ~J2 �
�La � Ta��La � Ta� for Ta � �a=2]. In the absence of the
instanton background, the free operator is

�@2 ! H free
�l� �

�
�
@2

@r2
�

3

r
@
@r

�
4l�l� 1�

r2

�
: (3.2)

This radial decomposition means that we can express the
Pauli-Villars regularized effective action (2.2) also as

�S	�A;m� �
X

l�0;1=2;...

�2l� 1��2l� 2�

	

�
ln
�
det�H �l;l��1=2�� �m2�

det�H free
�l� �m2�

�

� ln
�
det�H �l��1=2�;l� �m2�

det�H free
�l��1=2�� �m2�

�

� ln
�
det�H �l;l��1=2�� �	2�

det�H free
�l� �	2�

�

� ln
�
det�H �l��1=2�;l� �	2�

det�H free
�l��1=2�� �	2�

�

: (3.3)

Here we have combined the radial determinants for �l; j �
l� 1

2� and �l� 1
2 ; j � �l� 1

2� �
1
2�, which have the com-

mon degeneracy factor �2l� 1��2l� 2�, so that the sum
over l and j reduces to a single sum over l. In our actual
analysis, as explained in detail below, we need to consider
only a truncated sum over l with the expression (3.3), and
hence possible ambiguities as regards effecting the infinite
sum over l become irrelevant.

In Sec. V we present a simple and efficient numerical
technique for computing each of the radial determinants
-3
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appearing in (3.3). But to extract the renormalized effective
action we need to be able to consider the 	 ! 1 limit in
conjunction with the infinite sum over l. This can be
achieved as follows. Split the l sum in (3.3) into two parts
as:

�S	�A;m� �
XL

l�0;1=2;...

�S	;�l��A;m� �
X1

l�L��1=2�

�S	;�l��A;m�

(3.4)

where L is a large but finite integer. In the first sum, which
is finite, the cutoff 	 may be safely removed since for any
given finite l [15,19],

lim
	!1

�
det�H �l;l��1=2�� �	2�

det�H free
�l� �	2�

�
� 1;

lim
	!1

�
det�H �l��1=2�;l� �	2�

det�H free
�l��1=2�� �	2�

�
� 1:

(3.5)

Thus, the first sum in (3.4) may be written without the
regulator 	 as

XL
l�0;1=2;...

�Sl �A;m� �
XL

l�0;1=2;...

�2l� 1��2l� 2�

	

�
ln
�
det�H �l;l��1=2�� �m2�

det�H free
�l� �m2�

�

� ln
�
det�H �l��1=2�;l� �m2�

det�H free
�l��1=2�� �m2�

�

:

(3.6)

This sum can be computed numerically, and we find [see
Sec. V] that for any mass m it is quadratically divergent as
L! 1. This divergence is canceled by a divergence of the
second sum in (3.4) in the large L limit, as we show in the
next section.

IV. WKB ANALYSIS AND RENORMALIZATION

In the second sum in (3.4) we cannot take the large L and
large 	 limits blindly, as each leads to a divergence.
However, we show in this section that the 	 divergence
is precisely of the counterterm form in the renormalized
action in (2.5), and that the large L divergence is such that
it precisely cancels the large L divergences from the large
L limit of the sum in (3.6). Thus we obtain a finite renor-
malized effective action.

The advantage of this technique is that the large 	 and
large L divergences of the second sum in (3.4) can be
computed analytically, using the WKB approximation for
the corresponding determinants. The WKB approach to
radial determinants was derived in [20] up to third order
in the WKB approximation, and the relevant results are
reviewed below, and in Appendix A. It turns out that in the
large 	 and large L limits we only need up to the second
085019
order in WKB. The large L limit of the second sum in (3.4)
can then be analyzed using the Euler-Maclaurin summa-
tion formula [26].

It is convenient to express the second piece by the
proper-time representation

X1
l�L��1=2�

�S	;�l��A;m� �
Z 1

0
ds
�
�
1

s
�e�m

2s� e�	2s�FL�s�
�
;

(4.1)

with

FL�s� �
Z 1

0
dr

 X1
l�L��1=2�

fl�s; r�

!
; (4.2)

fl�s; r� � �2l� 1��2l� 2�

	 �f�l;l��1=2���s; r� � f�l��1=2�;l��s; r��: (4.3)

Here the term
R
1
0 drfl�s; r�, obviously related to

�S	;�l��A;m�, can be found using the scattering phase shifts
of the Schrödinger problem with the radial Hamiltonian in
(3.1). Also, in considering the above infinite sum over
partial-wave terms, it is now crucial to have the contribu-
tion from partial-wave �l; j � l� 1

2� and that from partial-
wave �l� 1

2 ; l� treated together as a package, as indicated
in (4.3). For details on this, readers may consult
Appendix A. We here only note that, for large l, the
WKB approximation becomes exact and so in the large L
limit we can use the WKB approximation (to an appropri-
ate order) for FL�s�. According to the WKB expressions
derived in Appendix A, it is found that, for each l, fl�s; r�
has a local expansion in terms of the Langer-modified [27]
potential, ~V�l;j��r�, and the corresponding Langer-modified
free potential, ~Vl�r�:

~V �l;j��r� �
4�l� 1

2�
2

r2
�

4�j� l��j� l� 1�

r2 � 1
�

3

�r2 � 1�2
;

(4.4)

~V l�r� �
4�l� 1

2�
2

r2
: (4.5)

Specifically, the first-order WKB result for fl�s; r� is ob-
tained by using the form

f�1�
�l;j��s; r� �

1

2
������
�s

p exp��s ~V�l;j��r�� �
1

2
������
�s

p

	 exp��s ~Vl�r�� (4.6)

in the right-hand side of (4.3), and the second-order WKB
by using
-4
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f�2�
�l;j��s; r� �

1

2
������
�s

p

�
s

4r2
�
s2

12

d2 ~V�l;j�

dr2

�
exp��s ~V�l;j��r��

�
1

2
������
�s

p

�
s

4r2
�
s2

12

d2 ~Vl
dr2

�
exp��s ~Vl�r��:

(4.7)

The corresponding expression for the third order of WKB
is also given in Appendix A, but this result is not needed for
our present purposes.

