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Relativistic resonances: Their masses, widths, lifetimes, superposition, and causal evolution
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Whether one starts from the analytic S-matrix definition or the requirement of gauge-parameter
independence in renormalization theory, a relativistic resonance is given by a pole at a complex value
sR of the energy squared s. The complex number sR does not define the mass and the width separately, and
the pole definition alone is also not sufficient to describe the interference of two or more Breit-Wigner
resonances as observed in experiments. To achieve this and obtain a unified theory of relativistic
resonances and decay, we invoke the decaying particle aspect of a resonance and associate to each
pole a space of relativistic Gamow kets. The Gamow kets transform irreducibly under causal Poincaré
transformations and have an exponential time evolution. Therefore one can choose of the many possible
width parameters, the width �R of the relativistic resonance such that the lifetime � � �h=�R. This leads to
the parametrization sR � �MR � i�R=2�

2 and uniquely defines these �MR;�R� as the mass and width
parameters for a resonance. Further it leads to the following new results: Two poles in the same partial
wave are given by the sum of two Breit-Wigner amplitudes and by a superposition of two Gamow vectors
with each Gamow vector corresponding to one Breit-Wigner amplitude. In addition to the sum of Breit-
Wigner amplitudes, the scattering amplitude contains a background amplitude representing direct
production of the final state (contact terms). This contact amplitude is associated to a background vector
representing the nonexponential energy continuum; omitting it gives the two interfering exponentials of
the Weisskopf-Wigner methods. To accomplish all this required a minor modification in the foundation of
quantum theory, which led to a quantum theory that contains the time asymmetry of causality.
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I. INTRODUCTION

The Particle Data Group [1] lists two values for the mass
and the width of � resonances. These two values differ
from each other by 10 times the experimental error, one is
called the Breit-Wigner mass and width and the other is
called pole position. A similar situation holds for the
	-meson. For the mass and width of the Z-boson, the
Particle Data Group [1] gives three definitions. When fitted
to the line shape data of the same experiment [2,3], the
experimental values obtained for these three definitions
differ from each other by about 10 times their experimental
error. These examples indicate that one has problems with
the understanding of resonances, in particular, for relativ-
istic resonances. This problem has its roots already in the
foundations of quantum mechanics.

The old quantum mechanics (based on the Hilbert space
axiom including the use of Dirac kets) is a theory of stable
states and reversible (unitary) time evolution. In contrast,
quasistable states, like resonances in a scattering experi-
ment or like decaying states in a decay experiment, are
connected with an asymmetric or ’’irreversible’’ time evo-
lution [4]. Thus they require a time-asymmetric quantum
theory and, in the absence of such a theory, their descrip-
tion can only be approximate and must contain some
contradictions. If one is serious about Hilbert space mathe-
matics, one always runs into problems with the quantum
theory of resonances and decaying states, basically be-
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cause the vectors with exponential time evolution (as
Gamow envisioned for quasistable states [5]) do not exist
in the Hilbert space. In the heuristic treatment of scattering
theory one just ignored the mathematical subtleties. One
worked with mathematically undefined kets [6], used �i�
to distinguish incoming from outgoing Lippmann-
Schwinger kets [7], and distinguished ‘‘states at time t0 <
t0 � time defined by preparation’’ and ‘‘states character-
istic of the experiment’’ observed at t00 > t0 [8]. One
restricted by fiat the time in eiHt to t � 0 [9], and for
decaying states one postulated purely outgoing boundary
conditions [10] undisturbed by the fact that this was in
conflict with the unitary group evolution �1< t <1
which is a consequence of the Hilbert space axiom
(Stone-von Neumann theorem [11]).

These heuristic methods were quite successful for physi-
cal applications, but when one compared it with mathe-
matical consequences of the axioms in Ref. [11] one had
contradictions. Examples of these are: the exponential
catastrophe in which Gamow vectors and unitary time
evolution conflicted; deviations from the exponential law
[12]; problems with (Einstein) causality [13].

In order to retain the empirically successful notions, like
exponentially decaying Gamow states, the distinction be-
tween in and out Lippmann-Schwinger kets and between
prepared states and detected observables, the Hilbert space
axiom had to go. It was replaced by the Hardy space axiom
which ascribes Hardy energy wave functions of conjugate
analyticity to in-states and out-observables, respectively.
The use of Hardy energy wave functions then led to the
desired association of a Breit-Wigner energy distribution to
-1  2005 The American Physical Society
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an exponentially evolving Gamow ket [14], and also, un-
wittingly, to time asymmetry.

In the relativistic case the Lippmann-Schwinger scatter-
ing states were always assumed to furnish a unitary (group)
representations of the Poincaré transformations [15], just
like the Dirac kets of the Wigner basis [16], despite their
	i� being in mathematical conflict with unitary group
evolution. However, mathematically defined as Hardy
space functionals, the Lippmann-Schwinger kets furnish
only Poincaré semigroup representations into the forward
(or backward) light cone, and this incorporates Einstein
causality without requiring the separate axiom of local
commutativity [17].

In quantum field theory there are no vectors correspond-
ing to unstable states [18]. Unstable states are eliminated
from the set of asymptotic states by S-matrix unitarity [19].
They appear only as intermediators in some special forms
of the propagator obtained by the Dyson summation for-
mula [20]. The precise form of the propagator depends
upon the arbitrary choice of a renormalization point and so
do the mass and width parameters defined by it. Though the
complex pole definition of the Z-mass had been suggested
as early as 1986 [21] the favored choice was the on-the-
mass-shell definition. This led to mass and width parame-
ters which were gauge dependent in the next-to-the-next of
the leading order [22,23]. This gauge dependence disap-
peared when definitions based on the complex pole posi-
tion of the propagators were employed [21–23]. All this
pointed to the definition of the resonance as the pole of the
jth partial S-matrix at a complex value sR of the center-of-
mass scattering energy squared s � �p1 
 p2�

2.
The position of the pole defines only the complex value

sR, not a massM and a width � separately. How to split the
complex number sR for the quasistable relativistic particle
precisely into two real numbers of physical significance
has not been completely agreed upon, except that the real
part is predominantly connected with the mass and the
imaginary part predominantly with the width or with the
inverse lifetime. The inverse lifetime (which for the ex-
ponential decay law is equal to the initial decay rate) and
the width are conceptually and experimentally different
quantities; the former is measured using the exponential
decay rate, the latter is measured as the width of a Breit-
Wigner line shape.

Whether one measures the width � in an energy mea-
surement or the lifetime � in a time measurement is a
question connected with the capabilities of the apparatuses,
not a question related to the nature of the quasistable
particle. For some relativistic particles it is possible to
measure the width and for others the lifetime. One does
not consider�0 to be of different nature from� because for
�0 one measures the lifetime and for � one cannot. There
exists no relativistic particle for which both width and
lifetime have been measured. However, for nonrelativistic
quasistable states, one has an example for which both
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lifetime and width have been measured [24,25], so that
the lifetime-width relation � � �h=� could be tested and
confirmed with high accuracy [26].

In the nonrelativistic case, one had a generally accepted
heuristic method to relate width and lifetime, the
Weisskopf-Wigner approximation [27,28]. For relativistic
particles, one should also like to define the lifetime and the
width in such a way that the lifetime-width relation � �
�h=� holds. But the prevalent opinion in particle physics is
that relativistic resonances are complicated phenomena
which cannot be defined by two real parameters, such as
a mass M and a width �. For instance, the Z-boson line
shape was considered as a Breit-Wigner amplitude with
running width �Z�s� [1,21–23]. The same formula has also
been used for hadrons [1].

After one noticed the problems with gauge invariance of
the on-the-mass-shell definition [22,23], one became aware
of the arbitrariness in the definition of the Z-boson mass
and width, and concluded that there was no fundamental
criterion to define the mass and width separately [29].
Similar problems were also pointed out for the nucleon
[30,31] and meson [32] resonances. This triggered the
development of a unified theory for relativistic resonances
and decaying particles [33]. Without the concept of life-
time, the mass and the width of a relativistic quasistable
particle cannot be uniquely defined. The S-matrix pole
alone is not sufficient, one also needs the particle aspect
of the relativistic system. For stable relativistic particles,
the particle aspect is brought in by the relativistic quantum
fields or equivalently [15] by the representations of the
Poincaré group of space-time transformations [16].

Since the decay of a prepared state is believed to be a
time-asymmetric process [4] and the nonrelativistic theory
[14] required a semigroup, one expects that relativistic
decaying states are also time asymmetric and need, in place
of Wigner’s unitary Poincaré group representations, semi-
group representations in the light cone. Semigroups are
foreign to the traditional quantum theory in Hilbert space
because with the Hilbert space boundary conditions the
dynamical equations integrate always to a unitary group
evolution [11]. Nevertheless, a long time ago, Schulman
[34] gave a classification of Poincaré semigroup represen-
tations and even earmarked one of these classes IIIE, for
the relativistic unstable particles.

The same semigroup representations, called minimally
complex representations because their momenta are given
by p� �

�����
sR
p

p̂�, with real p̂� (four-velocities) [35], were
obtained from the pole of the jth partial S-matrix [36].
Therewith a resonance pole of Sj�s� at sR was associated to
a representation space of the causal transformations of
relativistic space-time. This representation space—like
the resonance pole characterized by �sR; j—is the space
of a (single) relativistic resonance. The vectors in this
space �sR; j are the relativistic Gamow vectors  G

�sR;j

which have exponential time evolution, as will be dis-
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cussed in Sec. IV, unburdened by the mathematical ballast
of Ref. [36]. Going beyond the results for a single relativ-
istic resonance we then show in Sec. IV how the relativistic
Gamow kets provide all the properties that one observes for
resonances and decaying states: interference of decaying
states, superposition of resonance amplitudes; exponential
decay for the resonance per se, and deviations from the
exponential decay due to the nonresonant background
amplitude. As a preparation for the relativistic theory in
Sec. IV, we give in Sec. III a brief review of the non-
relativistic theory [14,37] for which the Weisskopf-Wigner
methods [27,28] serve as the starting point. The modifica-
tions needed in the foundations of quantum mechanics are
most readily appreciated for the nonrelativistic case of
Sec. III. The relativistic concepts in Sec. IV are introduced
in analogy to Sec. III and on the basis of the phenomeno-
logical results of Sec. II.

We consider in this paper mainly resonance formation

a
 b! R! c
 d: (1)

Resonance bumps, suggesting a Breit-Wigner amplitude,
are also observed in resonance production

a
 b! c
 R; R! e
 f: (2)

The relativistic Gamow vectors must therefore also emerge
from the resonance production amplitude. This has indeed
been shown [38] and will be mentioned briefly below. The
details are the subject of a separate publication [39].
II. POLE OF THE S-MATRIX VERSUS
PROPAGATOR DEFINITION—TWO DIFFERENT

VALUES FOR MASS AND WIDTH

In the nonrelativistic case the Lorentzian as function of
energy E was the prominent choice (in nuclear and atomic
physics) for the scattering amplitude of the resonating
partial wave with angular momentum j:

aBWj �E� �
r�

E� zR
; zR � ER � i�=2; (3)

where r� is a constant. From this, one conjectured the
resonance amplitude for the relativistic hadron (e.g., �N)
resonances by the following substitution:

Energy E! W �
���
s
p
;

Resonance Parameters �ER;�� ! �M;��:

Then one obtains for the resonance amplitude in the center-
of-mass energy W �

���
s
p

,

aBWj �W� �
r�

W �WP
; WP � M� i�=2: (4)

This defines the meaning of mass M and width � of a
resonance. The resonance parameters M and � were de-
termined by a fit of the resonance amplitude (4) with a
slowly varying background Bj�s�,
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aj�W� � aBWj �W� 
 Bj�W�; (5)

to the experimental data using cross sections 'j�W� �
jaj�W�j2, Argand diagrams [37,40–42], and speed plots
[43].

The complex resonance parameter WP (and zR) is asso-
ciated with a pole of the S-matrix element Sj�W� in the
complex W-plane. Assuming analyticity of the S-matrix,
except for a singularity due to the resonance atWP, one can
justify the amplitude (5) by the Laurent expansion if there
is one pole.

If there are two (or more) resonances in the same partial
wave j, then a sum (superposition) of two (or more)
resonance amplitudes was used:

aj�W� �
X2
i�1

aBWi
j �W� 
 Bj�W� (6)

where

aBWi
j �W� �

r�i
WPi �W

; WPi � Mi � i�i=2: (7)

This can no more be justified by the analyticity assump-
tions for the S-matrix using a Laurent expansions but it
worked phenomenologically very well.

