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Space-time symmetries of noncommutative spaces
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We define a noncommutative Lorentz symmetry for canonical noncommutative spaces. The non-
commutative vector fields and the derivatives transform under a deformed Lorentz transformation. We
show that the star product is invariant under noncommutative Lorentz transformations. We then apply our
idea to the case of actions obtained by expanding the star product and the fields taken in the enveloping
algebra via the Seiberg-Witten maps and verify that these actions are invariant under these new
noncommutative Lorentz transformations. We finally consider general coordinate transformations and
show that the metric is undeformed.
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Lorentz symmetry plays a central role in any realistic
quantum field theory. Recently, due to progress in string/M
theory [1], the idea that space-time could involve at short
distances some nontrivial noncommutative coordinates
was revived. But these quantum field theories typically
violate Lorentz invariance. In the first paper on space-
time noncommutativity [2], Snyder argued that Lorentz
invariance is not incompatible with a discrete space-time
and he gave a concrete noncommutative algebra that al-
lows one to recover Lorentz invariance, but not Poincaré
invariance.

Noncommutative gauge theories are very interesting
since they represent simple examples of models with a
minimal length and it has recently been established that
quantum mechanics considered together with classical
general relativity imply the existence of a minimal length
in nature [3]. Nevertheless gauge theories formulated on a
canonical noncommutative space-time violate Lorentz in-
variance. Although it is known how to formulate the stan-
dard model on a noncommutative space-time [4] (see also
[5] for another approach), there is no obvious way to
preserve Lorentz invariance and the bounds on the non-
commutative nature of space-time are actually derived
from bounds on Lorentz invariance violation [6]. One
way to consider Lorentz invariant noncommutative models
is to consider space-time dependent noncommutativity [7],
but this approach has not yet been studied in great details
and it remains a speculation. In this work we show that
noncommutative theories formulated on a canonical space-
time have an underlying exact symmetry that corresponds
to Lorentz invariance in the limit ��� ! 0. We call this
symmetry noncommutative Lorentz invariance. Let us con-
sider the noncommutative algebra:

�x̂i; x̂j� � i�ij (1)

where i; j run from 1 to 3 and where we set �0i � 0, i.e. we
assume that the space coordinates commute with the time
coordinate. It will soon become obvious why we restrict
ress: calmet@physics.unc.edu
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our considerations to that case. Furthermore one has the
Heisenberg algebra:

�x̂i; pj� � i �h
ij (2)
and

�pi; pj� � 0: (3)

One could try to introduce a noncommutative Lorentz
symmetry by imposing a transformation x̂i � �i

jx̂
j, but

that is not consistent with the algebra (1) since it would
require that �ij transforms1 as �i

k�
i
l�
kl which makes little

sense since it is by definition a constant and thus should
remain invariant.

It is easy to see that one can introduce a new operator xic
defined by

xic � x̂i �
1

2 �h
�ijpj; (4)

which leads to the following algebras:

�xic; x
j
c� � 0; �xic; pj� � i �h
ij and �pi; pj� � 0; (5)

i.e. xic are commuting coordinates. Since t is not an opera-
tor in quantum mechanics, one cannot eliminate the con-
straint (1) for space-time noncommutativity; this explains
our previous assumption �0i � 0. This condition has to be
imposed in the string/M theory approach [9] to noncom-
mutative gauge theories to avoid problems with unitarity
[10]. We can now treat the problem in a covariant way and
introduce Greek variables which are running from 0 to 3.
Given the algebras (5), we can define a transformation

x�c � ��
�x

�
c (6)

that leaves the interval s2 � ���x
�
c x�c invariant if

�����
��

�
� � ���. Notice that p� transforms as an

usual Lorentz vector, i.e.

p� � ��
�p�: (7)
This approach has been considered in [8], but we wish to treat
�ij as a universal constant tensor, just like the speed of light in
special relativity on commutative spaces.
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One thus finds that the transformation (4) implies that x̂�

transforms as

x̂ �0 � x�0c �
1

2 �h
���p0

� � ��
�x

�
c �

1

2 �h
�����

�p� (8)

or

x̂ �0 � ��
�x̂� �

1

2 �h
��

����p� �
1

2 �h
�����

�p� (9)

which defines the noncommutative Lorentz transforma-
tion. Note that the second term ��

��
��p� is not a trans-

formation of the noncommutative parameters ���, but of
���p�. It is easy to verify that the algebra (1) is left
invariant by this transformation and that there is a smooth
limit to the Lorentz transformation on classical space-time
by taking the limit ��� ! 0. We now define the noncom-
mutative invariant length. The square of the invariant
length for the commutative coordinate x�c is

s2 � ���x
�
c x�c : (10)

Using the variable transformation (4), one finds that the
square of the noncommutative invariant length is given by

s2nc � x̂�x̂� �
1

�h
���x̂�p� �

1

4 �h2
������p�p�: (11)

It is easy to verify that s2nc is left invariant by the non-
commutative Lorentz transformation (9). This is the way
we define the noncommutative Lorentz transformations;
those are the transformations that leave s2nc invariant.

