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Displacement operator formalism for renormalization and gauge dependence to all orders
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We present a new method for determining the renormalization of Green functions to all orders in
perturbation theory, which we call the displacement operator formalism, or the D formalism, in short. This
formalism exploits the fact that the renormalized Green functions may be calculated by displacing by an
infinite amount the renormalized fields and parameters of the theory with respect to the unrenormalized
ones. With the help of this formalism, we are able to obtain the precise form of the deformations induced
to the Nielsen identities after renormalization, and thus derive the exact dependence of the renormalized
Green functions on the renormalized gauge-fixing parameter to all orders. As a particular nontrivial
example, we calculate the gauge dependence of tan� at two loops in the framework of an Abelian-Higgs
model, using a gauge-fixing scheme that preserves the Higgs-boson low-energy theorem for off-shell
Green functions. Various possible applications and future directions are briefly discussed.
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I. INTRODUCTION

Renormalization is of central importance in quantum
field theory [1–12], and its consistent implementation has
been crucial for the advent and success of gauge theories in
general, and of the standard model of strong and electro-
weak interactions, in particular. Despite half a century of
practice, however, renormalization remains a delicate pro-
cedure, mainly because it interferes nontrivially with the
fundamental symmetries encoded in the Lagrangian defin-
ing the theory. The subtleties involved manifest themselves
at almost every step, ranging from the necessity to employ
regularization methods respecting all relevant symmetries,
the need for renormalization schemes that do not spoil the
important constraints imposed by the symmetries on the
Green functions of the theory, all the way to the practical,
bookkeeping challenges appearing when the renormaliza-
tion is carried out in higher-order calculations.

In this paper we develop a new formalism, which we call
the Displacement Operator Formalism, or the D formal-
ism, in short. The D formalism enables one to systemati-
cally organize and explicitly compute the counterterms
(CTs) involved in the renormalization procedure, to all
orders in perturbation theory. The central observation,
leading to this new formulation, is that the effect of re-
normalizing any given Green function may be expressed in
terms of ultraviolet (UV) infinite displacements caused by
the renormalization on both the fields and the parameters of
the theory. Specifically, these UV infinite displacements, or
shifts, quantify the difference between fields and parame-
ters before and after renormalization. For example, in the
case of a theory with a scalar field �, and two parameters,
the coupling constant � and the squared mass m2, the
corresponding UV infinite shifts ��, ��, and �m2 are
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given by �� � �Z1=2
� � 1��R, �� � �Z� � 1��R, and

�m2 � �Zm2 � 1�m2
R, where the renormalization constants

are defined, as usual, through � � Z1=2
� �R, � � Z��R, and

m2 � Zm2m2
R. Evidently, in this formulation, dynamical

fields and parameters are treated on a completely equal
footing.

In order to systematically expose the way in which these
shifts implement the renormalization at the level of Green
functions, one introduces the displacement operator D, a
differential operator given by D � ���@=@�R� �
���@=@�R� � �m2�@=@m2

R�. It turns out (see Sec. II for
details) that the net renormalization effect is captured to all
orders by the exponentiation of the D operator. Thus, the
renormalized (n-point) Green functions �R

�n are eventually
obtained from the bare ones, ��n , through the master
equation �n

R�
R
�n � heD��n

R��n�i, where the brackets h. . .i

mean that the corresponding shifts, implicit in the D op-
erator, are to be replaced by their expressions in terms of
the renormalization constants given above, after the end of
the differentiation procedure.

It is important to appreciate at this point the inherent
nonperturbative nature of the above formulation, manifest-
ing itself through the exponentiation of the D operator.
Perturbative results (at arbitrary order) may be recovered
as a special case through an appropriate order-by-order
expansion of the above master formula, whose validity
however is not restricted to the confines of perturbation
theory. This is to be contrasted with other well-known
renormalization methods (as, for example, the ‘‘algebraic
approach’’ [13–15]), which are formulated at the perturba-
tive level.

One of the main advantages of this formulation is the
ability it offers in determining unambiguously the CTs to
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any given order in perturbation theory. Specifically, the
contributions of the CTs are automatically obtained
through the straightforward application of the D operator
on the unrenormalized Green functions, without having to
resort to any additional arguments whatsoever. This last
point is best appreciated in the context of complicated non-
Abelian gauge theories, or special gauge-fixing schemes,
where keeping track of the CTs can be not only logistically
demanding, but at times also conceptually subtle. For
example, possible ambiguities related to the gauge-fixing
parameter (GFP) renormalization, endemic in sophisti-
cated quantization schemes such as the background field
method (BFM) [16–20] are automatically resolved (see
Sec. III). As we will see in detail in the main body of the
paper, the fact that the D formalism correctly incorporates
the action of the CTs is clearly reflected in the absence of
overlapping divergences from the resulting expressions.

An important property of the D formalism is that it
reproduces exactly the usual diagrammatic representation
of the CTs, if one acts with the D operator on the Feynman
graphs determining the given Green function before the
integration over the virtual loop momenta is carried out. If
one instead acts with D after the momentum integration
has been performed one loses this direct diagrammatic
interpretation, but recovers the same final answer for the
renormalized Green function. This last point becomes
particularly relevant in the case of gauge theories, where
one of the parameters that undergoes renormalization is the
GFP, to be denoted by . This, in turn, will introduce in the
D operator a term of the form ��@=@R�, which must act
on the corresponding Green function. Clearly, for this to
become possible the dependence of the Green function on
 must be kept arbitrary, that is, one may not choose a
convenient value for , like for example  � 1. Evidently,
if one were to first carry out the momentum integration and
then differentiate, one would be faced with the bookkeep-
ing complications of computing with an arbitrary . If,
instead, one opts for the action of D on the Green function
before the loop integration, the straightforward use of the
chain rule for the strings of tree-level propagators (and
possibly vertices), and a subsequent choice of, say,  � 1,
is completely equivalent to the conventional approach of
computing at a fixed gauge. Obviously, one may choose
either one of the two procedures, i.e., integrate before or
after the action of D, depending on the specific problem at
hand, a fact which exemplifies the versatility of the new
formalism.

Perhaps one of the most powerful features of the D
formalism consists in the fact that it provides a handle on
the structure and organization of the CTs to all orders in
perturbation theory. In particular, it furnishes the exact
form of the deformations induced due to the renormaliza-
tion procedure to any type of relations or constraints which
are valid at the level of unrenormalized Green functions.
Such deformations will arise in general if the symmetries
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(global or local) enforcing the relations in question involve
static parameters, which cannot admit kinetic terms com-
patible with those symmetries. A well-known example of
such a type of relation is the so-called Nielsen identities
(NI) [21], which, by virtue of the extended Becchi-Rouet-
Stora (eBRS) symmetry [22,23], control the GFP depen-
dence of bare Green function in a completely algebraic
way. The NI are very useful in unveilling in their full
generality the patterns of gauge cancellations taking place
inside gauge-independent quantities, such as S-matrix ele-
ments [12,24]. Contrary to the case of the usual BRS
symmetry [25], however, where only dynamical fields are
involved, the eBRS symmetry involves also static parame-
ters (, �) which cannot be promoted to dynamical varia-
bles without violating this latter symmetry. Consequently,
the NI are affected nontrivially by the ensuing renormal-
ization, which deforms them in a complicated way [26]. As
we will see in detail in Sec. IV, the straightforward appli-
cation of the D formalism yields, for the first time, the
deformation of the NI in a closed, and, in principle, calcu-
lable form. This is a clear improvement over the existing
attempts in the literature, where the deformations are for-
mally accounted for, and their generic structure and prop-
erties inferred, but, to the best of our knowledge, no well-
defined operational procedure for their systematic compu-
tation has been spelled out thus far.

The paper is organized as follows: In Sec. II we intro-
duce the D formalism in the context of a scalar �4 theory,
and explain its most characteristic features. The general-
ization of this formalism to more complicated field theories
is presented, and a general master equation valid for any
Green function is derived. In Sec. III we apply the D
formalism to the case of known examples, in order to
familiarize the reader with its use. In particular, we study
the two-loop renormalization for the cases of �4, QED,
and QCD formulated in the BFM, and demonstrate how all
necessary CTs are unambiguously generated through the
straightforward application of the D operator. Section IV
contains the first highly nontrivial application of the D
formalism, namely, the derivation of the deformation in-
duced to the NI by the renormalization procedure. First, we
review the derivation of the NI, and introduce a consistent
graphical representation. Then, by means of the D formal-
ism, we obtain for the first time the NI deformation in a
precise, closed form, presented in Eq. (4.25), which is a
central result of this paper.