An important observation (which holds true to any order
in the WKB expansion) is that the l dependence in
f�l;j��s; r� has the form of a polynomial in l multiplied by
an exponential in which l appears quadratically. Thus, if
we use the Euler-Maclaurin expansion [26] for (4.2)

X1
l�L��1=2�

fl � 2
Z 1

L
dlf�l� �

1

2
f�L� �

1

24
f0�L� � . . .

(4.8)

all terms in this expansion, including the integral term, can
be computed analytically. The integral term yields an error
function [24]Z 1

L
dl exp��al2 � 2bl� �

������
�
4a

r
eb

2=a Erfc
�
aL� b���

a
p

�
;

(4.9)

where Re�a�> 0. We here remark that it is important to
perform the l sum prior to considering the r integration. For
more details on the issue of the integration order, see
Appendix A.

To compute the sum in (4.1) we still need to perform the
proper-time integral over s as well as the radial integral

CALCULATION OF QCD INSTANTON DETERMINANT . . .
085019
over r appearing in the WKB expression (4.2). To achieve
this, we adopt the following procedure. First, we trade the
regulator mass 	 for a dimensional regularization parame-
ter %, by demanding that

Z 1

0
ds
�
�
1

s
�e�m

2s � e�	2s�FL�s�
�

�
Z 1

0
ds
�
�

1

s
�e�m

2ss%�FL�s�
�
: (4.10)

Then, from the facts that FL�s� � F�s� as s! 0� , and
F�s� � 1

12 �O�s� for small s, we see that (4.10) requires

�
1

6
ln
�
	

m

�
� �

1

12%
�

1

12
��� 2 lnm� �O�%�: (4.11)

Thus, the correspondence between % and 	 is

%$
1

�� 2 ln	
: (4.12)

We now proceed to do the proper-time and radial inte-
grals as follows. First, for L very large, it becomes conve-
nient to rescale variables as s! y=L2 and r! x

���
y

p
.

Second, we expand all terms (except the e�m
2s factor) in

decreasing powers of large L. Then the y integral can be
performed in closed form, yielding incomplete gamma
functions [24]. These can be further expanded for large
L, after which the x (that is, the radial) integral can be
done. It is straightforward to perform these operations
using MATHEMATICA. To zeroth order in %, the results for
the first and second order of WKB are given below. For the
first-order WKB term, the result is
Z 1

0
dr
Z 1

0
ds
�
�
1

s
�e�m

2ss%�
� X1

l�L��1=2�

f�1�l �s; r�

!
�

1

24%
� 2L2 � 4L�

lnL
2

�
1

6
�m2

�
�

119

72
�

ln2

12
�
 �12�

24

�
m2

2
�1� 2 ln2� lnm� �

1� 6m2

12L
�O

�
1

L2

�
; (4.13)

where  �12� � ��� 2 ln2. For the second-order WKB term, the result is

Z 1

0
dr
Z 1

0
ds
�
�
1

s
�e�m

2ss%�
� X1

l�L��1=2�

f�2�l �s; r�

!
�

1

24%
�

lnL
12

�
1

9
�

ln2

12
�
 �12�

24
�

1

12L
�O

�
1

L2

�
: (4.14)

The third-order WKB term gives a contribution of at most O�1=L2�, and has no % pole. Similarly, it can be shown that all
higher-order WKB terms have no % pole, and vanish for large L.

We can thus compute the large L limit by considering only the relevant parts of the first two WKB expressions in (4.13)
and (4.14). Inserting the identification between % and 	 in (4.12), we obtain

X1
l�L��1=2�

�S	;�l��A;m� �
1

6
ln	� 2L2 � 4L�

�
1

6
�
m2

2

�
lnL�

�
127

72
�

1

3
ln2�

m2

2
�m2 ln2�

m2

2
lnm

�
�O

�
1

L

�
:

(4.15)

We can now identify the physical role of the various terms in (4.15). The first term is the expected logarithmic counterterm
-5
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which is subtracted in (2.5), and explains the origin of the 1
6 ln� term in (2.6). The next three terms give quadratic, linear

and logarithmic divergences in L. We shall show in the next section that these divergences cancel corresponding
divergences in the first sum in (3.4), which were found in our numerical data. It is a highly nontrivial check on this
WKB computation that these divergent terms have the correct coefficients to cancel these divergences. Note that the lnL
coefficient, and the finite term, are mass dependent.

Thus, the minimally subtracted renormalized effective action ~�Sren�m�, defined in (2.6), is

~� S
ren�m� � lim

L!1

( XL
l�0;1=2;...

�Sl �A;m� � 2L2 � 4L�

�
1

6
�
m2

2

�
lnL�

�
127

72
�

1

3
ln2�

m2

2
�m2 ln2�

m2

2
lnm

�)
; (4.16)
where the first sum is to be computed numerically from the
partial-wave expansion in (3.6).

V. NUMERICAL CALCULATION

In this section we describe the numerical technique for
computing the radial determinants which enter the partial-
wave expansion in (3.6). These one-dimensional determi-
nants can be computed efficiently using the following
result [15–19]. Suppose M1 and M2 are two second-order
ordinary differential operators on the interval r 2 �0;1�,
with Dirichlet boundary conditions assumed. Then the
ratio of the determinants of M1 and M2 is given by�

detM1

detM2

�
� lim

R!1

�
 1�R�
 2�R�

�
(5.1)

where  i�r� (for i � 1; 2) satisfies the initial value problem

M i i�r� � 0; with  i�0� � 0 and  0�0� � 1:

(5.2)

Since an initial value problem is very simple to solve
numerically, this theorem provides an efficient way to
compute the determinant of an ordinary differential opera-
tor. Note, in particular, that no direct information about the
spectrum (either bound or continuum states, or phase
shifts) is required in order to compute the determinant.