Another starting point for the definition of a relativistic
resonance is as the pole of the S-matrix Sj�s� on the s-plane
�s � W2�. For the resonance amplitude aRj �s�, one then
takes

aRj �s� � aBWj �s� �
r

s� sR
�

r

s� �M2
Z 
 i �MZ

��Z
; (8)

which we call the relativistic Breit-Wigner amplitude with
constant width. The complex number sR is the position of
the pole on the second (or higher) Riemann sheet of the S-
matrix, r is a constant, the residue, and � �MZ; ��Z� is one of
many possible parametrizations of sR in terms of real
numbers given by (9b) below. This resonance amplitude
(8) is therefore also called the pole definition of a relativ-
istic resonance [44].

The complex position sR does not fix the definition of the
real parameters, mass M and width �, because there are
many different parametrizations of the complex constant
sR in terms of two real parameters which one could inter-
pret as mass and width. Three definitions of some historical
value are �m1;�1�, ( �MZ; ��Z), and (MR;�R) given by the
parametrizations,

sR �
m2

1 � im1�1

1
 ��1=m1�
2 ; (9a)

sR � �M2
Z � i �MZ

��Z; (9b)

sR �
�
MR � i

�R
2

�
2
: (9c)

There could be many other parametrizations. We shall see
in Sec. IV as one of our main results that the relativistic
-3
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transformation properties select one of these three
parametrizations.

The definition (4) by a pole on the W-plane and the
definition (8) by a pole on the s � W2-plane are very
similar. A pole of Sn

0n
j �s� in the second sheet of the

s-plane at s � sR � �MR � i�R=2�2 is always connected
with a pair of poles in the W-plane at WP � MR � i�R=2
and at WP � ��MR � i�R=2�, because

1

s� sR
�

1

W2 � �MR � i�R=2�2

�
1

W 
 �MR � i�R=2�
1

W � �MR � i�R=2�
:

Since the pole at WP � ��MR � i�R=2� is far away from
the physical region �m1 
m2�<W <1, one obtains for
�R=MR � 1:

1

s� �MR � i�R=2�2
�

1

�W 
MR�

1

�W �WP�
; (10)

where
WP � MR � i�R=2:

Therefore a fit using the relativistic Breit-Wigner ampli-
tude (8) with the parameters of Eq. (9c) will lead to
essentially the same values for the parameters �MR;�R�
as a fit of the resonance amplitude (4) for the parameters
�M;��: M � MR and � � �R. We shall therefore restrict
ourselves here to the pole definition (8) and the relativistic
S-matrix as analytic function of s.

The most common parametrization of the Z-resonance
amplitude is however not the relativistic Breit-Wigner
amplitude (8) but the resonance scattering amplitude with
a mass MZ and an energy dependent width �Z�s�, given by

aRj �s� � aomj �s� �
�

���
s
p ����������������������

�e�s��f�s�
q

s�M2
Z 
 i

���
s
p

�Z�s�
(11)

�
�MZBeBf�Z

s�M2
Z 
 i

s
MZ

�Z
�

RZ
s�M2

Z 
 i
s
MZ

�Z
; (12)

where �Z � �Z�s � M2
Z�. The function (12) is the expres-

sion and notation used in most analyses of the experimental
data for the Z-boson [1–3]. It initially emerged from the
on-mass-shell renormalization scheme with a ‘‘natural
choice’’ for the on-shell mass and width [22,23].
Theoretical arguments had led to the conclusion that in
the Z-boson case the on-shell mass is gauge dependent in
O�g4� and the gauge dependence was shown to disappear
when a definition based on the complex valued position of
the propagator pole [21] was employed [22,23].

The renormalization theoretic definition of the parame-
ters associated to resonances and decaying states is a
delicate matter because it does not use only perturbation
theory to a particular finite order, but it also involves Dyson
summation of an infinite number of diagrams. Thus on the
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one hand it treats unstable particles like asymptotic states
and on the other hand it uses infinite sums. On top of this it
imposes an arbitrary renormalization condition. This lead
Sirlin [45] and Passera [46] to the conclusion that the
conventional on-shell definition is a problematic treatment
of unstable particles. Also, from experience in nonrelativ-
istic quantum mechanics one knows that the decaying
states (e.g., square well potential, or Auger states of He
[37]) are not obtained by starting from asymptotically free
states, but by starting from bound states as the zeroth
approximation. Decaying states and resonances are more
similar to bound states than to interacting scattering states;
the latter are connected asymptotically (Lippmann-
Schwinger equation) to the interaction free continuum
states. Therefore the pole definition—on the real axis for
bound states and at complex energies for unstable states—
is much more natural, and it is comforting that the require-
ment of gauge invariance also leads to the complex pole for
a relativistic resonance.

Initially a correspondence between pole definition and
gauge invariance was not compelling. One had assumed
that the complex pole definition must be gauge invariant
just because it is connected with the S-matrix pole. The
gauge dependence of the on-shell mass was then proven by
showing that the relation between the on-shell and the pole
mass contained gauge dependent expressions. The formal
proof that the complex pole mass is indeed gauge indepen-
dent was only recently given, at the two-loop level [47] and
to all orders in perturbation theory [48]. This then estab-
lished another justification for making the complex pole at
sR the starting point for the definition of a resonance and its
state vector, as we shall do in Sec. IV.

The choice (9a) for the parametrization for sR [22] is the
most practical one since with Eq. (9a) one obtains

r
s� sR

�
r

s�
m2

1�im1�1

1
��1=m1�
2

�
r�1
 i�1=m1�

s�m2
1 
 i

s
m1

�1

: (13)

With m1 � MZ and �1=m1 � �Z=MZ, this has the same
denominator as the right-hand side (rhs) of Eq. (12). Since
Eq. (12) is the formula employed in most analyses of the
LEP measurements, a fit to the data using Eq. (12) will
therefore directly provide the values m1 and �1. The pa-
rametrization (9b) has been the most popular parametriza-
tion if one uses a constant width; the parametrization (9c)
has also been mentioned [23] but never been made use of.
If one comes from analytic S-matrix theory [44], the
definition (9c) of mass and width is the natural, but not
the only possible, choice. In Sec. IV we shall introduce a
new hypothesis from which the parametrization (9c) will
be derived.

An experimental discrimination between different func-
tions for the resonance amplitude like, e.g., Eqs. (4) and (8)
or Eqs. (12) and (13), is impossible because there is always
a background term Bj�s�. Even for one resonance in the
partial wave, the amplitude consists of the two parts:
-4
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aj�s� � aRj �s� 
 Bj�s�: (14)

A small term like the second term in Eq. (13), �1=m1 <
10�4, can also not be noticed. The resonance amplitude
aRj �s� describes the ‘‘part’’ of the scattering that goes
through resonance, e.g.,

�p! �! �p or e
e� ! Z0 ! ff: (15)

The background amplitude Bj�s� describes the nonresonant
part (the contact term of the propagator [49], or the em-
pirical background of Ref. [41]) of the reaction

�p! �p or e
e� ! ff: (16)

Because of this ever-present unknown background, the
experimental line shape data, no matter how accurate they
may be, cannot discriminate between the different reso-
nance amplitudes. One can always write

aomj �s� � aBWj �s� 
 B
0
j�s�; (17)

with a small or slowly varying function B0j�s� which can be
shifted into the background amplitude Bj�s�. Therefore fits
of the line shape data using Eq. (14) with Eq. (8) and using
Eq. (14) with Eq. (12) will turn out to be equally good as
we shall discuss shortly. But the use of the different reso-
nance amplitudes Eq. (8) or (12) will lead to fitted values
for the resonance parameters �MZ;�Z�, � �MZ; ��Z�, and
�MR;�R� which significantly differ from each other. The
question therefore is which of these �M;�� is the right mass
and width.

The parameters �MR;�R� and � �MZ; ��Z� come from the
same complex pole value sR and are therefore algebraically
related; they are just two different parametrizations of the
same function (8) for the amplitude aRj �s� that describes
the resonance per se:

�MZ � MR

���������������������������������
1�

1

4
��R=MR�

2

s
(18a)

��Z � �R

, ���������������������������������
1�

1

4
��R=MR�

2

s
: (18b)

In contrast the parameters �MZ;�Z� and � �MZ; ��Z� are
defined by two different functions, Eqs. (12) and (8),
respectively. Their values are therefore obtained by fitting
the same experimental data to two different line shape
functions, one containing for the Z-boson resonance am-
plitude Eq. (12) [or Eq. (13)], and the other containing
Eq. (8) for the Z-resonance per se.

For the line shape fits, one therefore uses the following
two cross section (and forward-backward asymmetry) for-
mulas [2,3]: The line shape formula

'0
tot�s� �

�
G
s



s � R
 �s�M2
Z� � J

js�M2
Z 
 is�Z=MZj

2

	
(19)

contains Eq. (12) [or Eq. (13)], and the line shape formula
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'0
tot�s� �

�gf
s


jf � �s� �M2

Z� 
 rf � s

�s� �MZ�
2 
 �M2

Z
��2
Z

	
;

with f � had; e; �; �;

(20)

contains Eq. (8). Here the parameters (for each fermion f)
G and gf describe the photon exchange [G and sometimes
also gf are usually assumed to be known, G� -2

e:m:�MZ�],
R and rf measure the Z-peak height describing the
Z-exchange, and J and jf describe the photon-Z-boson
interference.

The line shapes (19) and (20) are derived if one assumes
that the amplitude is a superposition of a photon ‘‘Breit-
Wigner resonance’’ and a Z-boson Breit-Wigner reso-
nance, i.e., given by the sum of two pole terms:

aj�s� �
1

s
 i�



R
s� sR


 B�s� �
1

s
 i�



R
s� sR

(21)

with sR � �M2
Z � i �MZ�Z � �MR � i�R=2�

2, if the back
ground B�s� is neglected [3]. The superposition (21)
emerges naturally in standard perturbation theoretical
treatment, but in standard S-matrix theory superpositions
of two pole terms like Eq. (21) are not possible. The well
known i� in the amplitude (21) is an ingredient of our new
Hardy space axioms (50) and (57) which specifies that the
in- and out-energy wave functions h
sj.
i and h�sj �i �
h �js�i must be analytic in the lower s-plane. The same
Hardy function property will also result in the superposi-
tion of the two pole terms in Eq. (21). In Sec. IV we shall
introduce a new Hardy space hypothesis and justify the
superpositions of two Breit-Wigner amplitudes also in
analytic S-matrix theory.

From the fits of the cross section (and asymmetry) data
to Eq. (19), one obtains the values �MZ;�Z� and from the fit
to Eq. (20) one obtains the values � �MZ; ��Z� (and the other
parameters r and j). These mass and width values are given
in Table I. The difference between the values from
Eqs. (19) and (20) (calculated from Table I) is

MZ � �MZ � 0:0349� 0:0044 GeV; (22a)

�Z � ��Z � �0:0006� 0:0048 GeV: (22b)

This difference is significant as compared with the experi-
mental errors 'MZ

� 0:0021 GeV, and therefore one may
ask the question which of these �M;�� one should use.

The values ofMR and �R can be directly calculated from
the exact relation [18]:

MR � 91:1611� 0:0023 GeV; (23a)

�R � 2:4943� 0:0024 GeV: (23b)

Therewith we have already three different values of mass
and width of a relativistic resonance which present-day
experiments can discriminate, and it is timely to ask for a
theoretical criterion that distinguishes the right definition
of M and �.
-5



TABLE I. Z-boson mass and width. �MZ;�Z� are the values
obtained from a line shape fit using Eq. (19) based on Eq. (12),
and � �MZ; ��Z� are the values obtained from Eq. (20) based on
Eq. (8). The values are averages of the results obtained by
ALEPH, DELPHI, L3, and OPAL [2].