In Sec. V we revisit the Abelian-Higgs model [27], and
study its quantization in the special class of gauges which
preserve the Higgs-boson low-energy theorem (HLET)
[28–32] beyond the tree level. The reason for turning to
this model is threefold. First, it has a rich structure, most
notably two different GFPs, thus providing an ideal testing
ground for the newly introduced formalism. Second, in
theories with spontaneous symmetry breaking (SSB), the
HLET is of central importance, and together with the
-2
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Slavnov-Taylor identities [33] and NI, severely constrains
the form of the Green functions of the theory. By quantiz-
ing the model using the HLET-preserving gauges [34] we
allow for the consistent implementation of a very special
renormalization condition for the Higgs vacuum expecta-
tion value (VEV) v. Specifically, if the gauge fixing does
not preserve the HLET, as is, for example, the case of the
ordinary R gauges [35], the renormalization of v is not
multiplicative in terms of the Higgs-boson wave-function
renormalization ZH, but necessitates an additional (diver-
gent) shift, �v, i.e., v � Z1=2

H �vR ��v� [36,37]. Instead,
in the HLET-preserving gauges, only the Higgs wave
function ZH is needed to renormalize v, while the shift
�v is finite (�v vanishes in the MS scheme [38]). Being
able to renormalize v only by means of ZH is essential in
the study of the gauge-(in)dependence of tan� in the
context of the HLET-preserving gauges, appearing in the
next section, as well as the definition of effective charges
for the Higgs sector of the theory [39]. Third, by including
fermions in the model, we set up the stage for the calcu-
lations that will be presented in the next section.

In Sec. VI we address the issue of the gauge dependence
of the tan�, one of the most important parameters appear-
ing in multi-Higgs models [40,41]. We show by means of
explicit two-loop calculations that the condition of having
a vanishing �v does not guarantee the GFP independence
of tan�, because the difference of the corresponding
anomalous dimensions displays an explicit dependence
on the GFP. This is to be contrasted to what happens in
the context of the usual (non-HLET-preserving) R gauges,
where the corresponding difference is GFP independent,
but the GFP dependence enters again into tan� through the
nonvanishing �v [42,43]. In the calculations presented in
this section we make extensive use of the D formalism,
which, together with the HLET, simplifies substantially the
algebra involved. Our conclusions and outlook are dis-
cussed in Sec. VII. Finally, in an appendix we list the
Feynman rules for the Abelian-Higgs model, together
with a collection of results needed for several of the
calculations appearing in this article.
II. THE DISPLACEMENT OPERATOR
FORMALISM

In this section we present the derivation of the afore-
mentioned D formalism. For this purpose it is sufficient to
consider a simple scalar ��4 theory; the generalization to
more involved field theories (such as gauge theories) is
straightforward, and will be done at the end of this section.

Let then ��n be a bare, one-particle irreducible (1PI)
n-point Green function. After carrying out the renormal-
ization programme, in d � 4� � dimensions, one will
have that

�n��n��;m2;�; �� � �n
R�

R
�n��R; m2

R;��; (2.1)
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where �;m2; � (respectively �R; m
2
R; �R) are the bare (re-

spectively renormalized) parameters and dynamical field
of the theory at hand [44],

� � Z1=2
� �R; � � Z��R; m2 � Zm2m2

R; (2.2)

and �R
�n��R;�� represents the renormalized n-legs Green

function. Note that our definition of the bare parameters �
and � does not include their naive dimensional scalings,
namely ���=2 and ��, respectively. Then, we may rewrite
the left-hand side (lhs) of (2.1) as

�n��n��;m2;�; �� � ��R � ���n��n��R � ��;m2
R

� �m2;�; ��; (2.3)

where the parameter shifts

�� � �Z1=2
� � 1��R; �� � �Z� � 1��R;

�m2 � �Zm2 � 1�m2
R;

(2.4)

quantify the difference of the renormalized quantities with
respect to the corresponding unrenormalized ones in a
given renormalization-scheme R. Notice that our formula-
tion of renormalization treats fields and couplings on equal
footing, i.e., as independent fundamental parameters of the
theory.

Our next step is to use a Taylor expansion to trade the
combinations �R � ��, �R � ��, and mR � �m, for the
renormalized parameters �R, �R, and mR. To this end, it is
natural to introduce the differential displacement operator

D � ��
@

@�R
� ��

@
@�R

� �m2 @

@m2
R

; (2.5)

in which the shifts are treated as independent parameters,
and only at the very end of all the manipulations they will
be replaced by their actual values in terms of the renor-
malization constants Z���R; m2

R; ��, Z���R; m2
R; ��, and

Zm2��R; m2
R; ��. It is then not difficult to derive the follow-

ing (all-order) master equation

��R � ���n��n��R � ��;m2
R � �m2;�; ��

� heD�n
R��n��R; m2

R;�; ��i; (2.6)

or equivalently

�n
R�

R
�n��R; m2

R;�� � heD�n
R��n��R; m2

R;�; ��i; (2.7)

where h. . .i means that the CT parameters ��, ��, and �m2

are to be set to their actual values according to (2.4) after
the action of the D operator. The expression (2.7), being an
all-order result, can now be expanded to any given order in
perturbation theory. This means that not only ��n should
be expanded starting from tree level, but, accordingly, also
the shifts ��, ��, and �m2, together with the displacement
operator D (in the latter case the expansion starts at the
one-loop level, since the tree-level shifts are, of course,
zero).
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Now, since the shifts are treated as independent parame-
ters, the displacement operator at different perturbative
orders commute, and one can use the ordinary Taylor
expansion for the exponentiation of D; up to three loops,
one then gets

eD � 1�D�1� �

�
D�2� �

1

2
D�1�2

�

�

�
D�3� �D�2�D�1� �

1

6
D�1�3

�
� . . . ; (2.8)

with

D�n� � ���n� @
@�R

� ���n� @
@�R

� �m2�n� @

@m2
R

: (2.9)
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The parameter shifts ���n�, ���n�, and �m2�n� are loopwise
defined as follows:

���n� � Z�1=2��n�
� �R; ���n� � Z�n�

� �R;

�m2�n� � Z�n�
m2m2

R:
(2.10)
By acting with the operator eD on the 1PI correlation
functions �n

R��n��R; m2
R;�; ��, we can easily determine

the expressions for the renormalized correlation functions
�n

R�
R
�n��R; m2

R;�� at the one-, two- and three-loop level,
which read
�n
R�

R�1�
�n ��R; m

2
R;�� � hD�1��n

R�
�0�
�n��R; m

2
R;��i ��n

R�
�1�
�n��R; m

2
R;�; ��;

�n
R�

R�2�
�n ��R; m

2
R;�� �

��
D�2� �

1

2
D�1�2

�
�n

R�
�0�
�n��R; m

2
R;�� �D�1��n

R�
�1�
�n��R; m

2
R;�; ��

�
��n

R�
�2�
�n��R; m

2
R;�; ��;

�n
R�

R�3�
�n ��R; m2

R;�� �

��
D�3� �D�2�D�1� �

1

6
D�1�3

�
�n

R�
�0�
�n��R; m2

R;�� �

�
D�2� �

1

2
D�1�2

�
�n

R�
�1�
�n��R; m2

R;�; ��

�D�1��n
R�

�2�
�n��R; m2

R;�; ��
�
��n

R�
�3�
�n��R; m2

R;�; ��: (2.11)
It is easy to generalize the above formalism to more
complicated theories, such as gauge theories (with or
without SSB). Let us consider a field theory, where the
dynamical degrees of freedom, e.g., scalar, spinor or vector
fields, are all denoted by �i, while the static parameters of
the theory, such as couplings, masses, VEVs of fields, and
GFPs, are collectively represented by x. Correspondingly,
let us assume that the dynamical and static parameters
renormalize multiplicatively as follows:

�i � Z
1
2

�i
�iR; x � ZxxR: (2.12)

For such a theory, the displacement operator D will be
given by [45]

D �
X
i

��i
@

@�iR
�

X
x

�x
@
@xR

; (2.13)

where the CT shifts are defined according to the loopwise
expansion

��i � �Z1=2
�i

� 1��iR �
X1
n�1

Z1=2�n�
�i

�iR;

�x � �Zx � 1�xR �
X1
n�1

Z�n�
x xR:

(2.14)

Then, given any 1PI Green function �Q
i
�

ni
i

, it will renor-

malize according to the formula

Y
i

�ni
iR�

RQ
i

�
ni
i

�xR;�� �

�
eD

Y
i

�ni
iR�

Q
i

�
ni
i
�xR;�; ��

�
:

(2.15)
Equation (2.15) is the master formula of the D formalism
and one of the major results of this paper. An immediate
consequence of the D formalism is the renormalization-
scheme independence of the lhs of (2.15). Specifically, if R
and R0 denote two arbitrary renormalization schemes, the
renormalization-scheme independence of the bare parame-
ters, i.e., �i � �iR � ���R�

i � �iR0 � ���R0�
i and x �

xR � �x�R� � xR0 � �x�R
0�, implies thatY

i

�ni
iR�

RQ
i

�
ni
i

�xR;�� �
Y
i

�ni
iR0�R0Q

i

�
ni
i

�xR0 ;��: (2.16)

Thus, we may employ the D formalism to go from the
scheme R to the scheme R0, and so generally establish the
precise relation between the respective 1PI Green func-
tions evaluated in two different renormalization schemes.
III. EXAMPLES

To get acquainted with this new renormalization
method, in this section we are going to reproduce known
results, and clarify the connection between the D operator
and the conventional renormalization procedure.