It is straightforward to extend our results to a Poincaré
transformation since a shift by a constant of the noncom-
mutative coordinates is compatible with the algebra (1).
Let us now consider an infinitesimal noncommutative
Poincaré transformation ��

� � 
�� �!�
�, a� � ��. It

is implemented by the operator

U�1�!; �	 � 1�
1

2
i!��J

�� � i��p
� � . . . (12)

with J�� � x�c p� � x�cp
�. The operator is undeformed.

The Lie algebra of the Lorentz group is also undeformed:

i�J��; J��� � ���J�� � ���J�� � ���J�� � ���J��;

(13)

i�p�; J��� � ���p� � ���p�; (14)

�p�; p�� � 0: (15)

We note that our approach is different from the twisted
Poincaré symmetry considered in [11]. It is also different
from the �-Poincaré quasi group where the Poincaré sym-
metry is deformed [12].

We shall now consider field theories. We need to intro-
duce a derivative. Derivatives have to be defined in such a
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way that they do not lead to new relations for the coordi-
nates. In the canonical case, it is easy to show that x̂� �

i���@̂� with @̂�x̂� � 
�� � x̂�@̂� commutes with all coor-
dinates [13]. One thus finds @̂�f � �i��1

���x̂�; f�. In our
case we need a derivative which is compatible with the
noncommutative Lorentz symmetry. We define the deriva-
tive in the following way:

i���@̂
�f � 2�x̂� �

1

2 �h
���p�; f� (16)

with �p�; f� � �i �h@�f. Note that the left-hand side of the
equation is covariant. One finds that the derivative @̂�
transforms as

@̂ 0
� � ��1

���
�
��

��@̂� (17)

under a noncommutative Lorentz transformation. We can
thus write a noncommutative Lorentz invariant free field
action for a noncommutative scalar field:

S �
Z
d4x�@̂�	@̂

�	�m2		� #					: (18)

Note that the one-particle states are classified according to
the eigenvectors of the four-momentum which transforms
as usual under Lorentz transformations. The scalar, vector,
and spinor fields thus transform in the usual way under
Lorentz transformations. The Weyl quantization procedure
can be applied to map the noncommutative fields 	�x̂	 to
the commutative ones 	�x	. As usual, this corresponds to a
replacement of the multiplication operation by a star prod-
uct given by f�x	 ? g�x	 � f�x	 exp��i@����@�	g�x	. It is
easy to verify that the star product is invariant under non-
commutative Lorentz transformations. The noncommuta-
tive gauge theories inspired by string theory are thus
invariant under these transformations.

The noncommutative Lorentz transformation is compat-
ible with gauge transformations. Remember that one has to
introduce a covariant coordinate X̂� [14] such that

̂�̂�X̂

�
̂�x̂		 � �̂X̂�
̂�x̂	 where �̂ is a noncommutative
gauge transformation. One finds that X̂� � x̂� � B̂� with

̂�̂B̂

� � i��̂; B̂�� � i�x̂�; �̂�. The Yang-Mills gauge po-
tential Â� is related to the gauge potential for the coordi-
nate B̂� by the relation B̂� � ���Â� and the covariant
derivative D̂� is given by D̂� � �i��1

��X̂
�. The coordinate

gauge potential B̂� transforms as B̂0
� � ��

�B̂�; one thus
finds that the noncommutative Yang-Mills potential trans-
forms as

Â 0
� � ��1

���
�
����Â�: (19)

The noncommutative covariant derivative transforms as

D̂ 0
� � ��1

���
�
��

��D̂� (20)

under a noncommutative Lorentz transformation. The field
strength F̂�� is given by F̂�� � i�D̂�; D̂��; it transforms as
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F̂ 0
�� � ��1

���
�
������1

���
�
+�

+�F̂�� (21)

under a noncommutative Lorentz transformation. The non-
commutative spinor field 
̂ transforms as


̂ 0 � exp
�
�
i
2
w��S��

�

̂; (22)

with S�� � i
4 �-

�; -��. Note that if the fields are taken in
the enveloping algebra, the leading order field of the
Seiberg-Witten expansion [15], i.e. the classical field,
also transforms according to (20)–(22).