MZ � 91:1875� 0:0021 GeV �MZ � 91:1526� 0:0023 GeV
�Z � 2:4939� 0:0024 GeV ��Z � 2:4945� 0:0024 GeV
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As far as the line shape or resonance amplitude is con-
cerned �MR;�R� and � �MZ; ��Z� are equivalent, whereas
�MZ;�Z� and � �MZ; ��Z� belong to different line shapes.
But one can also relate �MZ;�Z� and � �MZ; ��Z� to each
other by identifying the position of the maxima, sBWM and
somM , of the two functions jaBWj �s�j

2 and jaomj �s�j
2:

sBWM � �maximum position of jaBWj �s�j
2� � �M2

Z; (24a)

somM � �maximum position of jaomj �s�j
2�

� M2
Z�1
 ��Z=MZ�

2��1: (24b)

Though there is not compelling reason for it, one can align
their maxima, sBWM � somM . This leads to

�MZ � MZ�1
 ��Z=MZ�
2��1=2

� MZ � 0:0341 GeV:
(25)

Then one can also identify the values of aBWj �s
BW
M � and

aomj �s
om
M �. This brings in the residues r of Eq. (8) and

branching in RZ of Eq. (12) and leads to further compli-
cations [50]. But if one sets r � RZ�1
 i�Z=MZ�

�1, one
obtains the standard relation [1]

�� Z � �Z�1
 ��Z=MZ�
2�1=2: (26)

With these identifications Eq. (13) is written as

aBWj �s� �
RZ�1
 i�Z=MZ�

�1�1
 i�1=m1�

s�m2
1 
 i

s
m1

�1

�
RZ

s�m2
1 
 i

s
m1

�1

(27)

which, with MZ � m1 and �Z � �1, is the formula (12)
used in the line shape formula (19).

The identification (25) is often presented like the defi-
nition of one set of parameters MZ and �Z in terms of
another set of parameters �MZ and ��Z, as for the identity
(18).1 But since �MZ;�Z� and � �MZ; ��Z� are obtained in two
different fits to two different functions, (19) and (20),
respectively, the equality (25) is really only an approxima-
1In Ref. [2], it is actually the values of MZ � �MZ 

0:0341 GeV, not the values of �MZ, which are listed for the
‘‘S-matrix fits,’’ and in Ref. [2] one calls these shifted values
MZ � �MZ 
 34:1 MeV, but not �MZ of Table I, the S-matrix
parameters.
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tion valid in a (large) neighborhood of their identified
maxima sBWM and somM .

For the practical question, which M and � is the ‘‘right’’
definition of mass and width of a relativistic resonance, the
different meaning of the equalities [18,25] is of no impor-
tance. There are two reasons for which a fit to the line
shape (cross section and asymmetries) cannot settle this
question:
(1) T
-6
he presence of the background amplitude makes it
impossible to empirically distinguish between two
different functions for the amplitude of resonance
per se—cf. Eq. (17).
(2) F
or one and the same amplitude function, one can
have in principle many different parametrizations—
like in Eq. (9) for the function (8).
Accepting the presently favored pole definition of a reso-
nance, one is lead to the relativistic Breit-Wigner ampli-
tude (8). But to distinguish between the different
parametrizations (9a)–(9c) and more, one requires yet
another aspect than the line shape. In Sec. IV we choose
for this the particle aspect: the resonance per se is identi-
fied with an exponentially decaying relativistic state of
lifetime � � �h=�. In Sec. IV it will be shown that of all
the possible width parameters � only �h=�R can be the
lifetime � and the inverse decay rate.

Presently there may be only one example (in
Refs. [24,25]) for which the lifetime-width relation � �
�h=� has been tested beyond the accuracy expected of the
Weisskopf-Wigner approximation. But the validity of the
exponential law (for the decay probabilities and rates) is
needed for the definition of the total and partial initial
decay rates R�t � 0� � 1=� and R� (� labeling the decay
channels), for the branching ratios B� � R�=R and for the
partial widths �� � B��. These definitions and relations
are used so extensively that—just in order to assure their
validity—one should take the exponential time evolution
as the defining property of a resonance state vector. That
such a state vector is precisely associated with the reso-
nance pole—as we shall see in Sec. IV—is an additional
point in favor of the pole definition.

For the well measured hadron resonances, ��1232� and
	, the state of affairs are similar to the Z-boson situation.
This is shown in Table II. The different values for M� and
�M� are extracted from the same experimental data set

[1,30,31] but using different functions, Eqs. (12) and (8)
respectively, using different definitions for the resonance
massM and the width �. The fits to both functions (12) and
(8) were comparably good (except for the background
dependence, see below), and none of these two functions
could be ruled out on phenomenological ground. But they
produce significantly different values for mass and width.
For the � resonance the difference between the two pole
values �M� defined by Eq. (9b) andM�R defined by Eq. (9c)
is within the experimental errors. Therefore we did not list
M�R here.



TABLE II. Hadron masses and widths [31,32]. �M�;��� and
�M	;�	� are the values of the parameters in Eq. (12) and
� �M�; ���� and � �M	; ��	� are the values of Eq. (8).

�

 M� � 1231:88� 0:29 MeV �M� � 1212:50� 0:24 MeV
�� � 109:07� 0:48 MeV ��� � 97:37� 0:42 MeV

	 M	 � 768:1� 0:5 MeV �M	 � 757:5� 1:5 MeV
�	 � 151:5� 1:2 MeV ��	 � 142:5� 3:5 MeV
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The values �M	;�	� defined by Eq. (12) and � �M	; ��	�
defined by Eq. (8) with Eq. (9b) have also been extracted
from the same set of data [32] and differ also by about 10
times the quoted error. In addition to Ref. [32], a precise
determination of the 	-mass has also been performed in
Ref. [51] (using a different data set) and their value was
given as 762:4� 1:8 MeV � M	R. This differs (though
not significantly) from the value �M	 � 757:5� 1:5 MeV
of Ref. [32]. However, the value given in Ref. [51] uses the
definition �M	R;�	R� of the parametrization Eq. (9c).
Using the exact relation (18) between � �M	; ��	� and
�M	R;�	R� one calculates from M	R of Ref. [51] the value
�Mcalc
	 � 758:9� 1:8 MeV which is in perfect agreement

with the value of Ref. [32] in Table II. Thus the values for
the 	-mass obtained in Ref. [32] and in Ref. [51] are in
perfect agreement.

In these precise fits (radiative) corrections and interfer-
ence terms, 	�! interference similar to the Z� 0 inter-
ference in Eq. (21), had to be taken into account to obtain a
satisfactory fit. This is clear evidence for the superposition
of two Breit-Wigner amplitudes, which will be shown in
Sec. IV to be a consequence of the Hardy space hypothesis
also in S-matrix theory.

As mentioned above, the fits to Eqs. (8) and (12) are
equally good. There is however a phenomenological aspect
in favor of the S-matrix values � �M�; ���� and � �M	; ��	�. For
the fits of the � and 	 data, in addition to the resonance
amplitudes Eq. (8) or Eq. (12), one always needs the
background term B�s� [31,32]. If one uses the resonance
amplitude (8) one can use the same B�s� for all channels.
But if one uses the amplitude (12) then one needs different
background functions for different channels.

The main argument in favor is the S-matrix pole defini-
tion Eq. (8) is theoretical: Since the complex pole of the
propagator has now been found to be the only gauge-
parameter independent definition of the Z and W-boson
masses [47,48], the pole of the S-matrix has become the
clear theoretical choice. The pole definition in the s-plane
also agrees [using the parametrization (9c)] with the meri-
torious pole definition in the W-plane (4) and with the
nonrelativistic Breit-Wigner definition. Our conclusion of
the line shape discussions therefore is that the relativistic
Breit-Wigner amplitude (8) represents the resonance per se
and the on-the-mass-shell amplitude (12) describes the
resonance with some background (17). If one favors the
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S-matrix pole definition of a resonance [30], then the
values � �M�; ����, and � �M	; ��	� are parameters that charac-
terize the resonance per se, and �M�;��� and �M	;�	� are
parameters describing the resonance together with some
background. By the same argument as used for the hadron
resonances, the parameters �MZ;�Z� describe the Z-boson
resonance with some background and the pole parameters
� �MZ; ��Z�—or equivalently by Eq. (18)—the pole parame-
ters �MR;�R� characterize the Z-boson per se.

This still does not answer the question: Which of the
parametrizations (9a)–(9c), or others, should be used to
define the mass and the width of a relativistic resonance?
This question will be decided in Sec. IV.

In summary, the phenomenology of relativistic reso-
nances based upon the analytic S-matrix for hadrons and
the quantum field theory for gauge bosons point toward the
definition of a quasistable relativistic particle by a pole at
the complex value sR in the s-plane (second sheet) of the S-
matrix element Sn

0n
j �s� with angular momentum j. One

observes a resonance by its (Breit-Wigner) line shape;
however, the precise meaning of mass and width of a
relativistic resonance cannot be fixed by the analysis of
line shape alone.

For quasistable relativistic particles with values of
�=M & 10�7, one measures lifetimes by the exponential
law. One even considers superpositions of two exponen-
tially decaying states, e.g., for the neutral K meson [52].
But their theoretical description is neither relativistic nor
within the boundaries of conventional quantum mechanics,
because one just takes eigenvectors of an arbitrary non-
Hermitian energy matrix to obtain the exponential time
evolution states, whereas a state vector of a relativistic
particle should be connected with the zeroth component
P0 of the total momentum operator, and time evolution
should be a part of the Poincaré transformations. Thus the
question arises: if resonances and decaying relativistic
particles are qualitatively the same what does the complex
eigenvalue of the Poincaré generator P0 have to do with the
pole position sR? This will also be discussed in Sec. IV.
III. MODIFYING ONE AXIOM FOR A
WEISSKOPF-WIGNER THEORY OF
NONRELATIVISTIC RESONANCES

In order to relate the lifetime to the width of the line
shape, one requires a unified theory of resonance scattering
and decay. Such a theory will then also determine which
one of the width parameters, e.g., ��Z of Eq. (9b) or �R of
Eq. (9c), deserves to be called the width of a resonance
defined by the S-matrix pole at sR. We will construct this
relativistic theory in analogy to the nonrelativistic case;
here we give a brief review of the nonrelativistic theory of
which Weisskopf-Wigner methods are approximations.

For nonrelativistic resonances, one had the Weisskopf-
Wigner methods by which one derived the decay probabil-
-7
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ity PR�t� of a prepared resonance state with Breit-Wigner
width � [28] with the result

P R�t� � e��t= �h 
 �� �additional terms�: (28)

From this one concluded that, at least in the ‘‘approxima-
tion’’ �� �additional terms� ! 0, the lifetime � of a reso-
nance �ER;�� is given by � � �h=�. If the resonance R has
several ways to decay (decay channels), R 


!
�1; �2; �3 . . . , then the probabilities P��t� to find the
decay product � and the probability to find R undecayed
fulfill

PR�t� 

X
�

P ��t� � 1;

dPR

dt
�t� � �

X
�

dP �

dt
�t� � �

X
�

R��t�:

(29)

The lifetime � is measured by fitting the counting rate,
1
N

�N��t�
�t , for any decay product � to an exponential for the

partial decay rate R��t� (the intensity of the � emission as a
function of time):

1

N

�N��ti�

�ti
�
dP�

dt
�t� � R��t� � R�e

�Rt; (30)

where

R �
X
�

R��0�;

and �N��ti� is the number of decay products � registered
by the �-detector during the time interval �ti around the
time ti.

2

This exponential law has been compared with observa-
tions for more than a century [53]. It has been confirmed
for values of the decay rate R over many orders of magni-
tude �10�17–1016� s�1 and some reported nonexponential
behavior, e.g., Ref. [54], may be attributed to the back-
ground amplitude, Eqs. (98) and (100) below. The expo-
nential law can also be justified by intuitively correct
heuristic arguments.3 Therefore the exponential law of
Eq. (30) for a spontaneously decaying state without back-
ground can be considered as one of the well established
laws of physics. If a theory does not fulfill the exponential
law, one should not fault the exponential law [12] but the
theory.
2If the exponential law is fulfilled then the lifetime � (defined
as the average lifetime of the ensemble of the N decaying
particles) is � � 1

R independently of any quantum theory. If the
exponential law is not fulfilled, then the initial decay rate is not
necessarily the inverse lifetime.

3If the number of decay products �N�t� � ��
P
�N��t��

counted in the time interval �t is proportional to the number
NR�t� of decaying objects: �N�t� � RNR�t��t where R is a
constant in time then NR�t� � NR�0�e

�Rt.
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The probabilities P��t� are in quantum theory given by
Born probabilities. If the observable has the properties of
the decay products �, described by a projection operator
��, and the decaying state vector is described by .D�t�,
then the probability for �� in .D�t� is given by the Born
probability:

P��t� � Tr���j.D�t�ih.D�t�j� � jh �j.D�t�ij2

� jh ��t�j.Dij2; (31)

for �� � j �ih �j. One can show that in the Hilbert space
H of conventional quantum mechanics there exist no such
state vector .D�t� for which the probabilities (31) obey the
exponential law.4 At best a Hilbert space vector can de-
scribe an exponentially decaying state with some back-
ground [like the scattering amplitudes of Eq. (14), which
in addition to the resonance amplitude has some back-
ground]. The problem is therefore again a problem of
separating the quasistable state vector with exponential
time evolution from the background; in the same way as
the Breit-Wigner amplitude for the resonance per se (8)
had been separated from the rest of the scattering
amplitude.