The case of ��4

Let us start by first considering the usual ��4 theory
defined by

L �
1

2
�@����@��� �

1

2
m2�2 �

�
4!
�4: (3.1)

At the one-loop level, the first equation of (2.11) gives the
usual renormalization prescription in the MS scheme,
-4
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Z�1�
� � 2Z�1=2��1�

� � i @
@p2 �

�1�
�2��R; m

2
R;�; ��jp2�0

;

2Z�1�
� � Z�1�

� �
i
�
��1�
�4��R; m2

R;�; ��;

Z�1�
� � Z�1�

m2 � �
i

m2
R

��1�
�2��R; m

2
R;�; ��jp2�0

;

(3.2)

where the ‘‘bars’’ indicate that only the infinite part of the
corresponding bare Green function should be considered.
A straightforward calculation of the one-loop diagrams of

DISPLACEMENT OPERATOR FORMALISM FOR . . .
(a) (b)

(d) (e)

(c2)(c1)

2 ×

2 ×

FIG. 1 (color online). One and two-loop propagator and vertex co
crosses and squares represent the one-loop propagator and vertex co
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Fig. 1 (with d � 4� �) gives then

Z�1�
� � 0; Z�1�

m2 � �
1

�4��2�
�;

Z�1�
� � �

1

�4��2�
3�:

(3.3)

More interesting is the two-loop case, for which the second
equation in (2.11) gives
Z�2�
� � 2Z�1=2��2�

� � �Z�1=2��1�
� �2 � i

@

@p2 �D
�1���1�

�2��R; m
2
R;�; �� � ��2�

�2��R; m
2
R;�; ���jp2�0

;

Z�2�
� � Z�2�

� � Z�1�2
� � 2Z�1�

� Z�1�
� �

i
�R

�D�1���1�
�4��R; m2

R;�; �� � ��2�
�4��R; m2

R;�; ���;

Z�2�
m2 � Z�2�

� � Z�1�
� Z�1�

m2 � �
i

m2
R

�D�1���1�
�2��R; m

2
R;�; �� � ��2�

�2��R; m
2
R;�; ���jp2�0

;

(3.4)
where D�1� is now the displacement operator after the one-
loop parameters shift has been substituted, i.e.,

D�1� � Z�1�
� �R

@
@�R

� Z�1�
m2m2

R

@

@m2
R

�
n
2
Z�1�
� ; (3.5)

with n is the number of external � legs. Notice that these
equations tell us a rather nontrivial fact, i.e., that the
combination in square brackets on the right-hand side
(rhs) is free of overlapping divergences. This is quite
striking, since in the calculation of the two-loop Green
function ��2�

�n only 1PI bare diagrams must be considered
(see Fig. 1 again) and no two-loop CT diagram has to be
taken into account. Evidently, the D�1� operator, when
applied to the lower-order (one-loop) ��1�

�n , will generate
the necessary CT at the two-loop order.

Since the D operator and the integration over virtual
momenta commute, one has two possibilities: first carry
out the integration and then apply D, or, vice versa, first
apply D and then integrate. These two approaches have
both advantages and disadvantages. In the first case, the
main advantage is that all explicit references to CTs are
removed, and one needs to compute 1PI irreducible dia-
grams only (no CT diagrams). The disadvantage is related
to the fact that, since the D operator involves differentia-
tion with respect to all parameters of the theory that
undergo renormalization, we need to maintain the explicit
dependence of the various Green functions on them. This is
particularly relevant in the case of gauge theories, where
one would be faced with the complication of computing
diagrams keeping the GFP  arbitrary [46]. In the second
case, instead, one will algebraically generate the CTs and
recover the conventional formulation. Of course, after
applying the D operator, one can work at a fixed  (say,
 � 1). To see how the CT diagrams get generated by the
(c)

(f) (g)

(c3)

2 ×

(c4)

rrections in the ��4 theory. Dots represents �4 vertices, while
unterterms, respectively. Crossing diagrams are not shown.
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displacement operator, observe that the one-loop CT to be
added to the Lagrangian is given by

�c1 �
i

�4��2�
�m2; �c2 � �

i

�4��2�
3�2; (3.6)
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which are related to the renormalization of the operators
�2 and �4, respectively. Then, by applying the D operator
on the bare one-loop 1PI diagrams (a) and (d) of Fig. 1, it is
easy to see that
D�1���1�
�2 � �i�c1

�
2

Z ddk

�2��d
1

�k2 �m2�2
� i�c2

1

2

Z ddk

�2��d
1

k2 �m2 � �c1� � �c2�;

D�1���1�
�4 � 3i�c1�

2
Z ddk

�2��d
1

�k2 �m2�3
� 3i�c2�

Z ddk

�2��d
1

�k2 �m2�2
� �c3� � �c4�:

(3.7)
2 × 2 ×

2
̂Aµ

̂Aµ
̂Aν

̂Aν

Aµ Aν Aµ Aν

(c) (d)

(a) (b)

FIG. 2 (color online). One-loop CTs for massless QED [(a)
and (b)], and pure Yang-Mills theory in the background field
type of gauges [(c) and (d)]. In the latter case we only draw
gauge-fixing term insertions resulting from the renormalization
of the GFP.
Therefore, irrespectively of the order, one will get the
results

Z�2�
� � �

1

�4��4
�2

12�
; Z�2�

m2 � �
1

�4��4
�2

�
2

�2
�

5

12�

�
;

Z�2�
� � �

1

�4��4
�2

�
9

�2
�

35

12�

�
: (3.8)

B. Massless QED

We turn to the case of QED, where for simplicity the
electron mass is considered to be zero to all orders. In this
case the one-loop D operator of the photon vacuum polar-
ization, assumes the form

D�1� � Z�1�
e eR

@
@eR

� Z�1�
 R

@
@R

� Z�1�
A ; (3.9)

where e is the QED coupling, and Z�1�
e , Z�1�

A , and Z�1�
 are,

respectively, the one-loop coupling, wave function, and
GFP renormalization constants. It is then straightforward
to establish that the action of the operator D�1� on the one-
loop photon vacuum polarization ��1�

A�A�
vanishes. To begin

with, the vacuum polarization is independent of the GFP to
all orders. In addition, the Abelian gauge symmetry of the
theory gives rise to the fundamental Ward identity

q��0
��p; p� q� � S�1

0 �p� q� � S�1
0 �p�; (3.10)

where �0
� and S0�k� are the unrenormalized (all-order)

photon-electron vertex (with an e factored out) and elec-
tron propagator, respectively. The requirement that the
renormalized vertex �� � Z1�

0
� and the renormalized

self-energy S � Z�1
f S0 satisfy the same identity imposes

the equality Z1 � Zf, from which follows immediately

that Ze � Z�1=2
A , and therefore, after expanding perturba-

tively, 2Z�1�
e � Z�1�

A � 0. Then, using that, to the given
order,

eR
@
@eR

��1�
A�A�

� 2��1�
A�A�

; (3.11)

we find immediately that D�1���1�
A�A�

� 0. Evidently, the

action of D�1� produces no two-loop CT contributions.
This is consistent with the fact that the standard CT graphs
(first row in Fig. 2) add up to zero, again by virtue of the
aforementioned Ward identity (see, for example, [47]).

At higher orders, the renormalization of the photon
vacuum polarization requires CTs that originate from
two-loop and higher-order self-energy graphs. Likewise,
it is not difficult to show that, on account of the relation
Ze � Z�1=2

A , the CTs from one-loop graphs vanish identi-
cally to all orders. In QED with massive quarks and lep-
tons, mass CTs from all lower-order vacuum graphs,
including one-loop graphs, contribute to the renormaliza-
tion of the photon vacuum polarization. In this case, the D
formalism is a very practical method to reliably calculate
such effects.

C. Gluon self-energy in the background field method

We next turn to the case of quarkless QCD, formulated
in the BFM, and apply the D formalism to study the
structure of the two-loop CTs appearing in the calculation
of the background gluon self-energy, to be denoted by
�Â�Â�

. The BFM is a special gauge-fixing procedure,

which preserves the symmetry of the action under ordinary
gauge transformations with respect to the background
(classical) gauge field Âa

�, while the quantum gauge fields
Aa
� appearing in the loops transform homogeneously under

the gauge group [48]. As a result, the n-point functions
-6
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h0jT�Âa1
�1
�x1�Â

a2
�2
�x2� . . . Â

an
�n
�xn��j0i satisfy naive, QED-

like Ward identities, instead of the Slavnov-Taylor identi-
ties valid in the usual covariant quantization. Notice also
that the n-point functions depend explicitly on the quantum
GFP Q.