We can simplify the numerical computation further.
Note that for the free massive Klein-Gordon partial-wave
operator, H free

�l� �m2 [with H free
�l� given in (3.2)], the

solution to (5.2) is the modified Bessel function [24]

 free
�l� �r� �

I2l�1�mr�
r

: (5.3)

This solution grows exponentially fast at large r, as do the
numerical solutions to (5.2) for the operators H �l;j� �m2,
with H �l;j� specified in (3.1). Thus, it is numerically better
to consider the ordinary differential equation satisfied by
the ratio of the two functions

R �l;j��r� �
 �l;j��r�

 free
�l� �r�

: (5.4)

This quantity has a finite value in the large r limit, which is
just the ratio of the determinants as in (5.1). The boundary
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conditions for the ratio function are

R �l;j��0� � 1; R0
�l;j��0� � 0: (5.5)

A similar idea of considering the ratio function was used
by Baacke and Lavrelashvili in their analysis of metastable
vacuum decay [28].

It is worthwhile making a brief side comment about the
boundary conditions at r � 0. The two functions on the
right-hand side of (5.4) do not necessarily satisfy the
boundary conditions at r � 0 in (5.2). For example, when
l � 0,  free

�l�0��r� does not vanish at r � 0. And in the
massless case this issue is more serious. However, since
only the ratio is important, one can introduce an ultraviolet
regulator by imposing the boundary conditions in (5.2) at
r � a, for a small but nonzero. Then the free solution
satisfying the boundary conditions is a linear combination
of the two modified Bessel functions I2l�1�mr�=r and
K2l�1�mr�=r. It is straightforward to show that the differ-
ential equation governing the ratio function, and the
asymptotic (r! 1) value of the ratio function are inde-
pendent of a as a! 0.

In fact, since we are ultimately interested in the loga-
rithm of the determinant, it is more convenient (and more
stable numerically) to consider the logarithm of the ratio,
i.e.,

S�l;j��r� � lnR�l;j��r�; (5.6)

which satisfies the differential equation

d2S�l;j�
dr2

�

�dS�l;j�
dr

�
2
�

�
1

r
� 2m

I02l�1�mr�
I2l�1�mr�

�dS�l;j�
dr

�U�l;j��r�;

(5.7)

with boundary conditions

S�l;j��r � 0� � 0; S0�l;j��r � 0� � 0: (5.8)

The ‘‘potential’’ term U�l;j��r� in (5.7) is given by

U�l;j��r� �
4�j� l��j� l� 1�

r2 � 1
�

3

�r2 � 1�2
: (5.9)

To illustrate the computational method, in Fig. 2 we plot
S�l;l��1=2���r� and S�l��1=2�;l��r� for various values of l, with
mass value m � 1 (which is in the region in which neither
-6
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FIG. 2. Plots of the r dependence of S�l;l��1=2���r� and
S�l��1=2�;l��r�, solutions of the nonlinear differential equation in
(5.7), for m � 1, and for l � 0; 10; 20; 30. The upper curves are
for S�l;l��1=2���r�, while the lower ones are for S�l��1=2�;l��r�. Note
that the curves quickly reach an asymptotic large-r constant
value, and also notice that the contributions from S�l;l��1=2���r �
1� and S�l��1=2�;l��r � 1� almost cancel one another when
summed.
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FIG. 3. Plot of S�l;l��1=2���r � 1�, S�l��1=2�;l��r � 1�, and their
sum P�l�, defined in (5.13), for m � 1. Note that S�l;l��1=2���r �
1� and S�l��1=2�;l��r � 1� almost cancel, with their sum P�l�
vanishing at large l. See also Fig. 4.
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FIG. 4. Plot of the l dependence of P�l�, for m � 1. [This is a
blowup of the P�l� data from Fig. 3.] P�l� behaves like O�1l� for
large l. Note that this implies that the sum over l in (5.14) has
quadratic divergences in the large L limit.
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the large nor small mass expansions is accurate). Note that
the curves quickly reach an asymptotic large-r constant
value, and also notice that the contributions from
S�l;l��1=2���r � 1� and S�l��1=2�;l��r � 1� almost cancel
one another when summed. This behavior is generic for
all values of mass m.

To obtain very high precision for S�l;j��r � 1� in the
numerical computation, it proves useful to make a further
numerical modification. For large r, a good first approxi-
mation to S�l;j��r� is provided by neglecting the first two
terms on the left-hand side of the differential equation in
(5.7). Thus we define a new function T�l;j��r� by

S�l;j��r� �
Z r

0
dr0

�U�l;j��r
0�

Wl�r
0�

�
� T�l;j��r�; (5.10)

Wl�r� �
1

r
� 2m

I02l�1�mr�
I2l�1�mr�

: (5.11)

This new function T�l;j��r� satisfies the modified equation

d2T�l;j�
dr2

�

�dT�l;j�
dr

�
2
�

�
Wl�r� � 2

U�l;j��r�

Wl�r�

�dT�l;j�
dr

� �

�U�l;j��r�

Wl�r�

�
2
�
d�
U�l;j��r�
Wl�r�

�

dr
(5.12)

with the boundary conditions: T�l;j��0� � T0
�l;j��0� � 0.