We want a resonance and an exponentially decaying
state to be just different appearances of one and the same
physical object, the quasistable quantum state. Then we
have to associate the Breit-Wigner amplitude to a ket  G:

aBWj �E� �
r�

E� �ER � i�=2�
,  G (32)

with the properties

e�iHt G � e�izRt G; (33)

H G � zR 
G (34)

with zR � ER � i�=2, and .D 2H must be separated
like Eq. (14) into

.D �  G 
.bg: (35)

Such a vector  G, which we will call Gamow vector [5],
cannot be a regular vector in the Hilbert space since the
Hamiltonian is self-adjoint and semibounded. However, it
can be one of the generalized eigenvectors (kets), which
are defined as (continuous antilinear) functionals.

Functionals F� � on a linear space � are mathemati-
cally defined by the properties:
(1) F
4Und
positiv
adjoint

-8
�- 
 4.� � �-F� � 
 �4F�.� for every .; 2
�; -;4 2 C (antilinearity).
(2) F
�.5� ! F�.� as 5! 1 for every sequence .5
that converges in the space � to.: .5 ! . as 5!
1 (continuity).
er the standard assumption that �� are projection of
e operators in H or  � 2H , the Hamiltonian is self-
and bounded from below.



5The Hilbert space axiom [11] is even stronger: f.g � f g �
H and since H� �H there are no kets in H� that are not
already in H .

6All that one needs to know about Hardy functions to follow
this paper is that Hardy functions are boundary values of analytic
functions in the lower (or upper) complex semiplane which
vanish sufficiently fast at infinity, and that the mathematical
properties used in the derivations of the following sections are
correct. For the definitions and other properties of Hardy class
functions see the appendix of Ref. [14] and references thereof.
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The set of functionals on a space � forms again a space
denoted by �� and called the dual of �. All functionals
f�.� on the Hilbert space . 2H are given by the scalar
product with a vector of H which we call also f: f�.� �
�.; f�; this means H� �H . But if � is a ‘‘nicer’’ space
(not represented by Lebesgue-square integrable functions
but by smooth rapidly decreasing functions, Schwartz
space) than the set of functionals on �, �� is larger than
� and than H . Thus, one has a triplet of spaces

� �H �H� � ��: (36)

As noted, in the 4th edition by Dirac [6], ‘‘ket vectors form
a more general space than a Hilbert space.’’ They are
elements of an extended space ��. This extended space
�� is determined (defined) by the choice of �. The nicer
the elements in �, i.e., the smaller the subspace � of H ,
the larger is the space ��, and that means the ‘‘weirder’’
are the kets in the extended space ��. The Dirac kets are
eigenkets with real continuous eigenvalues of a self-adjoint
Hamiltonian H:

HjEjj3�i � EjEjj3�i; 0 � E<1: (37)

They can be mathematically defined (and have been de-
fined [17]) as functionals on the Schwartz space �. The
precise meaning of Eq. (37) for jEjj3�i 2 �� is then

hH jEjj3�i � h jH
�jEjj3�i � Eh jEjj3�i

for all  2 �; (38)

and H� is the (unique) extension of the adjoint Hy � H to
��. Every physical vector representing a state . or an
observable j ih j can be written according to the Dirac
basis vector expansion (nuclear spectral theorem of � �
H � ��) in terms of the kets jEjj3�i as

 �
X
j�

Z 1
0
dEjEj�ihEj�j i �

Z 1
0
dEjEihEj i; (39)

where the notation on the very right suppresses the discrete
quantum numbers j; j3; �. The components along the basis
vectors jEi are the energy wave functions hEj�j i �
hEj i �  �E� which for the abstract Schwartz space �
are the Schwartz space functions S (smooth rapidly de-
creasing):

 2 �, hEj i 2 SjR
 : (40)

Conventionally it is assumed that the states . as well as
the observables  in the Born probabilities like (31) are
both in the same space �: .; 2 �.

In quantum physics, however, one always distinguishes
between states . and observables j ih j; state is what is
prepared by a preparation apparatus (accelerator) but ob-
servable is what is detected by a registration apparatus
(detector). The quantities that are measured [as counting
ratios of detectors like in Eq. (30)] are the Born probabil-
ities (or probability rates) to detect an observable  in the
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state .:

“ Born probability for  in .” � j� ;.�j2:

The hypothesis of conventional quantum mechanics5 states
that

the set of prepared state f.g

� the set of observables f g � �: (41)

This does not account for the fact that experimentally the
observables  and the prepared states. represent different
physical entities, e.g., the .’s are associated to the accel-
erator and the  ’s to the detector.

Under the axiom (41) there is only one kind of kets, the
F 2 ��. In contrast, scattering theory uses two kinds of
kets representing incoming and outgoing plane and/or
spherical waves. The eigenkets of the exact Hamiltonian
H � H0 
 V in scattering theory are not ordinary Dirac
kets, i.e., elements of the dual of the Schwartz space ��,
but they are kets which also have meaning for complex
values E� i� with infinitesimal � > 0. In scattering the-
ory, one uses two solutions of the eigenvalue equation for
the same eigenvalue E:

HjEjj3�
	i � EjEjj3�

	i; 0 � E<1: (42)

Here the superscript	 refers to the	i� in the denominator
of the Lippmann-Schwinger (integral) equation:

jEjj3�
	i � jEjj3�i 


1

E�H0 	 i�
VjEjj3�

	i: (43)

This indicates that jEjj3�	i must be continued from the
real (physical) energies into the complex lower half plane
for (� ) and into the upper half plane for (
 ). This means
the complex conjugate of the wave functions, h	Ej 	i �
h 	jE	i, must not only be smooth functions of E like in
Eq. (40) but they must also be functions that have an
analytic continuation into the complex energy plane, in
particular h �jE�i and h
Ej.
i must have an analytic
continuation into the lower half plane. Hardy functions,
elements of H2

	 \ SjR
 , have this property; they are the
boundary values from below (� ) or above (
 ) of ana-
lytic functions in the half planes C	.6 We turn this into a
precise mathematical hypothesis.

The energy wave functions of a scattering system fulfill

h 	jE	i 2 H2
	 \ SjR
 ; (44)
-9



8The mismatch in the � labels is due to the most conventional
notations in physics for the in(
 ) and out(� ) vectors, and in
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and this implies h	Ej 	i 2 H2
� \ SjR
 . The generalized

eigenvectors (42) representing out (� ) and in (
 ) solu-
tions of the Lippmann-Schwinger equation (43) are there-
fore kets in two different Hardy Rigged Hilbert Spaces:

�� �H � ���; jEj�	i 2 ���: (45)

Defined as functionals on the Hardy space, the
Lippmann-Schwinger kets can be analytically continued
into the entire complex half plane as long as there are no
singularities in the way. The energy half planes that we
shall choose are those of the second (or higher) sheet of the
S-matrix element with angular momentum j, Sj�E�, since
the resonance poles are on these sheets.

The Gamow vector which we need for Eq. (33) is not
one of the analytically continued Lippmann-Schwinger
kets jz�i in the lower complex plane, because zR is a
singular points (first order pole) of Sj�z�. It also fulfills a
slightly different (purely outgoing boundary) condition
from that of the Lippmann-Schwinger kets. But like the
Lippmann-Schwinger kets the Gamow vector is also
mathematically defined as a functional  G� �� �
h �j Gi on the Hardy space f �g � �
 of out-
observables  �. These f �g include the decay products
f �� g of the decaying state but also the out-particles of a
(resonance) scattering experiment. In terms of the
Lippmann-Schwinger kets, the Gamow ket can be defined
by

h �j Gi����������
2��
p � h �jzRjj3��i �

i
2�

Z 
1
�1II

dE
h �jEjj3�

�i

E� zR
(46)

for all  � 2 �
, where zR � ER � i�=2 is the pole po-
sition of Sj�z�. Omitting the arbitrary  � 2 �
, Eq. (46)
can be written as an equation between functionals:

 G �
Z 
1
�1II

dEjEjj3�
�i

�����
�
2�

q
E� zR

: (47)

This expresses the Gamow ket as a continuous superposi-
tion of the Lippmann-Schwinger kets jEjj3��i similar to
the Dirac basis vector expansion (39). The energy wave
function hEjj3�j 

Gi of  G is the nonrelativistic
Lorentzian (3) which, however, in Eq. (47) extends along
the whole real axis, with �1II < E � 0 in the second
sheet right below the real axis (denoted by II) and along
the cut of the ‘‘physical’’ scattering energies 0 � E<1.

The Gamow vector (47) can be shown [14] to have the
property that it is an eigenket of the self-adjoint
Hamiltonian H [in the sense of Eq. (38)] with eigenvalue
zR.7
7H is the self-adjoint closure of H, and H� in Eqs. (48) and
(53) is the dual of H which is the uniquely defined extension of
H � Hy to ��� [55].
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hH �� j Gi � h �� jH�j Gi � �ER � i�=2�h �� j Gi

(48)

for all  �� 2 �
. The vector  G � jER �
i�R=2; jj3n�i

����������
2��
p

is a generalized eigenvector like the
Dirac ket, but since it is a functional on the space of
analytic (Hardy) functions it can also have complex eigen-
values of (essentially) self-adjoint operators H.

The in-state vectors .
 and the out-observable vectors
 � are given by the expansions:

�� 3 .
 �
X
j3�

Z 1
0
dEjEjj3�
ih
Ejj3�j.
i (49a)

�
 3  � �
X
j3�

Z 1
0
dEjEjj3�

�ih�Ejj3�j 
�i (49b)

where h�Ejj3�j �i fulfill Eq. (44). This means �� is the
(abstract) Hardy space whose wave functions are all
smooth Hardy functions h
Ej.
i � h
Ejj3�j.
i ana-
lytic in the lower complex half plane, and �
 is the
(abstract) Hardy space whose wave functions h�Ej �i �
h�Ejj3�j �i are analytic in the upper half plane.
Consequently, h �jE�i � h�Ej �i are analytic in the
lower half-plane.

Summarizing, there are two reasons that lead to the same
conclusion: First, in the discussions of the foundations of
quantum mechanics one distinguishes between the two
notions of state and observable, but in the conventional
mathematical formulation [11] one identifies the set of
states f.
g with the set of observables f �g as f.
g �
f �g � � ( �H for the orthodox von Neumann axioms).
Second, in the heuristic formulation of scattering theory,
one distinguishes (by the �i� in energy) between the two
Lippmann-Schwinger kets with incoming and outgoing
boundary conditions. But in conventional scattering theory
one treats the jE
i � jE
 i�
i and the jE�i � jE� i��i
as if they were the same kind of Dirac kets, though the�i�
require different ways of analytic continuation. To over-
come these two incongruities we make one new hypothesis
that

set of in-statesf.
g � �� �H � ��� (50a)

set of out-observablesf �g � �
 �H � ��
; (50b)

where �	 are the two Hardy spaces of the semiplanes C	.
This gives the Lippmann-Schwinger kets a precise mathe-
matical meaning:8
mathematics for the Hardy spaces. Except for this mismatch in
notation, the mathematics fits wonderfully for the physics; an
example of what Wigner called the ‘‘miracle of the appropriate-
ness of the language of mathematics for the formulation of
physics.’’
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jE	 i�	i � jEjj3�
	i 2 ���:

where ��� are the duals of the Hardy spaces. The eigenket
equation (42) [and similarly for (37)] means mathemati-
cally precisely

hH �jEjj3��i � h �jH�jEjj3��i � Eh �jEjj3��i

(51)

for all  � 2 �
. The first � in Eq. (51) uniquely defines
the conjugate operator H� as the extension to the space
��
 of the self-adjoint Hilbert space operator H � Hy �
H�.

Since h �jE�i can be analytically continued into the
lower complex semiplane and so can hH �jE�i (since also
H � 2 �
), one can continue Eq. (51) into the lower
semiplane to the value z (unless z is a singular point) and
obtain

hH �jzjj3��i � zh �jzjj3��i: (52)

The Gamow ket (47) is not an analytic continuation of the
Lippmann-Schwinger equation, but its singularity.