In this case, the one-loop D operator for the (back-
ground) gluon vacuum polarization is given by

D�1� � Z�1�
g gR

@
@gR

� Z�1�
Q
Q

@
@Q

� Z�1�

Â
: (3.12)

Here and in the following, Q stands for the renormalized
GFP associated with the quantum gauge field Aa

��x�.
Because of the aforementioned background gauge symme-
try, Zg and ZÂ satisfy to all orders the QED-like relation

Zg � Z�1=2
Â

, from which follows that the first and third

term of D�1� cancel against each other, as happens for the
photon vacuum polarization. Therefore, D�1� reduces to

D�1� � Z�1�
Q
Q

@
@Q

: (3.13)

On the other hand notice that, contrary to the case of the
photon vacuum polarization, the background gluon self-
energy �Â�Â�

depends explicitly on Q. This dependence

stems not only from the tree-level (quantum) gluon propa-
gator appearing in the loop,

��0�
���k� � �

i

k2

	
g�� � �1� Q�

k�k�
k2



; (3.14)

as happens in the case of the covariant gauges, but in
addition from the tree-level vertices between a background
gluon Âa

��p� and two quantum gluons Ab
��q� and Ac

��k�,

�abc
��&�p;q; k� � gfabc�g�&�p� k� �1

Q q�� � g�&�k� q��

� g���q�p� �1
Q k�&�; (3.15)

which, unlike the usual case, also depend on Q. Finally, as
a consequence of the nonrenormalization of the longitudi-
nal part of the gluon self-energy to all orders, we know that
ZQ � ZA [19], where ZA is the wave-function renormal-
ization of the quantum gluons; it coincides with the one
computed in the covariant gauges. Thus, at one-loop (recall
that in our conventions d � 4� �)

Z�1�
Q

�
g2CA

�4��2

�
13

3
� Q

�
1

�
: (3.16)

Therefore the action of D�1� will be nontrivial, and will
generate automatically all necessary two-loop CTs (Fig. 2
second row). Notice that this is in complete accordance
with the fact that the only CTs appearing in the classic two-
loop calculation of [18] are precisely related to the gauge
fixing. The advantage of the D formalism in this respect is
that the presence of such CTs does not have to be deduced,
but is given directly from the very form of the D operator.
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In order to verify that the action of D�1� on ��1�

Â�Â�
gen-

erates indeed the two-loop CT contributions, one may
follow two equivalent ways. First, one may differentiate
directly on the Feynman diagram determining ��1�

Â�Â�
, tak-

ing into account the dependence of the propagators and
vertices on Q, as shown above, and setting eventually
Q � 1. Thus, one generates immediately the Feynman
graphs appearing in the second row of Fig. 2.

The second, more algebraic way, is to actually act with
the D�1� of (3.13) on the expression that one obtains for
��1�

Â�Â�
after the loop integration, and verify that it is ac-

tually equal to the sum of the CT diagrams, whose indi-
vidual expressions, calculated at Q � 1, are listed in the
Table I of [18] [where the two diagrams (c) and (d) are
called (l) and (m), respectively]. The latter sum reads

�c� � �d� �
g4C2

A

�4��4
�ab�q2g�� � q�q��

20

3

1

�
: (3.17)

In doing so, note that, as is well known, the Q-dependent

part, ~��1�

Â�Â�
, is finite, and is given by [49]

~� �1�

Âa
�Â

b
�
�q� �

g2CA

�4��2
�ab�q2g�� � q�q��


�Q � 1��7� Q�

4
: (3.18)

At this point, acting with D�1� on ~��1�

Â�Â�
of (3.18), and

setting afterwards Q � 1, we immediately recover the
result of (3.17), as announced.

IV. DEFORMATIONS OF THE NIELSEN
IDENTITIES

One of the main advantages of the D formalism is that it
allows us to obtain complete control over the deformations,
caused by renormalization, on the NI, which describe the
GFP dependence of the bare Green functions.

To be specific, let us consider the Abelian-Higgs-Kibble
model in the symmetric phase, described by the
Lagrangian (see also Appendix A)

L � LI �LGF �LFP: (4.1)

Here, LI is the U�1� invariant term

L I � �
1

4
F��F�� � �D�����D��� �m2���

� ������2; (4.2)

with

F�� � @�A� � @�A�; D� � @� � igYA�;

� �
1���
2

p �H � iG�;
(4.3)
-7
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and the hypercharge assignment Y� � 1. The generic
gauge-fixing and Faddeev-Popov ghost terms are given by

L GF �

2
B2 � BF; LFP � � �c�sF�; (4.4)

where B is an auxiliary nonpropagating field (which can be
eliminated through its equations of motion), F is the
gauge-fixing function, and s is the BRS operator, giving
rise to the following field transformations

sA� � @�c; sH � �gcG; sG � gcH;

sc � 0; s �c � B; sB � 0;
(4.5)

with s nilpotent. Evidently, L is BRS invariant.
Let us now promote the constant  to a (static) field, and

introduce an associate anticommuting BRS source � (with
�2 � 0) [50] through the transformations

s � �; s� � 0: (4.6)

The BRS invariance of the original Lagrangian L is then
lost, unless we add to it the term

L N �
1

2
� �cB; (4.7)

which couples the � source to the other fields. With the
Lagrangian term LN included, it can be easily checked that
the so-quantized Lagrangian,

L � LI �LGF �LFP �LN; (4.8)

is invariant under the extended BRS (eBRS) transforma-
tions given by (4.5) and (4.6). If we integrate out the
auxiliary field B, we find

B � �
1


F�

1

2
� �c; LGF � �

1

2
F2;

LN � �
1

2
� �cF:

(4.9)

In this case, however, the eBRS transformation of the
antighost �c is not nilpotent, because one has

s2 �c �
1



�
�sF�

1

2
�F

�
; (4.10)

where the term in parenthesis is precisely the antighost
field equation of motion. Hence, in this case, the eBRS
algebra closes on-shell.

The extended Slavnov-Taylor identities one obtains
from the eBRS invariant Lagrangian are precisely the NI.
Specifically, assuming that the B field has been integrated
out, the generating functional for connected Green func-
tions of our model can be written as
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eiZ �
Z
�dA���dc��d �c��dH��dG�

 exp
�
i
Z
d4x�L� J�A A� � Jcc� J �c �c� JHH

� JGG� KH�sH� � KG�sG� � K �c�s �c��

; (4.11)

where the eBRS sources K (sometimes called the anti-
fields) have been included only for fields transforming
nonlinearly under the algebra of (4.5) and (4.6). Notice
that the antighost source K �c must be included, since the B
field has been integrated out [and therefore �c transforms
nonlinearly under eBRS, see (4.9)]. Observe that, given a
field �, its corresponding BRS source K� obeys opposite
statistic, and has ghost charge QFP�K�� � �QFP��� � 1;
therefore one has QFP�KA�

;KH;KG;K �c�� f�1;�1;�1;0g
(that K �c has no ghost charge is evident from the fact that it
couples to s �c � B and the action must have zero ghost
charge).

Thus, eventually the statement of eBRS invariance im-
plies the following Slavnov-Taylor identity:

Z�J�A ; Jc; J �c; JH; JG;K �c; KH; KG; ; ��

� Z�J�A ; Jc �!@�J
�
A ; J �c; JH; JG; K �c

�!J �c; KH �!JH;KG �!JG; �!�;��; (4.12)

which, after a Taylor expansion in ! (with !2 � 0), re-
duces to the (all-order) NI

J�A @�
�Z
�Jc

� J �c
�Z
�K �c

� JH
�Z
�KH

� JG
�Z
�KG

� �@Z � 0:

(4.13)

Denoting by ’ all the fields of our model, i.e., ’ �

fA�; c; �c;H;Gg, one can express the previous Slavnov-
Taylor identities in terms of the effective action
I��’cl; K’;; ��, given by the Legendre transform

I ��’cl; K’;; �� � Z�J’; K’; ; �� �
Z
d4xJ’’cl;

(4.14)

with ’cl � �Z=�J’. Taking into account the relations

�I�
�’cl

� �J’;
�I�
�K’

�
�Z
�K’

; @I� � @Z;

(4.15)

we obtain

�I�
�A�

cl

@�ccl �
�I�
� �ccl

�I�
�K �c

�
�I�
�Hcl

�I�
�KH

�
�I�
�Gcl

�I�
�KG

� �@I� � 0: (4.16)

Finally, after differentiating with respect to � and setting �
afterwards to zero (with �2 � 0), we obtain the NI in its
final form
-8
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@I�j��0 � �@�

�
�I�
�A�

cl

@�ccl �
�I�
� �ccl

�I�
�K �c

�
�I�
�Hcl

�I�
�KH

�
�I�
�Gcl

�I�
�KG

�
: (4.17)

Introducing the so-called Slavnov-Taylor operator SI�, the
NI (4.17) is often written down as

@I�j��0 � SI��@�I��; (4.18)

where we have used that �SI�; @�� � 0. It is now easy to see
that, due to ghost charge conservation, the first term on the
rhs of (4.17) becomes relevant only when one is calculating
the gauge dependence of ghost Green functions. For in-
stance, it contributes a term �@���c�A�

for the NI of the
ghost self-energy �c �c.

A graphical representation of the NI can be obtained as
follows. The � coupling can be represented by a heavy dot
attached to a dotted line with an arrow that indicates the
flow of the ghost charge. Likewise, the coupling of the BRS
sources KH and KG should by represented by a � symbol
attached to an arrowed dotted line. On the other hand, the
coupling of K �c should be represented by � attached to a
dashed line without an arrow, since K �c has no ghost charge.
In this way, a consistent graphical picture conveying infor-
mation of the flow of the ghost charge emerges. For ex-
ample, the NI for the Higgs tadpole, that reads (assuming
CP conservation)

�@�H � �SI��@��H�

� �HH��KH
� �H��KHH � �� �c�K �cH; (4.19)

can be represented as in Fig. 3. It can be explicitly checked
that the last term on the rhs of (4.19) is zero to all orders in
perturbation theory in the conventional R gauge-fixing
scheme.