Up to this point our considerations were completely
general and did not assume a specific approach to space-
time noncommutativity. We now apply our results to a
specific framework, namely, we consider fields to be in
the enveloping algebra. Given (20)–(22) it is easy to verify
that the effective action obtained in the leading order in �
after the expansion of the noncommutative fields via the
Seiberg-Witten map and of the star product,

S �
Z
d4x

�
� �iD6 �m	 �

1

4
��� � F���iD6 �m	 

�
1

2
��� � -�F��iD� �

1

2
TrF��F��

�
1

4
��� TrF��F��F�� � ��� TrF��F��F��

�

�O��2	; (23)

is invariant under noncommutative Lorentz trans-
formations.

There are implications for the bounds on space-time
noncommutativity [6,16]. The 10 TeV bound on space-
time noncommutativity when fields are taken in the envel-
oping algebra comes from atomic clock comparison stud-
ies. These studies search for a difference between two
atomic transition frequencies, searching for variations as
the Earth rotates [17]. The 10 TeV bound was obtained in
[16] assuming that the fermionic sector of (23) transforms
according to the classical Lorentz transformations. If we
posit that the noncommutative Lorentz invariance is a
symmetry of nature, one should use the noncommutative
Lorentz transformations described in this work to compare
the laboratory frame to the laboratory frame rotating with
the Earth. The bounds on space-time noncommutativity
coming from atomic clock comparison have to be recon-
sidered. A noncommutative Lorentz transformation corre-
sponding to a 2/ rotation would not take a system back to
the same point; one could imagine testing this symmetry by
measuring the spectrum of some transition in e.g. a nuclei
and by studying how the spectrum is affected if the com-
plete experiment is rotated by 2/. We emphasize that in
our case � is a constant in all reference frames, i.e. our
symmetry is not spontaneously broken. Tests of Lorentz
invariance, in the framework of noncommutative gauge
theories, usually assume that � changes from one reference
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frame to another and thus breaks Lorentz invariance spon-
taneously. It is thus not obvious how to use bounds on
spontaneous violations of Lorentz to constrain our sym-
metry. A detailed analysis of the phenomenological con-
sequences of this symmetry will appear elsewhere and is
beyond the scope of this article.

The noncommutative Lorentz symmetry also has
implications for the bounds relevant to the string/M theory
approach to space-time noncommutativity. In that case the
bounds come from the operators O1 � me�

�� � ��� ,
O2 � ��� � D�-� , O3 � #3������F��F��, O4 �

#4=8��
��F��	

2, and O5 � ���F
����-F

-� which are
typically generated at two loops [18]. It is however easy
to verify that these operators are not invariant under the
transformations (21) and (22) and are thus an artifact of the
cutoff used to regularize the divergent integrals. In that
case again, the bounds on space-time noncommutativity
are affected if we postulate that the noncommutative
Lorentz symmetry is a symmetry of nature. On the other
hand one finds that the effective cutoff responsible for the
UV/IR phenomenon, �2

eff � �1=�2 � p��2��q�	�1, [19] is
invariant under the deformed Lorentz symmetry. The UV/
IR mixing phenomenon is thus not related to a symmetry of
the noncommutative space-time.

It is straightforward to extend our results to the case of
general coordinate transformations. As for the case of
Lorentz transformations, we can consider general coordi-
nate transformations of the commutative variable x�c . One
finds that the infinitesimal length interval

ds2 � g���x	dx
�
c dx�c (24)

is invariant under a general coordinate transformation
x� ! +�, if the metric transforms as g�� �
g���@x�=@+�	�@x�=@+�	. Applying the variable transfor-
mation (4) to the infinitesimal length interval, we find

ds2 � g���x	
@x�c
@x̂�

dx̂�
@x�c
@x̂�

dx̂�: (25)

Using �@x�c =@x̂�	 � �i2��1
���x̂

� � 1
2 �h �

��p�; x
�
c � � 
��,

we find

ds2 � g���x̂	dx̂
�dx̂�: (26)

The noncommutative metric is therefore undeformed. This
does not imply that the noncommutative Einstein action
will itself be undeformed [20].

In summary we have defined space-time transformations
for noncommutative spaces. The basic idea is to define
these transformations for a commutative variable and to
feed back these transformations to the noncommutative
sector via a variable transformation. We have shown that
the �-expanded action is invariant under noncommutative
Lorentz transformations and we have applied the same idea
to general coordinate transformations and shown that the
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metric remains undeformed; this might not be a surprise
since in string/M theory, gravity is determined by closed
strings that do not feel the noncommutativity.
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