If the Hamiltonian is explicitly known, one can solve the
time independent Schrödinger equation (48) under the
purely outgoing boundary conditions and determine the
solutions and their complex eigenvalues zRn �
ERn � i�n=2, see, e.g., for square well, Refs. [56,57].
They can be shown to coincide with the pole positions of
the S-matrix [57]. Alternatively, one can start from the pole
of the S-matrix at zR � ER � i�=2 and obtain the Gamow
vector (47) as the pole term and then derive Eq. (48) from
Eq. (47) [14]. The latter is what we shall do for the
relativistic case in Sec. IV (because in that case there is
no Schrödinger equation to solve).

The time evolution of the Gamow vector  G�t� �
e�iH

�t G can be derived [14] using the definition (46). It
is given by

heiHt �� j Gi � heiHt �� jzRjj3��i

� h �� je
�iH�tjzRjj3�

�i

� e�iERte��=2th �� jzRjj3�
�i; (53)

for all  �� 2 �
, but for t � 0. For this derivation the
hypothesis (50) is essential.9 Because of the properties of
the Eq. (53), we call the ket  G a Gamow ket. It has the
9The time asymmetry t � 0 has its mathematical origin in the
Paley-Winter theorem for Hardy spaces, whereas the reversible
unitary group evolution �1< 0<
1 for the Hilbert space
follows from the Stone-von Neumann theorem. For more on time
asymmetry, see, e.g., Refs. [4,9,58].
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properties envisioned by Gamow, namely, exponential time
evolution. From Eq. (53) one sees that  G is the exponen-
tially decaying state with the lifetime � � 1=�, where � is
the Breit-Wigner width in Eqs. (46) and (47), the width of
the line shape jaBWj �E�j

2 of (3). The Gamow ket  G 2 ��

has all the properties one wanted in a state vector for a
quasistable particle; its energy distribution has a Breit-
Wigner width � and its lifetime is �h=�. The Gamow ket
(47) thus unifies resonance scattering and decay in non-
relativistic quantum mechanics.
IV. RELATIVISTIC RESONANCES

A. The relativistic in and out Lippmann-Schwinger kets
and the S-matrix

In order to obtain a unique definition of a relativistic
resonance and to combine it with the notion of a decaying
state, we have to define a relativistic Gamow vector. For
this we combine the results of Sec. II with the concepts of
Sec. III. In Sec. II the relativistic Breit-Wigner amplitude
(8) emerged as the favored resonance amplitude. This
means that the relativistic resonance is defined by a (first
order)10 pole of the jth partial S-matrix Sn

0n
j �s� where j is

the spin of the resonance, and we will associate to each
pole of the S-matrix sRi a relativistic Gamow vector in very
much the same way as it was done in Eq. (47). For this we
need the relativistic Lippmann-Schwinger kets of scatter-
ing processes.

In order to include in our discussion the superposition of
resonances and the interference between decaying states,
we consider a scattering experiment with two resonances in
the jth partial wave. The generalization to a finite (or even
infinite [60]) number of resonances is straightforward.

According to the phenomenological results in Sec. II,
there is always a background Bj. This means the scattering
goes through two resonances R1 and R2 and the back-
ground B [e.g., the direct production of Eq. (16)]:

1
 2!

8<:
R1

R2

B

9=;! 3
 4: (54)

For instance, �1; 2� � �e
; e�� � n and �3; 4� � �f; �f� �
n0, where n and n0 denote particle species quantum number.
The accelerator prepares a two-particle in-state .in and the
detector registers the two out-particles  out:

.in � je
e�i ! .
n � !
.in; (55a)

 out � jf �fi   �n0 � !� out: (55b)
10Higher order poles can also be included [59] but for the sake
of simplicity we restrict ourselves here to first order resonances.
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The matrix element � �n0 ; .


n � is the Born probability am-

plitude for the out-observable  � in the prepared in-state
.
. It is usually written as the S-matrix element
� �n0 ; .



n � � � out; S.in�. For the in-state .
 and the out-

observable  �, we use the new Hardy space hypothesis
11Here �s; j labels the irreducible representations of Poincaré
transformation. Instead of the total momentum p � �p0;p� �
p1 
 p2 � p3 
 p4, we choose to label the basis kets of the
representation �s; j by the three space components of the four-
velocity [35] p̂ � p��

s
p � 0v � 1��������

1�v2
p v and p̂0�p̂� �

p0��
s
p � 0,

where v denotes the three-velocity. The invariant integration
measure d3p̂

2p̂0 in Eqs. (56a) and (56b) had to be chosen corre-
spondingly, and there is no difference between using the p̂ as
labels of the kets or using the momentum p as the degeneracy
labels in an irreducible representation �s; j.

12With the choice of the integration in Eq. (56b) the ‘‘normal-
ization’’ of the basis kets is h�p̂0j03n

0�s0; j0jp̂j3n�s; j�i �
2p̂0�p̂�73�p̂0 � p̂�7�s0 � s�7j03j37j0j. When we make the analytic
continuation in s the momenta also becomes complex. But we
choose only those complex mass representations of Poincaré
transform for which the four-velocity p̂ � p=

���
s
p

remains real
(‘‘minimally complex representations’’) which agree with those
of Ref. [34].

085018
(50) with the energy E now replaced by the relativistic
variable s � �p1 
 p2�

��p1 
 p2�� � p�p�.
The prepared in-state .
 2 �� and the registered out-

observables  � 2 �
 are expanded with respect to the
basis systems11
.
n �
Z 1
�m1
m2�

2
ds
X
jj3

Z 
1
�1

d3p̂

2p̂0 j�s; jp̂j3n

ih
nj3p̂�s; jj.
i

�
Z 1
s0
dsjs
ih
sj.
i; (56a)

 �n �
Z 1
�m3
m4�

2
ds
X
jj3

Z 
1
�1

d3p̂

2p̂0 j�s; jp̂j3n
�ih�nj3p̂�s; jj �i

�
Z 1
s0
dsjs�ih�sj �i: (56b)
This is the relativistic analogue of the nonrelativistic basis
vector expansion in Eqs. (49a) and (49b). The new Hardy
space axiom (50) in the relativistic case means that the
relativistic energy wave functions (as functions of s),12

h
sj.
i � h
nj3p̂�s; jj.
i � h
.js
i; (57a)

h�sj �i � h�nj3p̂�s; jj �i � h� js�i; (57b)

are Hardy functions. Specifically, the wave functions in
Eq. (57a) are analytic in the lower complex s-plane (second
Riemann sheet of the S-matrix) and those in Eq. (57b) are
analytic in the upper s-plane, i.e., h� js�i are analytic in
the lower half plane.

The relativistic Lippmann-Schwinger kets j�s; jp̂j3��i
are very similar to the basis vectors obtained in the direct
product of the two Poincaré group representations
�m1; j�1� � �m2; j�2� (or �m3; j�3� � �m4; j�4�) used in
the relativistic partial wave expansion [35,61]; however,
here they are not ordinary Dirac kets j�s; jpj3ni but ele-
ments of the spaces ��	. The Poincaré generators (the
momentum operators and the Lorentz generators) are
‘‘the exact generators’’ which include interactions [15].
In place of the usual �i� of quantum field theory, which
is the imaginary part of energy p0 � p0

1 
 p
0
2, our

Lippmann-Schwinger kets have the �i� as an addition to
the invariant energy squared: j�s� i�; jp̂j3n�i. As long
as i� in s� i� is infinitesimal, it makes no difference
whether one uses s� i� or p0 � i�,13 but when we analyti-
cally continue to values of s in the whole complex semi-
plane, we want to use a Lorentz invariant complex variable
s. Also, in place of the momentum p we use the dimen-
sionless p̂ � p=

���
s
p

to label the kets in an irreducible
representation �s; j.

The basis vectors
js�i � j�s; jp̂j3n�i 2 ��	 (58)
in Eqs. (56a) and (56b) span the direct product space of two
outgoing (� ) and incoming (
 ) particles. The possible
physical values of �s; j are �m1 
m2�

2 � s <1 and j �
j1 
 j2; j1 
 j2 
 1; j1 
 j2 
 2; . . . , where m1; m2 are
the masses and j1; j2 are the spins of the incoming particles
[35,61]. Like the basis vectors j�m2; jp̂j3ni of an irreduc-
ible unitary representation �m2; j of the Poincaré group
[16], the vectors (58) also transform irreducibly (keeping
the value �s; j unchanged) under Poincaré transforma-
tions. But they do not furnish unitary group representations
(see below).

If one inserts Eqs. (56a) and (56b) into the S-matrix
element � �n0 ; .



n � and uses invariance of the S-matrix with

respect to Poincaré transformations, one obtains the Born
probability amplitude in terms of the S-matrix elements
Sn
0n
j �s� with angular momentum j:
13s � �p0 � i�0�2 � p2 � s� i2p0�0 � p2 � s� i�� p2.
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sR 2
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Resonance poles
sR i = (M R i − iΓR i / 2)2

FIG. 1. The two sheeted S-matrix. The jth partial S-matrix
Sj�s� is an analytic function on a Riemann energy surface cut
along the positive real axis from m2

0 � s <1 indicated in (a).
The integration in Eq. (59) is along the cut in (a), either on the
lower edge of the ‘‘physical sheet’’ or along the upper edge of
the second sheet. The contour of integration can be deformed
into the lower half plane of the second sheet, and ultimately into
the contours around the two resonance poles indicated by � and
into an integral from m2

0 to �1II along the upper edge of the
second sheet. This is shown in (b); the arrows indicate the
direction of integration. Thus we have the equality of the integral
Eqs. (59) and (64). For the nonrelativistic case the picture is
similar, except that one has to identify E � E0 � 0 with s � m2

0.
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� �n0 ; .


n � �

Z 1
m2

0

ds
X
jj3

Z 
1
�1

d3p̂

2p̂0 h 
�j�s; jj3p̂n0�iSn

0n
j �s�

� h
nj3p̂�s; jj.
i: (59)

This jth partial S-matrix element Sn
0n
j �s� is the reduced

matrix element of the S-matrix defined by

h�p̂0j03n
0�s0; j0jp̂j3n�s; j
i � hp̂0j03n

0�s0; j0jSjp̂j3n�s; ji

� 2p̂073�p̂0 � p̂�7�s0 � s�

� 7j03j37j0jS
n0n
j �s�; (60)

after the Poincaré invariance has been taken into account
and expressed in terms of the 7-function for the continuous
label and the Kronecker-7 for the discrete one. For the
‘‘continuous summation’’ we used the Lorentz invariant
measure d3p̂

2p̂0 of the Dirac basis system (Nuclear Spectral

theorem) (56a) and (56b). To prove Eq. (60) one does not
need the whole Poincaré group.

B. The property of the jth partial S-matrix Sj�s�

After the Poincaré invariance has been taken into ac-
count the Poincaré labels j3 and p̂ are of no further im-
portance. Therefore, for the far rhs of Eqs. (56a) and (56b)
we have used a truncated notation and suppressed the
labels j3 and p̂ that label the basis vectors within an
irreducible Poincaré representation space �s; j. We also
suppressed the angular momentum j and the species quan-
tum numbers n because we shall restrict ourselves to the
partial wave with fixed resonance spin j. In this abbrevi-
ated notation we write the jth term in the sum in Eq. (59) as

� �; .
�j �
Z 1
m2

0

dsh �js�iSj�s�h

sj.
i: (61)

The jth partial S-matrix element Sj�s� describes the dy-
namics of the scattering process. We assume for Sj�s� the
standard analyticity properties of the S-matrix. It is con-
nected with the scattering amplitude of Eq. (14):

Sj�s� � 2iaj�s� 
 1 for elastic channels; (62a)

Sj�s� � 2iaj�s� for inelastic channels: (62b)

A resonance has a definite spin, jR, phenomenologically,
i.e., resonances appear in a particular partial wave j � jR,
which is the one we have selected in Eq. (61).

The same resonance can appear in different channels,
but we have chosen in Eq. (61) one particular channel n0 by
fixing the particle species labels �n0; n� in Eq. (59). When
we burrow down through the cut along the real axis, we
will then be on one particular Riemann sheet above the
n0-threshold, the ‘‘unphysical’’ sheet, in which the reso-
nance poles sR1

and sR2
are located. This we called the

second Riemann sheet, but it could also be one of the
higher unphysical sheets.
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There can be more than one resonance (more than one
pole) in the same partial wave. We are considering in
Eq. (54) the case of two resonance poles located at differ-
ent positions s � sR1

and sR2
. For the sake of simplicity we

assume that there are only the two first order poles on the
second sheet of Sj�s� and we assume that the two poles at
s � sR1

and at s � sR2
are sufficiently close to each other

and to the cut along the real axis from m2
n0 � m2

0 � �m3 


m4�
2 � s <1. This is the situation depicted in Fig. 1.