As already mentioned in the Introduction, unlike the
Slavnov-Taylor identities which are derived from the
BRS invariance of the theory, the NI are obtained from
the eBRS symmetry; therefore they will not remain un-
modified by the process of renormalization, but they will
be deformed. In what follows, we are going to determine a

DISPLACEMENT OPERATOR FORMALISM FOR . . .
FIG. 3. Graphic representation of the NI (in this case the one for t
charge. The last term is absent to all orders in the R gauge.
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closed expression for the deformation of the NI under
renormalization, by applying the D formalism.

Let us therefore denote by x the parameters of the theory
(coupling, masses, etc.) except of the GFP , and with �i
the fields A�, H, and G, with renormalization relations
given by (2.12). To elucidate our points, we will initially
consider Green functions involving n fields of one type, say
�, and then we will generalize our results to Green func-
tions involving different types of fields. Based on the basic
formulas (2.6) and (2.7) of the D formalism, we can now
study the response of the renormalized Green functions to a
variation �R of the renormalized GFP R, i.e.,
�n
R�

R
�n�xR; R � �R;�� ��n

R�
R
�n�xR; R;��

� �n
R�R@R�

R
�n�xR; R;�� �O��2

R�: (4.20)
In stating (4.20), we have assumed that the renormalized
fields and parameters �R and xR are GFP independent in a
given renormalization scheme R. In fact, this is the case, if
the renormalized parameters are evaluated from renormal-
ization conditions that are manifestly GFP independent,
e.g. from physical observables, such as S-matrix elements,
or from gauge-invariant operators, within a good regulari-
zation scheme that preserves the Slavnov-Taylor identities.
In general, the GFP independence of the renormalized
parameters in a specific scheme can be determined in
two ways: (i) by showing that the corresponding CTs are
GFP independent; (ii) by comparing it to another gauge-
invariant scheme, such as the MS [38] or the pole-mass
scheme [51,52]. An exception to the above are the renor-
malized field �R and its VEV vR. These parameters are
GFP independent, but their respective renormalizations
Z1=2
� and Zv are in general GFP dependent, even within

the MS scheme. Thus, although we will initially assume
that �R and xR are GFP independent, we will also com-
ment on the modifications that should be considered, if xR
were depending on R.

Let us concentrate on the lhs of (4.20), and more pre-
cisely on its first term. From (2.1), we will have that
he tadpole). Notice that the arrows indicate the flow of the ghost

-9
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�n
R�

R
�n�xR; R � �R;�� � ��R � ���R � �R��

n��n�xR � �x�R ��R�; R ��R � ��R ��R�;�; ��

� ��R � ���R��n��n�xR � �x�R�; R � ��R�;�; �� � �R��R � ���R��
n

 �n��R � ���R��
�1�@R���R�� � �@R�x�R��@xR��x � �1� @R��R��@R���

 ��n�xR � �x�R�; R � ��R�;�; �� �O��2R�: (4.21)
Substituting for the shifts their expressions in terms of
renormalization constants [cf. (2.14)], and then inserting
the result back into (4.21), we obtain for the rhs of (4.20)
that

�n
R@R�

R
�n�xR; R;�� � �n�@R�ZR��@��n�x; ;�; ��

� Zn=2
� �n

R�@RZx�xR@x

 ��n�x; ;�; ��

� n�n
R�@R lnZ

1=2
� ��R

�n�xR; R;��;

(4.22)

which is equivalent to the identity

@R�
R
�n�xR; R;�� � Zn=2

� �@R�ZR��@��n�x; ;�; ��

� Zn=2
� �@RZx�xR@x��n�x; ;�; ��

� n�@R lnZ
1=2
� ��R

�n�xR; R;��:

(4.23)

Finally, including  in the parameters x, we may cast (4.23)
into the slightly more compact form:

@R�
R
�n�xR;�� � Zn=2

� Z@��n�x;�; ��

� Zn=2
� �@RZx�xR@x��n�x;�; ��

� n�@R lnZ
1=2
� ��R

�n�xR;��: (4.24)

A similar line of arguments can be followed, if xR depends
on R. In this case, the factor �@RZx�xR contained in the
second term on the rhs of (4.24) should be replaced with
@R�ZxxR�, for xR � R.

We may now rely on the D formalism to express the rhs
of (4.24) entirely in terms of renormalized parameters. In
this way, we obtain the deformed NI

@R�
R
�n�xR;�� � Zn=2

� Zhe
DSI��@���n�xR;�;�; ���i

� Zn=2
� �@RZx�xRhe

D@xR��n�xR;�; ��i

� n�@R lnZ
1=2
� ��R

�n�xR;��: (4.25)

Notice that, up to an overall constant, only the first term on
the rhs of (4.25) can be related to the undeformed, un-
renormalized NI (4.18), where the 1PI Green functions
involved are evaluated with renormalized parameters.
The appearance of the other terms is a consequence of
the renormalization process. We emphasize that, unlike
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earlier formal treatments [26], Eq. (4.25) furnishes for
the first time the precise closed and, in principle, calculable
expression for the deformations of the NI.

It is interesting to remark that even the action of the
operator eD present in the first term on the rhs of (4.25)
gives rise to further deformations. To make this last point
more explicit, we first observe that the action of the D
operator in (4.25) is actually equivalent to the action of a
reduced operator ~D, without the field derivatives, i.e., ~D �
D�

P
i��i@=@�iR. Making use of this last observation,

we decompose eD, or equivalently e ~D, as e ~D � 1� �e ~D �
1�. Subsequently, noticing that the operators ~D and SI�

commute, i.e., � ~D;SI�� � 0, the first term on the rhs of
(4.25) can be rewritten, up to the multiplicative factors

Z
n
2
�Z, as
heDSI��@���n�xR;�;�;���i�hSI��@���n�xR;�;�;���i

�hSI���e
~D�1�@�

��n�xR;�;�;���i: (4.26)
Thus, only the first term can be expressed in terms of the
undeformed, unrenormalized NI of (4.18), whereas the
second one is an additive deformation of the NI that results
in from a BRS variation of another function [26].

The generalization of (4.25) to Green functions involv-
ing different types of fields is straightforward [53], and
reads
@R�
RQ
i

�
ni
i

�xR;��

�
Y
i

Zni=2
�i

Zhe
DSI��@��Q

i

�
ni
i
�xR;�;�; ���i

�
Y
i

Zni=2
�i

X
x

�@RZx�xRheD@xR�
Q
i

�
ni
i
�xR;�; ��i

�
X
i

ni�@R lnZ
1=2
�i

��RQ
i

�
ni
i

�xR;��: (4.27)
In order to get a feel on the structure of Eq. (4.27), let us
apply it to the lowest nontrivial order. Expanding consis-
tently, according to the D formalism, we obtain the follow-
ing one-loop result:
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@R�
R�1�Q
i

�
ni
i

�xR;���@R�
�1�Q
i

�
ni
i

�xR;�;���
X
i

ni
2

�@RZ
�1�
�i
��R�0�Q

i

�
ni
i

�xR�

�

�X
i

ni
2
Z�1�
�i
�Z�1�

 �
X
x

Z�1�
x xR@xR

�

@R�
�0�Q
i

�
ni
i

�xR�

�
X
x

�@RZ
�1�
x �xR@xR�

�0�Q
i

�
ni
i

�xR�; (4.28)

where the first term is the one-loop NI of (4.17), with the
simple replacement of bare parameters by renormalized
ones.

A further simplification of the formulas above occurs in
a gauge-invariant renormalization scheme, such as the MS
scheme. In this case, all terms proportional to @RZx, for
which x is related to a gauge-invariant operator (e.g., a
gauge-coupling constant or a gauge-invariant mass pa-
rameter), will drop out from the rhs of (4.27), as their
multiplicative renormalization constants will be R
independent.
V. THE ABELIAN-HIGGS MODEL IN THE
HLET-PRESERVING GAUGES

In this section we will discuss the Abelian-Higgs model
quantized in the type of gauges that preserve the Higgs-
boson low-energy theorem (HLET). The Lagrangian defin-
ing the model is given by

L � LI �LGF �LFP: (5.1)

Here LI is the gauge-invariant part of the Lagrangian

LI��
1

4
F��F����D�����D����m2���

�������2�
X
i

�fLi �i4
�D��f

L
i

�
X
i

�fRi �i4
�@��f

R
i �

���
2

p
h1 �f

L
1�fR1 �

���
2

p
h2 �f

L
2�

�fR2

�
���
2

p
h1 �fR1�

�fL1 �
���
2

p
h2 �fR2�fL2 : (5.2)

In (5.2), F�� � @�A� � @�A� is the U�1�Y Field strength
tensor, D� � @� � igYA� is the corresponding covariant
derivative, and

� �
1���
2

p �v�H � iG� (5.3)

is the complex Abelian-Higgs field, composed from the
two real fields H and G, where h�i � v=

���
2

p
is its VEV that

signifies the spontaneous symmetry breaking of U�1�Y .
The hypercharge quantum numbers of the different fields
are assigned according to Y� � 1, YL

1 � �YL
2 � 1, and
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YR
1 � YR

2 � 0. For simplicity, we finally assume that the
Yukawa couplings hi are real.