Numerical values for the quantities defined in (5.11) pro-
vide greater accuracy at large r, and are also better for large
l. In fact, we can iterate this type of transformation as many
times as we wish. For our computation we achieved ex-
cellent numerical precision by iterating this transformation
twice.
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The large r values of S�l;l��1=2���r� and S�l��1=2�;l��r� can
be extracted with very good precision (we integrated out to
r � 108). Notice that the asymptotic values of S�l;l��1=2���r�
and S�l��1=2�;l��r� very nearly cancel one another, as illus-
trated in Fig. 3. This behavior occurs for all m, and be-
comes more accurate as l increases. In fact, for a given
mass, it is found that, as a function of l, S�l;l��1=2���r � 1�

grows like lnlwhile S�l��1=2�;l��r � 1� decreases like � lnl.
This divergence cancels in the sum, resulting in the behav-
ior:

P�l� � S�l;l��1=2���r � 1� � S�l��1=2�;l��r � 1� �O
�
1

l

�
;

l! 1: (5.13)

This behavior is illustrated in Fig. 4, which is a blowup of
the P�l� data in Fig. 3.

Recall from (3.6) that the first numerical sum in (4.16) is
in fact a sum over P�l�, with degeneracy factors:
-7
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XL
l�0;1=2;...

�Sl �A;m� �
XL

l�0;1=2;...

�2l� 1��2l� 2�P�l�: (5.14)

Thus, we can rewrite our final expression (4.16) for the
minimally subtracted renormalized effective action
~�Sren�m� as

~�Sren�m� � lim
L!1

( XL
l�0;1=2;...

�2l� 1��2l� 2�P�l� � 2L2 � 4L

�

�
1

6
�
m2

2

�
lnL�

�
127

72
�

1

3
ln2�

m2

2

�m2 ln2�
m2

2
lnm

�)
: (5.15)

The first sum is over terms that are computed numerically,
as described above. The rest represents renormalization
terms which have been computed using minimal subtrac-
tion and WKB.

Since the degeneracy factor �2l� 1��2l� 2� is qua-
dratic, the large l behavior of P�l� indicated in (5.13)
[and plotted in Fig. 4] shows that in the large L limit, the
sum (5.14) has potentially divergent terms going like L2, L
and lnL, as well as terms finite and vanishing for large L.
Remarkably, we find that these divergent terms are exactly
canceled by the divergent large L terms found in the
previous section for the second sum in (3.4). Thus, the
renormalized effective action ~�Sren�m� calculated using
(5.15) is finite, converges for large L, and can be computed
for any massm. We found excellent convergence with L �
50 in our numerical data, combined with Richardson ex-
trapolation [26]. In Fig. 5 we plot these results for ~�Sren�m�,
and compare them with the analytic small and large mass
expansions in (2.7). The agreement is spectacular. Thus,
our expression (5.15) provides a simple and numerically
0.5 1 1.5 2 2.5 3
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Γ̃S
ren(m )

FIG. 5. Plot of our numerical results for ~�Sren�m� from (5.15),
compared with the analytic extreme small and large mass limits
[dashed curves] from (2.7). The dots denote numerical data
points from (5.15), and the solid line is a fit through these points.
The agreement with the analytic small and large mass limits is
very precise.
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precise interpolation between the large mass and small
mass regimes.

As an interesting check, our formula (5.15) provides a
very simple computation of ’t Hooft’s leading small mass
result. In the m! 0, (5.7) becomes

d2S�l;j�
dr2

�

�dS�l;j�
dr

�
2
�

�
4l� 3

r

�dS�l;j�
dr

� U�l;j��r�:

(5.16)

One can find the solution of this equation in analytic form:

S�l;l��1=2���r� � ln
�
2l� 1

2l� 2

�

� ln
� ��������������

1� r2
p

�
1

2l� 1

1��������������
1� r2

p

�
(5.17)

S�l��1=2�;l��r� � � ln�
��������������
1� r2

p
�: (5.18)

As r! 1, each quantity diverges but the sum, P�l�, has a
finite value

P�l� � ln
�
2l� 1

2l� 2

�
: (5.19)

Then it follows that

~�Sren�m � 0� � lim
L!1

( XL
l�0;1=2;...

�2l� 1��2l� 2� ln
�
2l� 1

2l� 2

�

� 2L2 � 4L�
1

6
lnL�

127

72
�

1

3
ln2

)

� �
17

72
�

1

6
ln2�

1

6
� 2� 0��1�

� �
�
1

2

�
� 0:145 873 . . . (5.20)

which agrees precisely with the leading term (2.8) in the
small mass limit in (2.7).
VI. COMPARISON WITH OTHER RESULTS

Since this is the first computation of the full mass
dependence of the one-loop effective action in an instanton
background, there is not much with which we can compare,
except the small and large mass limits (2.7), which agree
very well. There are, however, two other comparisons
worth making. The first is with a modified Padé interpolat-
ing fit proposed in [11], which is consistent with the two
leading terms in each of the known analytic small and large
mass limits given in (2.7):

~� S
ren�m� � �

1

6
lnm�

1
6 lnm� �� �3�� .�m2 � 1

5m
4

1� 3m2 � 20m4 � 15m6
;

(6.1)
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FIG. 6. Plot of ‘‘Padé’’ approximations of the effective action.
The dotted line is the interpolation in (6.1) proposed in [11],
while the solid line is the approximation in (6.2) which is an
interpolating function fit to the exact mass dependence found in
this paper. The solid dots are the exact numerical data.
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with � � ��1=2� � 0:145 873 and . � 1
2 �ln2� �� �

0:057 97. Based on the numerical data found in the present
paper, we can fit the exact mass dependence in Fig. 5 with
an expanded form of this interpolating function. Let us
assume the form

~� S
ren�m� � �

1

6
lnm

�
1
6 lnm� �� �3�� .�m2 � A1m

4 � A2m
6

1� 3m2 � B1m
4 � B2m

6 � B3m
8

: (6.2)

One may easily check that the leading two terms of the
small mass expansion of this expression (6.2) is the same as
the small mass expansion in (2.7). Then, comparing the
four leading terms of the large mass expansion of (6.2) with
the large mass expansion of (2.7) fixes the coefficients
B1; B2; B3 to be