The integration in Eq. (61) is done along the lower edge
of the first sheet which is the same as the upper edge of the
second sheet. The Hardy property postulated by the new
Hardy space axiom (50) refers to the analyticity property
on the second (or higher) Riemann sheet of Sj�s�. This
means that according to the new axiom (50) the energy
wave functions of the prepared in-state .
�s� and the
complex conjugate of the detected out-observable  ��s�:

.
�s� � h
sj.
i; (63a)

 ��s� � h �js�i � h�sj �i (63b)

are smooth Hardy functions on the lower complex s plane
(second sheet). This axiom and the properties of Hardy
function are essentially all that we need for the following
derivations.

Without this axiom (50) we cannot derive the superpo-
sition of two Breit-Wigner amplitudes or of two Gamow
vectors for which there is sufficient experimental evidence,
e.g., for the Be8 nucleus at 16.6 and 16.9 MeV [62] or for
the neutral kaon system [52]. The same Hardy space axiom
(50) is also required to derive the Gamow vector from the
pole term. Except for this new axiom, all other assumptions
which we shall use are the standard axioms of quantum
-13
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theory and relativistic invariance. In particular for Sj�s�,
we shall make the standard assumption of polynomial
boundedness and analyticity [44].

C. The relativistic Gamow kets associated
to the resonance pole

We shall derive now the properties of relativistic reso-
nances and decaying states from the pole definition . The
two resonances are introduced by a first order pole at the
position s � sR1

and s � sR2
in the second sheet. As a

consequence of the Hardy space assumption, specifically
of Eqs. (57a) and (57b), the integrand in Eq. (61) is analytic
in the lower half plane of the second sheet except for the
two poles at s � sRi . The contour of integration of Eq. (61)
is depicted in Fig. 1(a); it is the cut along the real axis from
�m1 
m2�

2 � m2
0 � s <1. We deform the contour of

integration in Eq. (61) from the positive real line on the
first sheet through the cut into the lower half plane of the
second sheet. The integral over the infinite semicircle is
omitted since it is zero as a consequence of the Hardy space
hypothesis (50) and boundedness property of Sj�s�. The
result of this contour deformation is shown in Fig. 1(b) and
we obtain for Eq. (61)

� �; .
� �
Z �1II

m2
0

dsh �js�iSII�s�h
sj.
i



I
C1

dsh �js�iSII�s�h
sj.
i



I
C2

dsh �js�iSII�s�h
sj.
i: (64)

The kets js�i and the bras h
sj are the analytic continu-
ation of the Lippmann-Schwinger kets jsreal � i�i and the
Lippmann-Schwinger bras hsreal 
 i�j into the complex
s-plane second sheet of the S-matrix element Sn

0n
j �s�, ex-

cept for the singular points sRi . The ket js�i can be
continued into the lower half plane (where h �js�i is
analytic) and the bra h
sj can also be continued into the
lower half plane (where h
sj.
i is analytic). We have
omitted the subscript j at � �; .
�j and at SIIj�s�, the
subscript II, again, means we are now on the 2nd sheet.
Ci denotes the circle around the pole at sRi , and the first
integral extends along the negative real axis in the second
sheet (indicated by�1II). The first term has nothing to do
with any of the resonances, it is the nonresonant back-
ground term,

Z �1II

m2
0

dsh �js�iSII�s�h
sj.
i � h �j.bgi: (65)

which we express as the matrix element of  � with a
generalized vector .bg that is defined by Eq. (65) (as a
functional on �
 � f �g):
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.bg �
Z �1
m2

0

dsjs�ih
sj.
iSII�s�: (66)

We will return to it below. We now consider each integral
along Ci around each pole at sRi separately. For each
integral separately we use the expansion around the pole
sRi :

S�s� �
R�i�

s� sRi

 R0 
 R1�s� sRi� 
 � � � : (67)

For each of the two (or N) integrals separately we evaluate
the integrals around each pole sRi . Then we obtain for each
of these pole terms the following results:

� �; .
�polei �
I
 -Ci

dsh �js�iS�s�h
sj.
i

�
I
 -Ci

dsh �js�i
R�i�

s� sRi
h
sj.
i

� �2�iR�i�h �js�Riih

sRi j.


i (68)

�
Z 1
�1II

dsh �js�ih
sj.
i
R�i�

s� sRi
: (69)

This simple derivation is possible only if one makes use of
the Hardy property of the wave functions and uses the
theorems of Cauchy [for Eq. (68)] and of Titchmarch [for
Eq. (69)]. Inserting Eqs. (65) and (68) into Eq. (64) gives
the following representation of the S-matrix element (64):

� �; .
� � h �j.bgi 

X
i

h �js�Rii
2�R�i�

i
h
sRi j.


i:

(70)

This has introduced a new ket js�Rii for every S-matrix pole
at the singularity s � sRi . The vector  � 2 �
 represents
the out-particles observed by the detector, e.g., the decay
products �
�� of the Z0 resonance in the resonance
scattering process (54). We can omit  � 2 �
 from
Eq. (70) and obtain the same statement Eq. (70) as an
equation between generalized vectors in the space ��
.
This gives a new basis vector expansion of the prepared
in-state .
 2 �� in terms of eigenvectors with complex
eigenvalues:

.
 � .bg 

X
i

js�RiicRi : (71)

Here the expansion coefficients are given by

cRi � �2�R
�i�=i�h
sRi j.


i;

and .bg is given by the integral (66). This complex basis
vector expansion is an alternate to the basis vector expan-
sion in Eq. (56a).

We first consider one of the vectors js�Rii in the discrete
sum in Eq. (71). From the equality Eq. (68) = Eq. (69), we
-14
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see that one can define a whole class of generalized vectors
the js�Rii:

h �js�Rii.
 �
i
2�

Z 
1
�1II

dsh �js�i
h
sj.
i
h
sRi j.


i

1

s� sRi
(72)

as functionals of  � 2 �
. Of these generalized vectors
we single out one vector with a particular normalization:

js�Rii �
i
2�

Z 
1
�1II

dsjs�i
1

s� sRi
: (73)

This ket (functional on the Hardy space �
 � f 
�g) we

call the relativistic Gamow vector. Returning to complete
labels of the basis vectors as in Eq. (56a), this definition is
written as

js�Rii � j�sR; jp̂j
�
3 i �

i
2�

Z 
1
�1II

dsj�s; jp̂j�3 i
1

s� sR
:

(74)

Its normalization follows from that of the Lippmann-
Schwinger kets, which is connected to the choice of the
integration measure in Eq. (56b).

In contrast to the integration boundaries m2
0 � s <
1

in the basis vector expansion (56b) for the proper vectors
 �j 2 �
, the integration in Eq. (74) extends from
�1II < s <
1, i.e., it extends over the real energy
axis on the second sheet, which coincides for s � m2

0
with the physical values on the lower edge of the first sheet
(see Fig. 1). As in the nonrelativistic case (47), this in-
dicates that the generalized vectors j�sR; jp̂j�3 i � js

�
R i are

Hardy space functionals, i.e., elements of the dual space
��
. The value sR in Eq. (74) and in Eq. (73) is the position
of the resonance pole in Eq. (67) of the analytically con-
tinued S-matrix (which is on the second sheet of the
Riemann surface).

So far we have discussed resonance formations (15). We
have defined the Gamow vector for resonance formation
only and derived the integral representation of the Gamow
kets (74) from the S-matrix poles for resonance formations
(54) and (15). Breit-Wigner bumps are also (and predomi-
nantly) observed in resonance production like

a
 b! c
 R! c
 e
 f: (75)

If the Gamow vector is the representation of the resonance
R per se using the Gamow vector (74) for R in the process
(75) should lead to a Breit-Wigner factor in the amplitude
of the process (75), and a Breit-Wigner line shape factor in
its modulus square. It can indeed be shown [38] that this is
the case and that the amplitude for the process (75) con-
tains a Breit-Wigner amplitude in the invariant energy
square of the two-particle system e
 f,

sef � �pe 
 pf�
2 � �pab � pc�

2 � �pa 
 pb � pc�
2;

(76)
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given by

1

sef � s
"
R
�

1

�pab � pc�
2 � s"R

(77)

where sR � �MR � i�R=2�2 is the complex mass of the
Gamow state vector defined by Eq. (74). This shows that
resonance formation and resonance production have their
origin in the same physical entity described by the semi-
group representation �sR; j of the Poincaré transforma-
tions and is related to the S-matrix pole sR by Eq. (74) [39].

D. Properties of the relativistic Gamow vector under
Poincaré transformations

The vectors (74) which emerged from the resonance
pole at sRi are defined in complete analogy to the non-
relativistic Gamow vectors (47) except that, in place of E,
the relativistically invariant energy square s has been used.
In the same way as for the nonrelativistic case in Eq. (48),
one can show that the j�sR; jp̂j�3 i are generalized eigen-
vectors of the total invariant mass square operator P�P�

with complex eigenvalue sR:14

�P�P���j�sR; jp̂j�3 i � sRj�sR; jp̂j�3 i: (78)

Thus one has an association between the ‘‘exact’’ relativ-
istic Breit-Wigner amplitude (8) extended to s � �1II,
and the space of relativistic Gamow vectors, i.e., the space
spanned by the vectors (74) with a fixed value of �sR; j:

aBWj �s� �
r

s� sR
, f G

�sR;j
g (79)

where

 G
�sR;j

�
X
j3

Z 
1
�1

d3p̂

2p̂0 j�sR; jp̂j
�
3 i j3�p̂� (80)

for all  j3�p̂� 2 S�R3� and �j � j3 � j. Here S�R3� de-
notes the set of all smooth, rapidly decreasing functions of
p̂ (Schwartz space). The same kind of spaces can be
formed with the Lippmann-Schwinger kets:

 ��s�i�;j �
X
j3

Z 
1
�1

d3p̂

2p̂0 j�s; jp̂j
�
3 i j3�p̂�: (81)

We denote these spaces of generalized eigenvectors of
P�P� with eigenvalue s or sR by

f ��s;jg � ��
��s; j�; and f G
�sR;j
g � ��
��sR; j�:

(82)

The spaces ��
��s; j� and ��
��sR; j� of generalized ei-
genvectors of P�P� with eigenvalue sR and s, respectively,
have been formed with the kets j�s; jp̂j�3 i and j�sR; jp̂j�3 i
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by Eqs. (80) and (81) in the same way as the representation
spaces of a unitary irreducible representation of the
Poincaré group �m2; j have been formed with the
Wigner basis vectors j�m2; jp̂j3i for every fixed real m.
But the j�m2; jp̂j3i are ordinary Dirac kets (functionals on
the Schwartz space) and are denoted by ����m2; j� and
the j�s; jp̂j�3 i are Lippmann-Schwinger kets.

Remarkably the Lippmann-Schwinger kets of Eq. (58)
and the Gamow kets (74), when mathematically defined as
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functionals on Hardy spaces �
, do not span a unitary
representation space of the whole Poincaré group

P � f��; x�j� 2 SO�3; 1�; det� � 
1;�0
0 � 1; x 2 R1;3g;

(83)

but only span a representation space of a Poincaré semi-
group:
P 
 � f��; x�j� 2 SO�3; 1�; det� � 
1;�0
0 � 1; x 2 R1;3; x

2 � t2 � x2 � 0; t � 0g: (84)
This semigroup consists of all proper orthochronous
Lorentz transformations and of space-time translations in
the forward light cone. This restriction to the forward light
cone is an expression of Einstein’s causality [36].

The reason for this is that the extension U���; x� #
Uy��; x� of the unitary operator Uy��; x� in H � ��

to the operatorU���; x� in ��
 cannot be defined for ��; x�
outside of P
, because the restriction U��; x�j�
 of
U��; x� in H is not a bounded operator in the space
�
. The transformation formulas of the Lippmann-
Schwinger and Gamow kets [36] are otherwise very similar
to Wigner’s unitary transformations [16].

The semigroup property of the Poincaré transformation
of the Lippmann-Schwinger kets was a little surprising
since it is a standard assumption that the interacting scat-
tering states furnish a representation of the whole Poincaré
group [15].

Unless these in and out Lippmann-Schwinger states are
mathematically defined, one cannot prove any transforma-
tion property at all. One could try to define them, like Dirac
kets, as Schwartz space functionals with unitary group
transformation property.