For the gauge-fixing term LGF in (5.1), we will adopt the
one introduced in [27,34], i.e.,

L GF � �
6
2

�@�A
� � gIm��2��2

� �
6
2

�@�A� � g�v�H�G�2; (5.4)

which in turn induces the Faddeev-Popov ghost term

L FP � � �c�@2 � 2g2Re��2��c

� � �cf@2 � g2��v�H�2 �G2�gc: (5.5)

Notice the presence of the two GFPs,  and 6. The gauge-
fixing scheme described by LGF and the BRS-induced
ghost term LFP (which will be referred to as the R

scheme), in addition to the technical advantages mentioned
in [27], belong to the special class of schemes which
respect the so-called HLET [28–32] for off-shell unrenor-
malized Green functions beyond the tree level [34] (see
also our discussion below). The reason is that the complete
Lagrangian, including the gauge-fixing and ghost sectors,
is invariant under the translational transformation [34]:

H ! H � a; v ! v� a: (5.6)

For example, the conventional R gauge, described by the
gauge-fixing term,

L R
�

1

2

	
@�A� �

1���
2

p gv Im���



2
; (5.7)

violates this translational symmetry (5.6) due to its explicit
dependence on v. As a consequence of this violation, the
HLET given below by (5.10) is no longer valid beyond the
tree level.

The translational symmetry (5.6) is sufficient to show
the validity of the HLET to all orders. As a result of this
symmetry, the entire effective action I��H; v� (where we
suppress all other fields and parameters) satisfies the iden-
tity

I ��H; v� � I��H � a; v� a�; (5.8)

which immediately implies the translational Ward identity

�I�
�H

�
@I�
@v

: (5.9)

In general, upon n functional differentiations with respect
to the field H, we obtain the HLET for off-shell (unrenor-
malized) n-point 1PI Green functions �Hn :

�Hn�1 �
@�Hn

@v
: (5.10)

In the above formula, the Higgs-boson insertion in �Hn�1 is
evaluated at zero momentum. This result should be con-
trasted with the one obtained in the R gauge, in which the
-11



BINOSI, PAPAVASSILIOU, AND PILAFTSIS PHYSICAL REVIEW D 71, 085007 (2005)
HLET described by the relation (5.10) will be grossly
violated by gauge-mediated quantum effects [34].

The translational identity (5.9) has an immediate con-
sequence on the way the Higgs VEV is renormalized. The
most general way of renormalizing v is given by [36,37]

v � ZvvR � Z1=2
H �vR � �v�: (5.11)

It should be remembered that �v differs from �v defined
previously in (2.14), since �v � �Zv � 1�vR. The quantity
�v may be split into two parts: one part that contains the
divergent contribution proportional to 1=�, to be denoted
by �vjdiv, and a finite, renormalization-scheme dependent
piece, to be denoted by �vjfin, i.e., �v � �vjdiv ��vjfin.
The crucial point is that if the HLET is exact, then one must
have that �vjdiv � 0. To prove this, we observe that the
Higgs tadpole �H and the effective potential �, by virtue of
(5.9), satisfy the equality �H � @v�. Given that �R

H �

Z1=2
H �H, we find

�R
H � Z1=2

H @v� � Z1=2
H Z�1

v @vR
� � Z1=2

H Z�1
v @vR

�R;

(5.12)

where in the last step we have used the fact that
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��x;�; �� � �R�xR;��. Therefore we get the condition

Z1=2
H Z�1

v � cfin; (5.13)

where cfin is an UV finite constant. In perturbation theory,
this finite constant may be decomposed as cfin � 1� �cfin,
where �cfin is a higher-order scheme dependence. In the
MS scheme, the multiplicative renormalization constants
have no UV finite pieces, so that one would get unavoid-
ably cfin � 1, with �cfin � 0, and therefore Z1=2

H � Zv,
which is equivalent to �vjdiv � 0 to all orders, with v �

Z1=2
H vR. In other renormalization schemes, one needs to

impose that (5.10) holds true after renormalization, so that
again cfin � 1; this can be done without intrinsic incon-
sistencies in the HLET-preserving gauges, by imposing
that Z1=2

H � Zv, even for the UV finite pieces.
In the remainder of the section, we will present the

Lagrangian of the Abelian-Higgs model, after the SSB of
U�1�Y . This will enable us to set up the stage for the two-
loop calculations related to the issue of gauge dependence
of tan�, which will be discussed in the next section. The
full Lagrangian of the U�1�Y model after SSB may be
written down as a sum of four terms:
L 0 � �
1

4
�v4 �

1

2
m2v2; L1 � ���v3 �m2v�H;

L6
2 �

1

2
�@�H�2 �

1

2
�3�v2 �m2�H2 �

1

2
�@�G�

2 �
1

2
���� 6g2�v2 �m2�G2 �

1

4
F��F

�� �
6
2

�@�A
��2

�
1

2
g2v2A�A� � �6� 1�gvG�@�A�� � @� �c@�c� g2v2 �cc�

X
i

�fi�i4�@� � hiv�fi;

L6
3;4 � �

1

4
�H4 � �vH3 �

1

2
��� 6g2�H2G2 � ��� 6g2�vHG2 �

1

4
�G4 � g2vHA�A� �

1

2
g2H2A�A�

�
1

2
g2G2A�A

� � �6� 1�gGA��@
�H� � �6� 1�gHA��@

�G� � 2g2vH �cc� g2H2 �cc� g2G2 �cc

� gA�
X
i

�fiYL
i 4�PLfi �

X
i

hi �fiHfi �
X
i

YL
i hi �fi45Gfi;

(5.14)
where all the fields and parameters are bare. Observe that
6 � 1 is the only value that avoids the appearance of
mixed propagators between the would-be Goldstone boson
G and the gauge boson A�. We will therefore renormalize
the model by imposing the latter condition on the renor-
malized GFP 6R, i.e., 6R � 1. This condition becomes
rather subtle at two loops, and especially when the D
operator is applied after integration, in which case one
needs to keep the (one-loop) full dependence on 6 in all
the quantities under study. However, as we already men-
tioned, our calculational task may considerably be simpli-
fied if the D formalism is applied before the integration of
the loop momenta.

In the HLET-preserving gauges, the propagators take on
the following form:
DH�k� �
i

k2 �m2
H

; DG�k� �
i

k2 �m2
G

;

Dc�k� �
i

k2 �m2
c
;

����k� �
i

k2 �m2
A

	
�g�� �

�
1�


6

� k�k�
k2 � 1

6m
2
c



;

Si�k� �
i

6k�mi
; (5.15)
where the particle masses are related to the independent
parameters of the theory through
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m2
A�g2v2; m2

H�3�v2�m2;

m2
G����6g2�v2�m2; m2

c�m2
A; mi�hiv:

(5.16)

The complete set of Feynman rules is finally given in Fig. 6
of the appendix.

VI. GAUGE DEPENDENCE OF tan� AT TWO
LOOPS

In models with two elementary Higgs bosons, H1 and
H2, one of the fundamental parameters is the ratio of their
vacuum expectation values, v1 and v2, respectively
[40,41]. In particular, the quantity usually denoted as
tan�, is defined at tree level as tan� � v2=v1. When
quantum corrections are included tan� develops a non-
trivial dependence on the renormalization mass �, as well
as on the unphysical GFP. Given that tan� is extensively
used in parametrizing new physics effects in many popular
extensions of the standard model, such as two-Higgs mod-
els and almost all supersymmetric versions, this type of
gauge dependence is an undesirable feature. Various stud-
ies have therefore addressed the question under which
conditions a gauge-independent definition of the running
tan� could become possible [42,43].

In studying these issues, there appears to be a subtle
interplay between being able to set �vjdiv � 0 and show-
ing that the difference 4H1

� 4H2
of the anomalous dimen-

sions is independent of the GFP. In this section we will
explore in detail this connection, and demonstrate that,
contrary to what one might naively have expected, it is
not possible to establish the gauge independence of 4H1

�

4H2
, at least not within a conventional field-theoretic

framework.
The basic observation which suggests a link between the

gauge independence of tan� and �vjdiv � 0 is the follow-
ing. If �vijdiv � 0, for i � 1; 2, then vi � Z1=2

Hi
viR, and

therefore tan� renormalizes as

tan� �
v2

v1
�

Z1=2
H2

Z1=2
H1

v2R

v1R
�

Z1=2
H2

Z1=2
H1

tan�R: (6.1)

The renormalization group equation for tan�R is thus given
by

d tan�R

dt
� �4H2

� 4H1
� tan�R; (6.2)

where t � ln�, and 4Hi
� � 1

2 �d=dt��lnZHi
� is the anoma-

lous dimension of the Higgs field Hi. If at this point one
could show that, in the class of gauges where �vijdiv � 0,
the difference �4H2

� 4H1
� is GFP independent, one would

have a solution to the problem. The crucial point in this
argument is precisely that the two conditions need be
satisfied simultaneously. Indeed, having a gauge-fixing
scheme where �4H2

� 4H1
� is GFP independent does not
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imply, by virtue of (6.2), the GFP independence of tan�R,
unless one could demonstrate that, within the same
scheme, one is also able to set �vijdiv � 0; if the latter
condition cannot be enforced the renormalization group
equation that tan�R satisfies is simply not that of (6.2),
since the starting assumption is not valid. Satisfying both
conditions simultaneously is far from trivial. In fact, as we
will see in detail, in the context of both the R and the
HLET-preserving R gauges, these two conditions cannot
be simultaneously met, for different reasons. Specifically,
in the R gauges each of the two-loop anomalous dimen-
sion 4Hi

, consists of two pieces: (i) a gauge-dependent
O�g4� polynomial, common to both, and (ii) a gauge-
independent O�h2g2�, which is different for H1 and H2.
Thus, in taking the difference �4H2

� 4H1
�, one finds a

GFP-independent answer for this quantity [42]. However,
since the R gauges are not of the HLET-preserving type,
one cannot set �vijdiv � 0, and therefore (6.2) receives
additional (gauge dependent) contributions. On the other
hand, the R gauge preserves the HLET by construction,
and one may set �vijdiv � 0, thus enforcing the validity of
(6.2); however, as we will see in detail in what follows, the
two-loop calculation reveals that, in these latter gauges,
�4H2

� 4H1
� is in fact GFP dependent.