B1 � 25
�
592 955

21 609
A2 �

255

49
A1 � 9�� 3.

�
;

B2 � �75
�
85

49
A2 � A1

�
; B3 � 75A2:

(6.3)

There remain two free parameters, A1 and A2, unfixed in
(6.2). We can choose them so that the Padé approximant in
(6.2) best fits the numerical data found in the previous
section. This is a straightforward numerical exercise, and
we find the best fit is given by

A1 � �13:4138; A2 � 2:645 87: (6.4)

In Fig. 6, we compare these approximations with the
precise numerical data. Note that the fit based on (6.2)
[solid line] is extremely precise, so we can use (6.2) as a
simple analytic expression approximating the full mass
dependence of the effective action, over the entire range
of mass values. This is analogous to modified Padé fits used
in chiral extrapolation of lattice data [14], and has also
been explored for Heisenberg-Euler effective actions [29].
This form will also be useful if one wishes to capture the
085019
full � dependence (for a given quark mass value) of the
scalar effective action ~�Sren�m� via (2.6) [and then also of
the fermion effective action ~�Fren�m� via (2.1)].

Another comparison we can make is to the derivative
expansion approximation. This approximation was already
studied in [20], where it was noted that it was remarkably
close to the extreme small and large mass limits in (2.7).
Now that we have computed the full mass dependence of
~�Sren�m�, it is worth revisiting this comparison. Recall that
the philosophy of the derivative expansion is to compute
the one-loop effective action for a covariantly constant
background field, which can be done exactly, and then
perturb around this constant background solution. The
leading-order derivative expansion for the effective action
is obtained by first taking the (exact) expression for the
effective Lagrangian in a covariantly constant background,
substituting the space-time dependent background, and
then integrating over space-time. For an instanton back-
ground, which is self-dual, we base our derivative expan-
sion approximation on a covariantly constant and self-dual
background [4,30]. This leads to the following simple
integral representation for the leading derivative expansion
approximation to the effective action [20]:
~�Sren�A;m��DE � �
1

14

Z 1

0

dxx

e2�x � 1

�
�84� 14 ln

�
1�

48x2

m4

�
� 7

���
3

p m2

x
arctan

�
4
���
3

p
x

m2

�
� 768

x2

m4 2F1

�
1;
7

4
;
11

4
;�

48x2

m4

�


�
1

6
lnm: (6.5)

Figure 7 shows a comparison of this leading derivative expansion expression with the exact numerical data. In the range
covered, the agreement is surprisingly good for such a crude approximation.

VII. CONCLUDING REMARKS

In this paper we have presented the details of a computation of the fermion determinant in an instanton background for
all values of the quark mass. The agreement with the known analytic expressions in the small and large mass limits is
-9
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excellent. As another application of our result, we can reinstate the dependence on �, the instanton scale parameter, simply
by replacing m bym�. Then, given a quark field of fixed massm, the fermion determinant as a function of instanton size �
can be studied. For phenomenological applications, this can now be simply described with better than 1% numerical
accuracy by using the interpolating function (6.2) for ~�Sren, together with our formulas (2.1) and (2.6). The resulting

interpolating expression for the fermion determinant in an instanton background is

e��Fren �
m
�
����1=3 exp

�
�

1

3
lnm��

1
3 ln�m�� � 2�� �6�� 2.��m��2 � 2A1�m��

4 � 2A2�m��
6

1� 3�m��2 � B1�m��
4 � B2�m��

6 � B3�m��
8



: (7.1)
This expression assumes minimal subtraction for the re-
normalized coupling entering the tree-level contribution.
To obtain the corresponding expression for e��Fren in other
renormalization schemes, one needs to perform additional
finite renormalizations, as discussed in Refs. [11,31].
Notice that such one-loop finite renormalization terms
"�Ffinite can have dependence on the quark mass m (but
not on �), and the lack of manifest decoupling for large
quark mass in the expression (7.1) is a renormalization
artifact [11]. We also remark that in instanton-based
QCD phenomenology one may well choose the quark
mass value m in (7.1) to be different from the Lagrangian
(or current) quark mass, taking instead some effective mass
value [32]. Our formula (7.1) can be used for discussing
instanton effects in gauge theories with compact extra
dimensions as well [33].

The computational method we described is versatile and
can be adapted to a large class of previously insoluble
computations of one-loop functional determinants in non-
trivial backgrounds in various dimensions of space-time, as
long as the spectral problem of the given system can be
reduced to that of partial waves. One may especially con-
sider using analogous methods for the computation of
quantum corrections to the soliton energy in field theories.
Several examples along this direction are currently under
investigation.
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FIG. 7. Plot of ~�S�m�, comparing the leading derivative ex-
pansion approximation (solid line) with the precise numerical
answers (dots). The dashed lines show the small and large mass
limits from (2.7).
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APPENDIX A: ONE-LOOP EFFECTIVE ACTION
BY THE WKB PHASE-SHIFT METHOD

WKB theory is a powerful tool for obtaining a global
approximation to the solution of a second-order ordinary
differential equation [26,34]. Hence one expects that it can
be utilized for the approximate calculation of a one-
dimensional functional determinant [35,36]. In the case
of higher-dimensional functional determinants, which are
usually needed in the one-loop effective action calculation
of field theory, one can still try to use this WKB theory if
the relevant partial differential operator becomes separable
(as is often the case with rotationally invariant background
fields). In the latter case, however, no useful result can be
derived from such analysis if one does not have an unam-
biguous renormalization procedure that goes with the
WKB theory. In fact, the usual leading-order WKB theory
is not sufficient for the determinant calculation if a con-
sistent renormalization demands the contribution from
higher-order WKB approximation to be included. We shall
see below that this is the case.