But if the j�s; jp̂j	3 i fulfill the Lippmann-Schwinger
boundary conditions like Eq. (43) with the 	i�, the 	i�
prevents this and the j�s; jp̂j	3 i cannot be given a mathe-
matical meaning that allows transformations under the
whole Poincaré group. Defined as functionals on the
Hardy spaces ��, the j�s; jp̂j�3 i 2 ��
 allow transforma-
tions under P
, and the j�s; jp̂j
3 i 2 ��� allow trans-
formations under P� (semigroup of the backward light
cone) [36]. Though this was surprising for the Lippmann-
Schwinger kets, for the Gamow kets (74), one expected this
kind of semigroup property from the time asymmetry t � 0
in Eq. (53) of the nonrelativistic Gamow vectors (47). The
representations �sR; j—arrived at here from the pole defi-
nition of a resonance and the Hardy space axiom (50)—
were contained in a classification of Poincaré semigroup
representations [34], where they were also advocated as
candidates for unstable relativistic particles.

It will now be shown that the Gamow states  G
�sR;j

which
are associated to the resonance pole position at a complex
value sR have a well defined value of lifetime. This is in
contrast to some statements in the literature (Ref. [49]
referring to Ref. [63]) that the question as to what is the
lifetime of a relativistic unstable particle is not meaningful,
and that only the complex pole position sR is a physically
meaningful entity as stated in Ref. [29]. We shall show that
the ‘‘lifetime in the rest frame’’ is a uniquely defined
quantity for all Gamow states  G

�sR;j
of the representation

space �sR; j. This lifetime is obtained from the transfor-
mation property of the Gamow kets under Poincaré trans-
formations. It is given by � � �h��2 Im

�����
sR
p
��1.

In order to show this, we need the general formula for
the transformation of the Gamow kets under the Poincaré
transformations ��; x� 2 P
 which have been derived in
Ref. [36]. The homogeneous Lorentz transformations
��; x � 0� are unitarily represented like in Wigner’s rep-
resentations. For our purpose here we need only the space-
time evolution which fulfills the forward light cone condi-
tion:

��; x� � �I; x � �t;x��; t � 0;

and t � x � v �
r
c
�
v

c
;

(85)

where r is the space translation and v the velocity in
regular units of [m] and [m=s], respectively. The space-
time translated Gamow ket as obtained in Ref. [36] is given
by

U��I; x�j�sR; jp̂j�3 i � e�ix�P
�
j�sR; jp̂j�3 i

� e�i0
����
sR
p
�t�x�v�j�sR; jp̂j�3 i

� e�iMR0�t�x�v�e���R=2�0�t�x�v�

� j�sR; jp̂j�3 i; (86)

and here v is the three-velocity of the decaying Gamow
state:

p̂ � 0v �
p�����
sR
p � 0

v

c
; (87a)

0�v� �
1��������������

1� v2
p �

��������������
1
 p̂2

q
� p̂0: (87b)

In Eq. (86), we have used the parametrization (9c),
�����
sR
p

�

MR � i�R=2, because only for this parametrization is the
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mass in the phase factor and the width in the real
exponential.

The Born probability rate to detect the observable
j �ih �j in the space-time translated Gamow state is
proportional to

jh �jU��I; x�j�sR; jp̂j�3 ij
2 � jhU�I; x� �j�sR; jp̂j�3 ij

2

(88)

with

t � 0 and x2 � t2 � x2 � t2 � r2=c2 � 0: (89)

The rhs of Eq. (88) represents the probability rate to detect
the untranslated Gamow state with an observable which
has been translated from j �ih �j into the forward light
cone (89). The left-hand side (lhs) is the probability looked
at from the Schrödinger picture and the rhs is the same
looked at from the Heisenberg picture. The light cone
condition (89) makes two statements:
(1) A
15The
observ
turns o
of the
state needs to be prepared first (at t � 0) before
one can speak of probabilities for observables, and
(2) p
robabilities cannot propagate with a velocity r=t
for which t < r=c or r=t > c (Einstein causality).
Using Eq. (86) for the space time evolution of an unstable
state with pole parameter sR and velocity v � cv, we
obtain for the probability (88)

jh �jU��I; x�j�sR; jp̂j�3 ij
2

� e��R0�t�x�v�jh �j�sR; jp̂j�3 ij
2: (90)

Thus, the decay rate of a Breit-Wigner resonance with pole
position sR obeys an exponential decay law with time
dilation. If one uses the time t0 � 0�v��t� r�v

c2
� in the rest

frame of the decaying particle of velocity v � cv � c
0 p̂,

then from (90)

Decay rate� e��Rt
0
; t0 � 0�v�

�
1�

r � v
c2

�
: (91)

This means the lifetime of a decaying relativistic resonance
with pole position sR is a well defined property and its
inverse is given by

�h=� � �2 Im
�����
sR
p

� �R; (92)

where sR is the complex pole position of the resonance
pole.15

The decay rate (91) is a probability and the lifetime
defined by it is the property of an ensemble and not of an
individual quantum system. The line shape of a reso-
nance—and therewith its width— is also the property of
an ensemble. The lifetime-width relation (92) is therefore a
relation between statistical quantities and for an ensemble
time of life of an individual trapped ion can also be
ed and the lifetime defined by the exponential law (90)
ut to be the ensemble average over these times of the life
individual excited ion states [64].
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of decaying states and an ensemble of resonances. It cannot
make a statement about individual quantum systems.
Usually the ensemble of decaying states used for lifetime
measurements is also an ensemble over a wide range of
velocities [65], and the decay rate is measured as a function
of the distance z traveled with the velocity v � z

t which is
according to Eq. (90) proportional to

jh �jU�
�
I; t �

z
v
; 0; 0; z

�
j�sR; jp̂j�3 ij

2

� e��R�z=�0v�jh �j�sR; jp̂j�3 ij
2:

The v of the unstable particle (e.g., K0) is usually deter-
mined [65] from the real momenta of the (supposedly)
stable decay products (e.g., �
��) by momentum conser-
vation, neglecting the small imaginary part of the momen-
tum p � �MR � i�R=2�

0
c v. This may be a conceptual

problem but not a practical one for the unstable particles
for which � � �h=�R can be measured.

The result (91) could have been more easily obtained if
one applied the time evolution U��I; �t; 0�� � e�iP

�
o t �

e�iH
�t to a Gamow ket at rest  G

�sR;j
�0� � j�sR; jp̂ �

0; j�3 i. For this special case, one obtains from Eq. (86)

 G
�sR;j
�t�� � e�iH

�tj�sR; jp̂ � 0; j�3 i

� e�i
����
sR
p

tj�sR; jp̂ � 0; j�3 i (93)

for t � 0, where sR is the pole of the Breit-Wigner reso-
nance in Eq. (79) or (8). From Eq. (93) we see that only for
the parametrization of Eq. (9c),

�����
sR
p

� �MR � i�R=2�, do
we obtain the exponential law in the form

 G
�sR;j
�t� � e�iMRte���R=2�t G

�sR;j
�0�: (94)

This means the lifetime of an unstable relativistic particle
is a well defined quantity and does not depend upon the
manner in which the decaying particle is prepared. The
lifetime is a property of the quantum mechanical state
described by the space f G

�sR;j
g and the width is a property

of the amplitude aBW
�sR;j
�s�which by Eq. (79) corresponds to

this space. Both describe a quantum mechanical ensemble
and the lifetime-width relation (91) is a statement about
ensemble parameters.

From the derivation in Eqs. (68) and (69), we see that the
Gamow vector (74) can only be obtained if we use for the
resonance amplitude the Cauchy kernel (8). Therefore, �Z
of Eq. (12) is excluded and none of the other width pa-
rameters, e.g., ��Z of Eq. (9b) will fulfill the lifetime-width
relation. Awell defined lifetime � of an unstable relativistic
state is precisely the inverse of a well defined width �R for
the relativistic resonance characterized by �MR;�R�.

The transformation property under causal Poincaré
transformation of the Gamow state vector (74) chooses
�MR;�R� as the mass and width definition of the Z-boson
and other relativistic resonances. With this definition in
Eq. (14) with Eq. (8) one obtains, from the fits of line shape
-17
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(and asymmetries) of the Z-boson, the mass value of Z0 as
MR � 91:1626� 0:0031 GeV. This differs significantly
from the on-the-mass-shell value MZ in Ref. [1] and
Table I. The value MR also differs from the usual pole
value �MZ defined by Eq. (9b) with Eq. (8).

For the hadron resonances the differences between the
two pole values �M� and M�R is minimal. But for the
	-resonance the difference between �M	 andM	R is notice-
able. It leads for instance to the discrepancy between the
quoted values in Refs. [32,51] for the 	-mass as remarked
at the end of Sec. II.

E. The expansion of the scattering amplitude in terms
of relativistic Breit-Wigner amplitudes as the counter-

part to the complex basis vector expansion

In the analysis of the hadron data for the determination
of the hadron masses in Table II, one did not only use the
resonance amplitude plus background (14) but also in-
cluded a second resonance, e.g., the 	�! interference
for the determination of �M	 and ��	 in Ref. [32]. This
means Ref. [32] took for the scattering amplitude of
e
e� ! 	! �
��—among many other formulas—
the ansatz:

aj�s� �
r	

s� sR1



r!

s� sR2


 Bj�s� (95)

for jr!=r	j � 1, as suggested by the heuristic formula (6).
There is no theoretical justification in S-matrix theory for a
formula like Eq. (95). One either develops the S-matrix
around the pole sR1

and obtains a Laurent expansion which
is valid in a circle around sR1

with a radius that is smaller
than the distance to the nearest pole sR2

. Or one obtains a
Laurent expansion around sR2

valid in a radius that does not
include sR1

. Still Eq. (95) is the phenomenologically fa-
vored formula for two resonances in the same partial wave
(also in nuclear physics [62]). With the new hypothesis
(50) there is no problem to derive a formula like Eq. (95) as
an equality between generalized functions.

For this purpose we return to Eq. (64). The integral (65)
on the rhs of Eq. (64) has been transformed in Ref. [66] into
an integral over the scattering energiesm2

0 � s <1 (using
the van Winter theorem for Hardy functions), and one
obtains for all  � 2 �
:

h �j.bgi �
Z 1
m2

0

dsh �js�ih
sj.
ibj�s�: (96)

Here bj�s� for s � m2
0 is determined from SII�s� for s �

m2
0. It is a slowly varying function if there are no other

singularities of the S-matrix Sj�s� [66]. This function bj�s�
is different from zero and corresponds to the background
amplitude Bj�s� in Eq. (14). Precisely we choose, because
of the convention in Eq. (62), bj�s� � 1
 2iBj�s� for the
elastic and bj�s� � 2iBj�s� for the inelastic channels. If
one inserts Eq. (96) for Eq. (65) into Eq. (64), inserts
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Eq. (61) for the lhs of Eq. (64), and uses Eq. (69) for the
two pole terms on the rhs of Eq. (64), then one obtainsZ 1

m2
0

dsh �js�ih
sj.
iSj�s�

�
Z 1
m2

0

dsh �js�ih
sj.
ibj�s�



XN�2
i�1

Z 
1
�1II

dsh �js�ih
sj.
i
R�i�

s� sRi
: (97)

This is an equation valid for all  � 2 �
 (all out-
observables) and all .
 2 �� (all in-states). This means
that Eq. (97) is an equation valid for all h �js�ih
sj.
i 2
H2
� \ SjR
 , i.e., for all functions which are products of

Hardy functions in the lower half complex s plane (second
Riemann sheet). This is analogous to Eq. (70), which is an
equation valid for all  � 2 �
 (all out-observables).
Omitting the arbitrary  � 2 �
 in Eq. (70) resulted in
Eq. (71) as an equality between kets in the space ��

(functionals on �
); we write it again:

.
 � .bg 

X
i

js�RiicRi : (98)

In the same way omitting the arbitrary Hardy function
h �js�ih
sj.
i and the integrals in Eq. (97), one obtains
the following equation between distributions:

=�s�m2
0�Sj�s� � =�s�m2

0�bj�s� 

X
i

R�i�

s� sRi
: (99)

Mathematically the two equations, Eqs. (98) and (99),
are functional equations: Eq. (98) is a functional equation
over the set of all  � 2 �
 and Eq. (99) is a functional
equation over the set of all test functions h �js�i�
h
sj.�i 2 H2

� \ SjR
 . Physically Eq. (99) expresses the
(jth partial) S-matrix element in terms of a background
amplitude [the B�s� in Eq. (14)] and a superposition of
(interfering) Breit-Wigner resonance amplitudes, and
Eq. (98) expresses the prepared in-state as a superposition
of a nonexponential background vector and a superposition
of exponentially evolving Gamow vectors. Each term in
Eq. (99) has a corresponding term in Eq. (98); in particular,
to the nonresonant slowly varying background amplitude
bj�s� � 1
 2iBj�s� in Eq. (99) corresponds the nonexpo-
nential background vector .bg in Eq. (98) and to each
Breit-Wigner amplitude in Eq. (99) corresponds a
Gamow ket in Eq. (98). If we use Eq. (62), the functional
Eq. (99) can also be written as

=�s�m2
0�aj�s� � =�s�m2

0�Bj�s� 

X
i

r�i�

s� sRi
(100)

which is just the mathematically precise version of Eq. (14)
with Eq. (8) except that here we considered a second
resonance poles. The sum in Eqs. (99) and (100) can
actually extend over a finite (or even infinite) number of
-18
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poles. If one ignores the background vector .bg ! 0, one
arrives at the Weisskopf-Wigner approximation as used,
e.g., for the K0 system [52] and extensively used in nuclear
physics [67].