In order to demonstrate this, it is actually sufficient to
consider the Abelian-Higgs model, despite the fact that it
contains only one Higgs field. The rationale is that in the
context of R gauges the O�h2g2� contributing to the
Higgs-boson anomalous dimension turns out to be GFP
dependent. Therefore, given that, in general, each Higgs
boson couples differently to the fermions (i.e., the corre-
sponding Yukawa couplings are independent parameters),
even if there were a second Higgs boson, this gauge
dependence could not in general cancel in the difference
�4H2

� 4H1
�.

In the rest of this section we will prove the gauge
dependence of the O�h2g2� contributions to 4�2�

H . To that
end, we will employ two independent, but complementary,
approaches. In the first approach we will exploit the
validity of the HLET in the R gauges in order to
eventually obtain the (nonvanishing) first derivative of
Z�2�
H with respect to  from the two-loop effective potential,

without actually computing Higgs-boson self-energies.
Second, we will explicitly compute Z�2�

H from the corre-
sponding two-loop diagrams. Since for determining Z�2�

H
one needs to consider only the divergent terms proportional
to the external momentum q2, whereas terms whose
dimensionality is saturated by masses do not contribute
to Z�2�

H , one may carry out the calculation in the symmetric
phase, when v � 0. In both approaches we will employ
the D formalism developed in the previous sections in
order to enforce the necessary cancellations of the over-
lapping divergences, without explicit reference to CT
diagrams.
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Let us first write down how the relevant Green functions renormalize. From the second equation of (2.11), one finds the
following relations:

i�ZHZm2m2
R � Z2

HZ��Rv
2
R�

�2�vR � fD�1���1�
H �xR;�; �� � ��2�

H �xR;�; ��gj6R�1;

i�ZHZm2m2
R � 3Z2

HZ��Rv2
R�

�2� � fD�1���1�
H2�xR;�; �� � ��2�

H2�xR;�; ��gj6R�1;

6i�Z2
HZ��

�2��RvR � fD�1���1�
H3�xR;�; �� � ��2�

H3�xR;�; ��gj6R�1;

6i�Z2
HZ��

�2��R � fD�1���1�
H4�xR;�; �� � ��2�

H4�xR;�; ��gj6R�1;

(6.3)
where xR collectively denotes all the renormalized parame-
ters of the model, and, according to our definitions, the
one-loop displacement operator is given by

D�1� �
1

2
Z�1�
H vR

@
@v

� Z�1�
� �R

@
@�R

� Z�1�
m2m2

R

@

@m2
R

� Z�1�
g gR

@
@gR

� Z�1�
 R

@
@R

� Z�1�
6 6R

@
@6R

�
X
i

Z�1�
hi
hRi

@

@hRi
�

n
2
Z�1�
H ; (6.4)

with n the number of external Higgs legs. We emphasize
that the above equations are not independent from each
other, since, due to the HLET, they are related by succes-
sive differentiation with respect to v. Notice also that, on
the rhs of (6.3), all overlapping divergences should cancel,
a fact which furnishes a very stringent check of the entire
calculation. From the above equations one can infer the
gauge dependence of the Higgs wave-function renormal-
ization constant at two loops. Specifically, expanding the
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last equation of (6.3), we find

2Z�2�
H �Z�2�

� ���Z�1�
H �2�2Z�1�

H Z�1�
� �

i
6�

fD�1���1�
H4�xR;�;��

���2�
H4�xR;�;��gj6R�1: (6.5)

Differentiation with respect to , taking into account that,
in the MS scheme that we are using, Z� is GFP indepen-
dent, yields the following identity

�
@
@

Z�2�
H ��Z�1�

H �Z�1�
� �

@
@

Z�1�
H �

i
12�

@
@

fD�1���1�
H4�xR;�;��

���2�
H4�xR;�;��gj6R�1: (6.6)

One may easily verify that similar equations can also be
obtained starting from any of the first three equations of
(6.3).

Because of the HLET, from the diagrams contributing to
the effective potential we can extract information about the
Higgs tadpole, mass, tri- and quadrilinear couplings, by
simply differentiating with respect to v. Moreover, since
we are interested only in the contributions which depend
on the Yukawa couplings, we only need to consider the
two-loop fermionic effective potential contributions,
shown in Fig. 4. Introducing the integrals
Kijk � �2�
Z ddk

�2��d
Z dd‘

�2��d
1

�k2 �m2
i ��‘

2 �m2
j ���k� ‘�2 �m2

k�
� �

1

�4��4
X

n�i;j;k

m2
n

	
2

�2
�

2

�

�
ln
m2

n

��2 �
3

2

�

� . . . ;

Lij � �2�
Z ddk

�2��d
Z dd‘

�2��d
1

�k2 �m2
i ��‘

2 �m2
j �

� �
1

�4��4
m2

i m
2
j

	
4

�2
�

2

�

�
2� ln

m2
i

��2 � ln
m2

j

��2

�

� . . . ;

(6.7)

where ln ��2 � ln�4��2� � 4E, and the dots stand for finite parts, one finds

�a�jH � �
i
2
h2i d

	
LHfi �

1

2
Lfifi �

�
2m2

i �
1

2
m2

H

�
KHfifi



; �a�jG � � i

2h
2
i d
	
LGfi �

1
2Lfifi �

1
2m

2
GKGfifi



;

�b� � �i
g2

4
d�d� 2�

	
LAfi �

1

2
Lfifi �

�
m2

i �
1

2
m2

A

�
KAfifi



�

i
4
h2i d�m

2
AKafifi �m2

cKcfifi�:
(6.8)

The contributions to ��2�
H4 which depend on the Yukawa couplings are simply obtained by differentiating the above

expressions 4 times with respect to v. As far as the term D�1���1�
H4 is concerned, one can use the results of Appendix A for the

one-loop effective potential and renormalization constants (notice that in this case, one cannot limit one’s attention to the
fermionic contributions only, due to the dependence on the Yukawa couplings of the renormalization constants).
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fi
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FIG. 4. The two-loop fermionic contribution to the effective
potential. Because of the HLET, differentiation with respect to
the Higgs VEV v provides the one-, two-, three- and four-Higgs
Green functions (at zero momentum).
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The combination of these two terms leads to a massive
cancellation, yielding finally

@
@

Z�2�
H;hi

� �
2g2

�4��4�

X
i

h2i ; (6.9)

thus establishing the GFP dependence of Z�2�
H;hi

in the R

gauges.
As a check for the consistency of the procedure, we can

evaluate the full two-loop Higgs wave-function renormal-
ization constant Z�2�

H of our model, through the direct
calculation of the relevant Feynman diagrams of the
Higgs-boson self-energy, shown in Fig. 5. As mentioned
earlier, we will calculate in the symmetric phase, v � 0,
keeping only contributions proportional to the Yukawa
couplings hi

We will use directly the D formalism to explicitly check
that all overlapping divergences cancel, and to get the
fermionic contributions to Z�2�

H through the formula

Z�2�
H �

i
2

@

@p2 fD
�1���1�

H2�xR;�; ��

� ��2�
H2�xR;�; ��gj6R�1;p2�0: (6.10)

Once again one should keep in mind that ��1�
H2 must be

calculated at a general value of 6 [which means that the
(6� 1) part of the A�GH vertex will also contribute]. The
final result is given by
2 ×

fi fi

fi fi

G

A

HH H

FIG. 5. Fermion diagrams contributing g2
P

ih
2
i terms to the two-

symmetric phase.
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��Z�2�
H;hi

�

�2g2�� 4�
P
i
h2i � 8

P
i
h4i

�4��4�
�

8
P
i
h4i

�4��4�2
;

(6.11)

which coincides with (6.9) after differentiating with respect
to . From this expression one can determine the two-loop
anomalous dimension of the Higgs field, which is given by
[54]

4�2�
H � �

1

2

X
n

&nxn
@
@xn

C1
H; (6.12)

where xn denotes collectively the free parameters of the
theory, &n� their mass dimension, and C1

H the coefficient of
the simple pole of the Higgs 1PI self-energy. Therefore

4�2�
H;hi

� �
1

2

�
�

@
@�

�
1

2
g
@
@g

�
1

2

X
i

hi
@
@hi

�
C1
H;hi

�

2g2�� 4�
P
i
h2i � 8

P
i
h4i

�4��4
: (6.13)

Evidently, despite the fact that �v � 0 exactly, the two-
loop running of tan� turns out to be GFP dependent.