The renormalization problem mentioned above has been
solved in our earlier paper [20], by including needed
higher-order WKB contributions within the Schwinger
proper-time representation [2] for the effective action.
Also achieved there is a generalization of the Schwinger-
DeWitt small proper-time expansion [37,38] to the appro-
priate expression for arbitrary proper-time value (in the
case of rotationally invariant background fields only) so
that one can have an approximation to the full effective
action. In this appendix we shall briefly summarize this
development and also provide further technical details on
the formulas stated in [20].

In the proper-time representation (2.4) for the effective
action, it is the function
-10
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F�s� �
Z
d4x trhxj�e�s��D

2� � e�s��@
2��jxi; (A1)

which contains the important information. Given a rota-
tionally invariant background field, we may utilize the
phase-shift analysis with scattering solutions of the
‘‘Hamiltonian’’ H � �D2 to rewrite the expression
(A1). To that end we will put the system in a large spherical
box of radius R (with a Dirichlet or Neumann boundary
condition at r � R), thus making the spectrum discrete [5].
In a single instanton background, in particular, we may
then consider the quantum mechanical scattering solution
for each partial wave, that is,

H �l;j� �r� �
�
�
@2

@r2
�

3

r
@
@r

�
4l�l� 1�

r2

�
4�j� l��j� l� 1�

r2 � 1
�

3

�r2 � 1�2



 �r�

� k2 �r�: (A2)

The corresponding free Schrödinger equation yields

H free
�l�  0�r� �

�
�
@2

@r2
�

3

r
@
@r

�
4l�l� 1�

r2



 0�r�

� k2 0�r�: (A3)

We are interested in the solution of (A2) and (A3) that
vanishes as r2l for r! 0. Then, for large r,  0�r� behaves
as

 0�r� � Cr�3=2 cos�k0�n��r� a��; (A4)

where

k0�n� 1� � k0�n� �
�
R
�O

�
1

R2

�
; (A5)

(for nonnegative integer n), and a is a certain constant
which is not important. On the other hand, we may write
the large-r asymptotic behavior of the solution to (A2) in
the form

 �r� � Cr�3=2 cos�k�n��r� a� � ��k�n���; (A6)

where ��k�n�� denotes the appropriate scattering phase
shift [the related scattering matrix is give by S�k� �
e2i��k�]. Here, because of the boundary condition at r �
R, we may demand the discretized momentum k�n� to be
related to k0�n� above according to

k�n��R� a� � ��k�n�� � k0�n��R� a�: (A7)

From (A7) we conclude that

k0�n� � k�n� �
��k�n��
R

�O
�
1

R2

�
: (A8)

If �kl;j�n��2 and �kl0�n��
2 denote the energy eigenvalues

associated with the Schrödinger equations (A2) and (A3),
respectively, the function F�s� give by (A1) can be repre-
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sented as

F�s� �
X

l�0;1=2;���

X
j

�2l� 1��2j� 1�

	
X
n

fe�s�k
l;j�n��2 � e�s�k

l
0�n��

2
g; (A9)

including the degeneracy factor �2l� 1��2j� 1� for the
�l; j� partial wave. But, because of (A8), we find for large R

fe�s�k
l;j�n��2 � e�s�k

l
0�n��

2
g � e�s�k

l;j�n��2

	

�
2kl;j�n��l;j�k�n��

R
s

�O
�
1

R2

�

: (A10)

Using (A10) in (A9) gives rise to

F�s� �
X

l�0;1=2;���

X
j

�2l� 1��2j� 1�

	
X
n

2�"k�e�s�k
l;j�n��2 2k

l;j�n��l;j�k�n��

�
s; (A11)

where "k � �
R , and then, replacing the sum

P
n by an

integral for R! 1, we obtain the following formula:

F�s� �
2s
�

X
l�0;1=2;���

X
j

�2l� 1��2j� 1�

	
Z 1

0
dke�k

2sk�l;j�k�: (A12)

With (A12) some caution must be exercised in dealing
with the infinite partial-wave sum. Actually, in the instan-
ton background we are considering, the nature of the
scattering problem as defined by (A2) and (A3) does not
allow us to consider the l sum and j sum in (A12) in a
completely independent manner. The point is that, as one
looks at the given forms of H �l;j� and H free

�l� , their small-r
behaviors match for a given l value; but it is the j value that
governs the large-r behavior of the potential entering
H �l;j�, while j does not appear in H free

�l� at all. To obtain
a convergent expression from (A12), it is necessary [20] to
consider the �l; j � l� 1

2� and �l� 1
2 ; j � l� partial-wave

contributions, both of which have the same degeneracy
factor of �2l� 1��2l� 2�, together as one package. With
this understanding, the expression (A12) can now be cast in
the form

F�s� �
2s
�

X
l�0;1=2;���

�2l� 1��2l� 2�

	
Z 1

0
dke�k

2sk��l;l��1=2��k� � �l��1=2�;l�k��:

(A13)

If one has complete phase shifts for all partial waves at
hand, one may use this formula (A13) to calculate the
-11
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function F�s� and then the one-loop effective action as
well. But, in the massive case, the exact phase shifts cannot
be obtained analytically. Therefore, in [20], we proposed to
use the WKB expressions for the phase shifts, together
with our formula (A13). This method is elaborated below.