If the background integral for h �j.bgi is taken along
the negative real axis second sheet as done in Eq. (65) then
the first term on the rhs of Eq. (98) and the first term on the
rhs of Eq. (100), the background term, are exactly defined.
The sums over i in Eqs. (98) and (100) extend over all
resonance poles in the jth partial wave. But for particular
applications one does not have to deform the contour in
Fig. 1(b) all the way to the negative real axis (and then
ignore it). From Eqs. (98) and (100), one obtains a practical
approximation method if one is only interested in the effect
of a few resonances near by. One deforms the contour of
integration only passed these few resonances and considers
the far away resonances as part of the background (which
one may ignore). In this way, one obtains a more practical
Weisskopf-Wigner approximation which contains only the
nearby resonances in the scattering amplitude (100) and in
the prepared state (98).
16From the connection between local commutativity and the
semigroup representations of the Poincaré transformations via
the i� rule, one can also understand why a system of axioms that
contains the Poincaré group representation and local commuta-
tivity [17] would probably be condemned to triviality.
V. SUMMARY AND CONCLUSION

Quasistable particles are observed in two different ways,
in the line shape as a function of (the center-of-mass)
scattering energy and in the decay rate (or probability) as
a function of (rest-frame) time. The line shape is mostly
Lorentzian (Breit-Wigner) and the decay rate is mostly
exponential. For the line shape it is standard to split the
scattering amplitude into an idealized Breit-Wigner reso-
nance amplitude aR and some background, like in
Eq. (14). In contrast, for the decay rate, the overwhelming
opinion has been that the decay of unstable particles is
nonexponential [12,54,68].

This opinion has its origin in a mathematical conse-
quence [12] of the Hilbert space axiom [11] of traditional
quantum mechanics, i.e., of Eq. (41) with � �H �
Hilbert Space (complete with respect to the norm topol-
ogy). If one does not insist on a linear space with norm-
convergence, one has many more possibilities. One could
choose for � the Schwartz spaces. Then one can mathe-
matically define the well accepted Dirac kets as functionals
on �, as it is done if one cares about mathematics [17]. But
these Dirac kets are also insufficient for a theory of scat-
tering and decay. The many useful heuristic notions that
had been introduced to describe (resonance) scattering and
decay phenomena— like the two in- and out- Lippmann-
Schwinger kets with �i� [7,28], the time-asymmetric
boundary conditions [10], the Gamow states with complex
energy and exponential time evolution [5]—do not fit into
the traditional framework of quantum mechanics based on
axiom (41). Neither does the standard formalism of rela-
tivistic quantum field theory which contains the same i� in
the propagator.
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These i� in s (or an i�0 in p0 or in the nonrelativistic E)
require that the energy wave functions must be better than
Schwartz functions; they must also be continuable into the
upper or lower complex s-plane. This does not necessarily
mean that they need to be smooth Hardy functions as we
assert by axiom (50) or by (57) or (63). Axiom (50) or (63)
is the mathematical idealization which we made to assure
that the triplets of spaces in Eq. (50) are Rigged Hilbert
spaces [so that the Dirac formalism applies and the Dirac
basis vector expansions (49) or (56) hold as the nuclear
spectral theorem]. But analyticity is commonly presumed.

Thus Dirac formalism and the �i� of the propagator
suggest the Hardy space axiom (50). With the Hardy space
axiom the (nonrelativistic and) relativistic interaction in-
corporating ‘‘in-’’ and ‘‘out-’’ plane wave states [15] are
given a mathematical meaning; they are the functionals
j�s; jp̂j3n�i 2 ���. Since these kets are now mathemati-
cally defined, one can apply mathematics to show that they
do not furnish a unitary (Wigner) representation of the
Poincaré transformations, as often assumed [15]. But—
independently of whether the imaginary part of energy is
infinitesimal or finite— they furnish only a semigroup
representation in the forward (� ) and backward (
 )
light cone, respectively [36]. This is the relativistic ana-
logue of the time-evolution semigroup solutions for the
Schrödinger or Heisenberg equation which follow from
Eq. (50) in the nonrelativistic case [14]. The time asym-
metry given by the semigroup may be disturbing until one
realizes that it expresses Einstein causality of the Born
probabilities [36].

In relativistic quantum field theory, the i� rule of the
propagator is a consequence of the assumption that the
local (anti)commutator for space like separations vanishes
(‘‘local commutativity’’), believed to be an expression of
‘‘microscopic causality.’’ In our theory the i� suggested the
new axiom (50) from which the semigroup and therewith
Einstein causality follows as a mathematical result.16 But
the new axiom (50) led to further conclusions which go far
beyond the infinitesimal imaginary part �i� in energy.

The Lippmann-Schwinger kets (58) can be analytically
continued into the entire complex semiplane (except at
singularities) and the contour of integration for the S-
matrix element (Born probability amplitude) (59) and
(61) can be deformed as shown in Fig. 1. The pole term
(68) is then related to a functional (72) and a Gamow ket
(74), which associates to the relativistic Breit-Wigner am-
plitude (8) an irreducible representation space of the
Poincaré semigroup in the forward light cone (79) and
(80). The Gamow kets (74) are the singularities of the
analytically continued scattering states, but they are not
-19
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analytic continuations of scattering states or a continuous
superposition thereof. In addition to the resonance states
 G there is the background continuum .bg (65) and (96)
corresponding to the background term B�s� in the scatter-
ing amplitude. Possible major or minor deviations from the
exponential decay law are described by .bg, whereas the
Gamow state  G has purely exponential space-time evo-
lution (90).

The new mathematical theory thus establishes an exact
correspondence between a Breit-Wigner amplitude for
each resonance pole and the Gamow vector, aBW ,  G,
and between the background amplitude B and the vector
.bg. This is expressed for the relativistic case by the term
by term correspondence between Eqs. (98) and (100). The
aBW ,  G describes the quasistable particle per se, and
the Breit-Wigner line shape and the exponential decay are
just two different manifestations of the same physical
entity, the quasistable relativistic particle.

In the nonrelativistic case the exact form of the ampli-
tude describing the resonance per se was never in doubt, it
was given by the Lorentzian (3), and from it the Gamow
vector (47) had been obtained [14]. The exact lifetime-
width relation � � �h=� of Eq. (53) is a direct consequence
of the new axiom (44) and (45).

For the relativistic case, one did not have a Weisskopf-
Wigner approximation to go by, and the predominant
opinion had been that relativistic resonances should not
be characterized by two parameters like �M;�� but had a
complicated line shape and an energy dependent width
��s�. But since different hadrons of the same multiplet
could have values for the width that varied by orders of
magnitude (e.g., the !� and the � in the decouplet), the
idea that two real parameters �M;�� or one complex pa-
rameter sR characterizes the relativistic quasistable states
was never completely abandoned. When one noticed that
the complex pole was the only gauge-parameter indepen-
dent definition of the Z-boson (and W) mass [47,48], the
pole of the S-matrix at a complex value sR became the
favorite choice for the definition of a relativistic resonance.
This was discussed in Sec. II, where the relativistic Breit-
Wigner amplitude (8) was identified as the part of the
relativistic partial wave amplitude that describes the reso-
nance per se. Only this Cauchy kernel (8) for the reso-
nance— together with axiom (50)—allows the
construction of the Gamow vector (73).

The resonance amplitude defines only the complex value
sR, not a massM and a width � separately. From this it had
been concluded in the past that the real and imaginary parts
of sR separately have no physical significance [29] and any
of the parametrizations (9) should be equally valid.
However, using the exponential time evolution of the
Gamow kets derived in Eq. (90), we see that if the width
is to be the total initial decay rate � � �hR�0� then of the
many possible parametrizations of sR one can only use
Eq. (9c) because only �R � �h=�.
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In order to arrive at the conclusion (90) we had to
attribute to relativistic resonances the same space-time
properties as to relativistic stable particles, and define for
each pole position sR of Sj�s� relativistic Gamow kets (74)
which transform irreducibly under Poincaré transforma-
tions into the forward light cone. These relativistic
Gamow vectors furnish a representation space of the causal
Poincaré semigroup that is like the pole characterized by
�sR; j. The vectors in this space �sR; j of decaying states
evolve exponentially (92). Thus, each Gamow state  G

�sR;j

given by Eq. (80) has a well defined lifetime (92) which is
relativistically invariant and equal to the ‘‘lifetime in the
rest frame.’’

If there are two (or more) resonance poles in the same
partial wave, then the scattering amplitude contains a sum
of the two (or more) Breit-Wigner amplitudes (99). This is
what field theory for stable particles would suggest but it
cannot be derived from the analyticity of the S-matrix
alone. The derivation requires the new hypothesis (50) or
equivalently the Hardy property of the functions in
Eq. (57). Corresponding to the sum of two (or more)
Breit-Wigner resonances (99), one derives a superposition
of two (or more) interfering Gamow vectors (98) for the
prepared state. Resonances are also observed in production
processes (75); Gamow vectors therefore also emerge as
intermediate states of production amplitudes [38,39].

The background amplitude Bj�s� in Eq. (100), describes
the ‘‘contact terms’’ [49] for direct production of the final
state that does not go through resonance formation as, e.g.,
given by Eq. (16). To this background amplitude Bj�s� in
Eq. (100) corresponds a background vector .bg in the
complex basis vector expansion (98). This background
vector is a continuous superposition of Lippmann-
Schwinger scattering states (96).

The approximation in which the background continuum
(96) is neglected is a Weisskopf-Wigner approximation. In
this approximation the scattering amplitude is a (finite)
superposition of Breit-Wigner amplitudes, and the pre-
pared state is a (finite) superposition of Gamow vectors,
both of which have been well documented experimentally.

To obtain all these new results one had to pay a price.
This is the new hypothesis (50) which requires that the
energy distributions in the prepared state and the energy
resolutions of the detected observables are described by
much nicer energy wave functions, Eq. (57), than the
Lebesgue-square integrable functions of Hilbert space
quantum mechanics. As far as the preparation apparatus
(accelerator) and the registration apparatus (detector) are
concerned, the hypothesis that Eq. (57a) is analytic in the
lower complex semiplane and that Eq. (57b) is analytic in
the upper complex semiplane is just another acceptable
mathematical idealization (because the apparatuses can
probably not distinguish between a smooth function and
a smooth function that can be analytically continued into
the complex semiplane). But a mathematical theorem
-20
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(Paley-Wiener theorem, see appendix of Ref. [14]) leads to
different asymmetric time dependence for the Fourier
transforms of the two different kinds of Hardy function.
Like the Stone-von Neumann theorem for the unitary
group evolution of the Hilbert space, the Paley-Wiener
theorem is the mathematical underpinning for the time-
asymmetric semigroup evolution (85) and (86), and, in
general, for the semigroup representations of the space-
time transformations. It follows as a mathematical conse-
quence from the new Hardy space axiom (50) [36], which
is the only modification of the standard axioms needed to
obtain a consistent time-asymmetric quantum theory that
incorporates causality and many popular heuristic
concepts.

The analyticity in energy is the property of the Hardy
function that is needed to unify the theoretical description
of scattering resonances and decaying states and to explain
085018
such heuristic notions as Lippmann-Schwinger kets,
Gamow vectors, Breit-Wigner amplitudes, and their inter-
relation. For the relativistic case it leads to a unique defi-
nition of resonance mass and of resonance width, which for
the Z-boson gives the mass value (23), which is neither of
the two quoted in Ref. [1].
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