VII. CONCLUSIONS

We have developed a new formalism for determining the
renormalization and the GFP dependence of Green func-
tions to all orders in perturbation theory. The formalism
makes use of the fact that the renormalized Green functions
are obtained by displacing both the unrenormalized fields
and fundamental parameters of the theory with respect to
the renormalized ones. Because of this property, we have
called it the displacement operator formalism or, in short,
the D formalism. With the help of this formalism the CTs
necessary for the renormalization of any Green function
can be unambiguously determined, to any given order of
perturbation theory. In particular, if one applies the D
operator before integrating over the loop momenta, one
can systematically generate all the CTs that would have
been obtained in the conventional diagrammatic frame-
work. We explicitly demonstrate the full potential of the
D formalism by considering several known examples of
renormalization of theories up to 2-loops, such as a �4

theory, QED, and QCD in the BFM R gauge.
One of the great advantages of the D formalism is that it

can be used to calculate the precise form of deformation of
G

4 ×
H

G

A

fi

fi

fi

H H

loop Higgs wave-function renormalization constant Z�2�
H in the
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symmetries, which are modified in the process of renor-
malization, such as the NI. Hence, the dependence of the
renormalized Green functions on the renormalized GFPs
can be computed exactly, thereby offering a new method
for evaluating the GFP dependence within a given scheme
of renormalization, e.g., the MS scheme, the OS scheme,
etc. Given that a concrete, closed formula describing the
deformation of the NI to all orders exists now, one should
be able to conclusively settle various formal issues related
to gauge invariance. Most notably, it would be interesting
to revisit the important question of the all-order gauge
invariance of the pole of the unstable particles, together
with other topics related to the gauge-invariant formulation
of resonant transition amplitudes [55].

In theories with SSB, in addition to the Slavnov-Taylor
identities and the NI, the HLET plays an important role as
well. The ordinary R gauge violates the HLET for off-
shell 1PI correlation functions. In order to explore the
constraints imposed by the HLET we have resorted to a
toy field theory with SSB, the Abelian-Higgs model, which
was quantized using a HLET-preserving gauge. An impor-
tant consequence of these gauges is that the VEV v of a
Higgs field renormalizes multiplicatively by the Higgs
wave function, so there is no additional UV infinite shift
to v, i.e. �vdiv � 0. Employing the D formalism in the
context of a HLET-preserving gauge, we have shown that
the fundamental quantity tan�, defined in the two-Higgs
models, is GFP dependent at two loops, exactly as happens
for the usual R gauge, in which there exist additional UV
infinite shifts to the Higgs VEVs. The analysis presented
here strongly suggests that the tan� cannot be made gauge
independent within the framework of conventional Green
functions, even if the gauge fixing employed respects all
relevant symmetries and constraints, such as the HLET.
These results motivate one to explore the possibility of
defining tan� at higher orders through the GFP-
independent effective Green functions constructed by
means of the pinch technique [56]. In particular, it would
be interesting to extend the concept and construction of the
Higgs-boson effective charge [39] to the case of multi-
Higgs models, and more specifically to supersymmetric
theories. We hope to be able to report progress on this
subject in the near future.

The formulation developed in this article presents novel
perspectives for the study of several other known topics.
Specifically, the D formalism may be used to systemati-
cally investigate the renormalization-scheme dependence
of 1PI correlation functions. It may also be employed to
algebraically determine the restoring terms of a ‘‘bad’’ UV
regularizing scheme, i.e., a scheme that does not preserve
the Slavnov-Taylor identities. Since it provides all-order
information on the renormalization of Green functions
under study, it might be useful in controlling the calcula-
tion of nonperturbative effects, such as those related to the
dynamics of renormalons [57].
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The D formalism can be straightforwardly extended to
systematize the procedure of renormalizing nonrenorma-
lizable field theories. In particular, it may be used to
organize the infinite series of CTs needed to renormalize
such theories. But even in the case of renormalizable
perturbative field theories the D formalism can be auto-
mated, for example, with the aid of a computational pack-
age, to reliably compute all the CTs required for the
renormalization of 1PI correlation functions at high orders.
It would therefore be interesting to explore these new
horizons opening up, embarking into a study of the onset
of nonperturbative dynamics at very high orders of pertur-
bation theory [58].
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APPENDIX A: FEYNMAN RULES AND
RENORMALIZATION OF THE ABELIAN-HIGGS

MODEL

The Feynman rules derived from the Lagrangian density
given in (5.14) are listed in Fig. 6. The model can be
renormalized with the renormalization condition 6R � 1,
by introducing the following renormalization constants:

H � Z1=2
H HR; G � Z1=2

G GR; A� � Z1=2
A A�

R ;

�cc � Zc �cRcR; v � Z1=2
H vR; m2 � Zm2m2

R;

� � Z��R; g � ZggR;  � ZR;

6 � Z66R; fLi � �ZL
i �

1=2fLiR;

fRi � �ZR
i �

1=2fRiR; hi � Zhih
R
i :

(A1)

Notice that left and right fermions get renormalized with
different renormalization constants.

The determination of the renormalization constant
above is simplified, due to the HLET: for example, the
knowledge of the fermion self-energy will automatically
imply the knowledge of the Higgs-fermion-fermion vertex
through the differentiation of the former with respect to the
Higgs vev v (notice that, in this particular case, we would
find immediately that this vertex is one-loop finite within
the HLET gauges).
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TABLE I. The one-loop divergent parts of the Green functions of the Abelian-Higgs model in the HLET-preserving gauge (with
6 � 1).

� i
�4��2�
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2 f�10�

2 � 2g2�� 3g4 � 4
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ih
4
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= hiY
L
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FIG. 6. The Feynman rules for the Abelian-Higgs model in the HLET type of gauge.
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In Table I, we report all the divergent parts for the one-loop Green functions of the model. Using these results, one finds

��ZH � 1�

�6� 2�g2 � 4
P
i
h2i

�4��2�
; ��ZG � 1�

�6� 6�g2 � 4
P
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h2i
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� 10
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2
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; ��Zc � 1;
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20�� 12g2 � 8
P
i
h2i �

6
� g

4 � 8
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P
i
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2

�4��2�
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���=2Zhi � 1�
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P2
j�1 h

2
j

�4��2�
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4�� 4g2 � 28
3 g

2 � 4
P
i
h2i

�4��2�
;

Z6 � 1�

4�� ��6� 6�g2 � 4
P
i
h2i

�4��2�
:

(A2)
(v1)ijk (v2)ij

j

k

ii

j

FIG. 7. Topologies contributing to the two-loop effective po-
tential. i, j, and k labels all the possible field combinations
allowed by the Feynman rules.
Notice that Z1=2
A Zg � 1 as it should due to the Ward

identities of the theory. Combining the divergent parts of
the Green functions given in Table I, together with the
above renormalization constants, one can explicitly check
the validity of the renormalized NI of Eq. (4.28) at one
loop.

The effective potential is particularly useful in the con-
text of the HLET-preserving gauges, furnishing a substan-
tial amount of information with relatively moderate effort
[27]. In dimensional regularization, the one-loop effective
potential reads
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i
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2
� ln
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2
� ln
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�
� 4
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i

m4
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�
1� ln
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��2

�


�
i

2�4��2�

�
m4

H �m4
G � 3m4

A �
m4

c

62

� 2m4
c �

X
i

m4
i

�
; (A3)

where ln ��2 � ln�4��2� � 4E. As stated earlier it is im-
portant to keep explicitly the dependence on 6, since this
will play a crucial role in cancelling the overlapping di-
vergences in our two-loop expressions, when the D formal-
ism is applied after integration.

At two loops, there are two basic topologies contributing
to the effective potential, shown in Fig. 7. It turns out that
all these two-loop diagrams can be expressed in terms of
the integrals Lij and Kijk introduced in Eq. (6.7). In Table II
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we report the results of the (scalar and vector) diagrams.
Using these results in conjunction with Eq. (6.6), one can
obtain the full gauge dependence of the two-loop Higgs
wave-function renormalization and anomalous dimension.
Specifically,

@
@

Z�2�
H �

�2g2
P
i
h2i � 4�g2 � 6g4 � 2g4

�4��4�

�
8�g2 � 24g4

�4��4�2
;

@
@

4�2�
H �

2g2
P
i
h2i � 4�g2 � 6g4 � 2g4

�4��4�
:

(A4)

We end by reporting for completeness the full two-loop
Higgs wave-function renormalization and anomalous di-
mension:
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TABLE II. Scalar and vector two-loop contributions to the effective potential (with 6 � 1). The fermionic contributions are given in
Eq. (6.8) of the text.
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