First, we need the results of Dunham [34] for higher-
order WKB approximations to the scattering phase shifts.
If the Schrödinger equation is written in the form�

d2

dx2
�Q�x�



%�x� � 0; (A14)

the phase shift in the leading WKB approximation is given
by

��1� �
1

2

�I ����������
Q�x�

p
dx� �“free”�

�
; (A15)

where the integration path goes around the turning point r1
[i.e., the point where Q�x� vanishes] in the complex plane,
and crosses the real axis at r � r0 (with r0 < r) and r � r2
(with r2 taken to positive infinity). The choice of r0 has no
effect on the value of the integral, and (‘‘free’’) in (A15)
represents the same integral but with Q�x� of the free
Schrödinger equation. Dunham also derived the formulas
in the second- and third-order WKB approximations:

��2� � �
1

2

�I 1

48

Q00�x�

Q�x�3=2
dx� �“free”�

�
; (A16)

��3� �
1

2

�I � 1

768

Q�4��x�

Q�x�5=2
�

7

1536

�Q00�x��2

Q�x�7=2
dx
�

� �“free”�
�
: (A17)

One cannot use Dunham’s formula directly with the
radial Schrödinger equation in (A2) and (A3). The latter
should be transformed appropriately, following Langer
[27]. Thus, writing r � ex and introducing the function

%�x� � r �r�jr�ex � ex �r � ex�; (A18)

we recast (A2) as

d2%�x�

dx2
� e2x

�
k2 �

4�l� 1
2�
2

e2x
�

4�j� l��j� l� 1�

e2x � 1

�
3

�e2x � 1�2



%�x� � 0: (A19)

Since this is of the form (A14), we can get the relevant
scattering phase shifts simply by setting

Q�l;j��x� � e2x
�
k2 �

4�l� 1
2�
2

e2x
�

4�j� l��j� l� 1�

e2x � 1

�
3

�e2x � 1�2



; (A20)

and also, in connection with the free equation (A3),
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Ql�x� � e2x
�
k2 �

4�l� 1
2�
2

e2x



: (A21)

Then, using the original variable r � ex and integrating by
parts, the desired WKB expressions for the phase shifts
assume the form

��1�
l;j �

1

2

I ���������������������������
k2 � ~V�l;j��r�

q
dr� �“free”�; (A22)

��2�
l;j �

1

2

I � 1

8r2
1

�k2 � ~V�l;j��r��
1=2

�
1

48

d2 ~V�l;j��r�

dr2
1

�k2 � ~V�l;j��r��
3=2



dr� �“free”�;

(A23)

��3�
l;j �

1

2

I �
�

5

128r4
1

�k2 � ~V�l;j��r��
3=2

�
1

128r2

	
d2 ~V�l;j��r�

dr2
1

�k2 � ~V�l;j��r��5=2
�

7

1536

	

�d2 ~V�l;j��r�

dr2

�
2 1

�k2 � ~V�l;j��r��
7=2

�
1

768

	
d4 ~V�l;j��r�

dr4
1

�k2 � ~V�l;j��r��
5=2



dr� �“free”�;

(A24)

where ~V�l;j��r� is the so-called Langer modification [27] of
the potential

~V �l;j��r� �
4�l� 1

2�
2

r2
�

4�j� l��j� l� 1�

r2 � 1
�

3

�r2 � 1�2
;

(A25)

and the term referred to (free) denotes the integral expres-
sion appearing before but with ~V�l;j��r� replaced by

~V l�r� �
4�l� 1

2�
2

r2
: (A26)

Note that Q�l;j��x� � r2fk2 � ~V�l;j��r�gjr�ex , and Q0
l �x� �

r2fk2 � ~Vl�r�gjr�ex .
Using the results (A22)–(A24) in (A13), we can sim-

plify the expression by carrying out the k integration. First,
consider the leading-order WKB. The first contour integral
in (A22) can be changed to the integral along the real axis
over the interval �r1�k�;1�, where r1�k� is a turning point,
i.e., �k2 � ~V�l;j��r1�k��� � 0. On the other hand, k integral
in (A13) runs from 0 to 1. We may here change the order
of integration, that is, perform the k integral prior to con-
sidering the r integration: in this case, the integration range
for k would be over the interval �k1�r�;1�, where k1�r�
represents the value specified by the condition �k1�r�

2 �
~V�l;j��r�� � 0 for a given value of r. Similar consideration
-12
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may be given to the second contour integral in (A23), the
free part. Then, observing that we obtain from the first
contour integralZ 1�������

~V�l;j�

p dk
2s
�
e�k

2sk
���������������������������
k2 � ~V�l;j��r�

q

�
1

2

I
dk

2s
�
e�k

2sk
���������������������������
k2 � ~V�l;j��r�

q
�
e�s ~V�l;j��r�

2
����
�

p ���
s

p ;

(A27)

(and similarly the form e�s ~Vl�r�=2
����
�

p ���
s

p
from the second

contour integral), we are led to the following leading-order
WKB expression for F�s�:

F�1��s� �
X

l�0;1=2;���

�2l� 1��2l� 2�

	
Z 1

0
dr�f�1�

�l;l��1=2���s; r� � f�1�
�l��1=2�;l��s; r��;

(A28)

f�1�
�l;j��s; r� �

e�s ~V�l;j��r�

2
����
�

p ���
s

p �
e�s ~Vl�r�

2
����
�

p ���
s

p : (A29)

We use similar procedures to simplify the contributions
coming from the second- and third-order WKB phase shifts
in (A23) and (A24). For this, a particularly useful relation
is

1

2

I
dk

2s
�
e�k

2s k

�k2 � ~V�r��n��1=2�

�
e�s ~V�r�sn��1=2����n� 1

2�

�
; �n � 0; 1; 2; � � ��:

(A30)

As a result, we obtain the higher-order WKB expressions
for F�s�, i.e., F�2��s� and F�3��s�, which may be expressed
again by the form (A28) but with

f�2�
�l;j��s; r� �

e�s ~V�l;j��r�

2
����
�

p ���
s

p

�
s

4r2
�
s2

12

d2 ~V�l;j��r�

dr2




�
e�s ~Vl�r�

2
����
�

p ���
s

p

�
s

4r2
�
s2

12

d2 ~Vl�r�

dr2



(A31)

f�3�
�l;j��s; r� �

e�s ~V�l;j��r�

2
����
�

p ���
s

p

�
5s2

32r4
�

s3

48r2
d2 ~V�l;j��r�

dr2

�
7s4

1440

�d2 ~V�l;j��r�

dr2

�
2
�

s3

288

d4 ~V�l;j��r�

dr4




�
e�s ~Vl�r�

2
����
�

p ���
s

p

�
5s2

32r4
�

s3

48r2
d2 ~Vl�r�

dr2

�
7s4

1440

�
d2 ~Vl�r�

dr2

�
2
�

s3

288

d4 ~Vl�r�

dr4



: (A32)
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In connection with using the formula (A28), our dis-
cussion will not be complete without being clear about the
order between executing the infinite series sum over l and
performing the (improper) radial integral. This is a subtle
point, and one possible way to settle the issue unambigu-
ously would be to check explicitly which order gives rise to
the known small-s behavior for the function F�s� correctly.
As was asserted in [20], doing the l sum before the r
integration yields the correct result. If instead one performs
the r integration first and then considers the l sum, it gives a
result differing from the correct small-s expression of F�s�
by 1

4s . [Note that, although we used the WKB series for the
calculation, the thus-found difference is an exact result
since the order-dependent ambiguity is purely a high-
energy phenomenon and the WKB series can be trusted
in the high-energy limit.] In view of this remark, the correct
formula to be used in the WKB analysis of the effective
action should read

F�s� �
Z 1

0
dr

X
l�0;1=2;���

�2l� 1��2l� 2�

	 �f�l;l��1=2���s; r� � f�l��1=2�;l��s; r��: (A33)

The result of using this formula for the fermion determi-
nant in a single instanton background is presented in [20].

APPENDIX B: THE INSTANTON DETERMINANT
IN THE SINGULAR GAUGE

In this appendix we address the question of the gauge
invariance of the determinant or the effective action. The
proper-time representation of the effective action in (2.4) is
written in terms of covariant derivatives and is clearly
gauge invariant. However, to formulate the partial-wave
expansion, as discussed in Sec. III, we chose a particular
gauge (2.3). Thus the partial-wave expansion used in the
main text does not possess manifest gauge invariance. In
this appendix we verify gauge independence by showing
that we obtain precisely the same result in a different
gauge. Since our computational method relies on the radial
symmetry of the background field, we are restricted in
which gauge we can choose. The choice in (2.3) is often
called the ‘‘regular’’ gauge. But an instanton background
also has radial symmetry in the so-called ‘‘singular’’
gauge:

Asing
� �x� � Aa��x�

�a

2
�

'���a�
ax��

2

r2�r2 � �2�
(B1)

in the singular gauge. In (B1), '���a differs from ���a in
(2.3) only by the sign in the components with � or � equal
to 4 [5,7,8]. The gauge field in the singular gauge has
singular behavior in the vicinity of r � 0. One may worry
about the validity of the radial approach in the main text in
the singular gauge because of this. However, it turns out
that it is not so singular. Physically, the reason for this is the
conformal invariance of the instanton background [5,7,8].
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The differential operator �D2 in the instanton background
(B1) in the singular gauge can be written as, setting � � 1,

�D2
sing �

�
�
@2

@r2
�

3

r
@
@r

�
4L2

r2
�

4�J2 � L2 � T2�

r2�r2 � 1�

�
4T2

r2�r2 � 1�2

�
: (B2)

In the region of r� 0, the potential term in (B2) has 1=r2

singular behavior. But the last two singular terms propor-
tional to T2 combine into T2=�r2 � 1�2, which is regular.
We decompose 1=�r2�r2 � 1�� into 1=r2 � 1=�r2 � 1�; i.e.,
into singular and regular parts. The singular part, �J2 �
L2�=r2 combines with the orbital part L2=r2. We can cast
(B2) in the form

�D2
sing �

�
�
@2

@r2
�

3

r
@
@r

�
4J2

r2
�

4�L2 � J2�

�r2 � 1�

�
4T2

�r2 � 1�2

�
: (B3)

This should be compared with the corresponding operator
in the regular gauge [see (3.1)]:

�D2
reg �

�
�
@2

@r2
�

3

r
@
@r

�
4L2

r2
�

4�J2 � L2�

�r2 � 1�

�
4T2

�r2 � 1�2

�
: (B4)

Note that these two have the same form except that J2 and
L2 are interchanged. Therefore, in the partial-wave analy-
sis the radial Hamiltonian (for isospin 1

2 ) can be written as

H sing
�l;j� �

�
�
@2

@r2
�

3

r
@
@r

�
4j�j� 1�

r2

�
4�l� j��j� l� 1�

r2 � 1
�

3

�r2 � 1�2

�
: (B5)
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There is a one-to-one correspondence between the eigen-
values for the sector �j; l� in the singular gauge and those
for the sector �l; j� in the regular gauge, and they have the
same multiplicities, �2j� 1��2l� 1�.

The regularized one-loop effective action in the singular
gauge can be written as

�S	�Asing;m� �
X

l�0;1=2;...

�2l� 1��2l� 2�

	

�
ln
�det�H sing

�l;l��1=2�� �m2�

det�H free
�l��1=2�� �m2�

�

� ln
�det�H sing

�l��1=2�;l� �m2�

det�H free
�l� �m2�

�

� ln
�det�H sing

�l;l��1=2�� �	2�

det�H free
�l��1=2�� �	2�

�

� ln
�det�H sing

�l��1=2�;l� �	2�

det�H free
�l� �	2�

�

: (B6)

Here we have combined the radial determinants for �l; j �
l� 1

2� and �l� 1
2 ; j � �l� 1

2� �
1
2�, as in Sec. III, and we

have arranged the free determinants appropriately. But
from the above arguments, we know that

H sing
�l;l0� � H reg

�l0;l�: (B7)

Hence the singular gauge expression in (B6) is identical
with the regular gauge expression in (3.3). So the Pauli-
Villars regularized one-loop effective action has the same
value in the singular gauge and in the regular gauge, and
therefore the renormalized effective action (2.5), and the
modified effective action (2.6), has the same value in each
gauge.
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