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Hydrogen atom in relativistic motion
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The Lorentz contraction of bound states in field theory is often appealed to in qualitative descriptions of
high energy particle collisions. Surprisingly, the contraction has not been demonstrated explicitly even in
simple cases such as the hydrogen atom. It requires a calculation of wave functions evaluated at equal
(ordinary) time for bound states in motion. Such wave functions are not obtained by kinematic boosts
from the rest frame. Starting from the exact Bethe-Salpeter equation we derive the equal-time wave
function of a fermion-antifermion bound state in QED, i.e., positronium or the hydrogen atom, in any
frame to leading order in �. We show explicitly that the bound state energy transforms as the fourth
component of a vector and that the wave function of the fermion-antifermion Fock state contracts as
expected. Transverse photon exchange contributes at leading order to the binding energy of the bound
state in motion. We study the general features of the corresponding fermion-antifermion-photon Fock
states, and show that they do not transform by simply contracting. We verify that the wave function
reduces to the light-front one in the infinite momentum frame.
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I. INTRODUCTION

Bound state wave functions are usually considered only
in their center-of-mass frame, where rotational symmetry
may be fully exploited. In the study of scattering ampli-
tudes involving several bound states one needs, however, to
know the wave functions in arbitrary Lorentz frames.
Center-of-mass wave functions are commonly defined at
equal time t � 0 of the constituents, and are nontrivially
related to equal-time wave functions in motion since the
relative time is boost dependent [1]. Consequently, the
Hamiltonian does not commute with the boost generators,
causing the boost to be as complicated as solving the bound
state equation directly in the new frame.

One manifestation of the nontrivial boost dynamics is
the expectation, based on classical relativistic physics, that
the equal-time wave function of a bound state in motion
will be contracted in the direction of motion. High energy
hadron scattering is thus often pictured as collisions be-
tween Lorentz-contracted pancakes. This is necessarily a
qualitative description since we are far from being able to
calculate the wave function of a hadron even in the center-
of-mass frame. However, it is surprising that the equal-time
wave functions of much simpler bound states, such as the
hydrogen atom, have apparently only been considered in
the rest frame.

The hydrogen atom is a nonrelativistic state (at leading
order in the fine structure constant �) and the calculation of
its wave function is one of the first exercises in courses on
quantum mechanics. When the atom is in relativistic mo-
tion we must, however, make use of the full machinery of
relativistic field theory. The excitation energies of Fock
states with additional particles (electron-positron pairs, or
photons) may be much less than the energy of the bound
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state. Hence the contributions of such higher Fock states
must be carefully considered. As we shall see below, the
exchange of transverse photons indeed contributes at lead-
ing order to the binding of hydrogen in motion. This is not
unexpected, as a boost of the Coulomb potential leads to a
transverse electromagnetic field.

The Lorentz contraction of 3� 1 dimensional wave
functions in gauge field theories has apparently not been
demonstrated previously. In [1] a Lorentz contracting wave
function of a two body QED bound state is represented as
an approximation valid for small boosts. The frame depen-
dence of bound state wave functions has been studied in
various models, see, for example, [2–4]. In [5,6] Lorentz
contraction is obtained for a fermion pair interacting via a
� potential. There has also been other interesting work on
the Lorentz covariance of two body equations [7,8].

It is reasonable to expect that the equal-time wave
function of the hydrogen atom (or positronium) can be
evaluated analytically in any frame to leading order in �.
We find that the wave function of the e�e� Fock state
indeed contracts as expected from classical relativity. The
probability of the e�e�� state is of O���, which reflects
the relative scarceness of photon exchange in the weak
coupling limit. The photon amplitude does not classically
contract, however. More generally, quantum fluctuations
are unlikely to obey classical transformation laws.

Rather than trying to boost the well-known rest frame
wave function of positronium we time order and solve its
Bethe-Salpeter equation [9] for an arbitrary momentum of
the bound state. We generalize our previous 1� 1 dimen-
sional calculation [10] by including the transverse photons
which contribute in 3� 1 dimensions. The equal-time
formalism is of necessity Lorentz noncovariant—never-
theless we shall see that the bound state energy transforms
as the fourth component of a Lorentz vector. We study the
properties of the transverse photon distribution and show
-1  2005 The American Physical Society
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that it agrees with the light-front result in the limit of an
infinitely large bound state momentum.
II. WAVE EQUATION FOR THE HYDROGEN ATOM
IN MOTION

We calculate here the equal x0 wave function for a (3�
1 dimensional) fermion-antifermion bound state in the
weak coupling limit �� 1 of QED in any Lorentz frame.
We will follow closely the procedure of [10] in 1� 1
dimensions: the Bethe-Salpeter bound state equation is
solved to leading order in � but to all orders in jPj=m.
Here P is the total momentum of the system and the
fermion masses m are taken to be equal for notational
simplicity. We use Coulomb gauge (k �A � 0�, but also
check that the result holds in Feynman gauge. In Coulomb
gauge the unphysical photon polarization states are absent
and the contribution from physical, transverse polariza-
tions is best seen.

Our starting point, the Bethe-Salpeter equation, is de-
fined as shown in Fig. 1. The propagator S is the summed
propagator including all radiative corrections. The interac-
tion kernel K includes all two-particle irreducible interac-
tion diagrams, i.e., diagrams that cannot be split into two
interaction graphs just by cutting two fermion lines. It is
amputated such that it does not include the outgoing or
incoming fermion propagators which are included in S.
The Bethe-Salpeter wave function �P is defined as the
projection of the bound state onto a fermion-antifermion
state

�P�p��� �
Z
d4xeix�ph�jTf � ��0� ��x�gjP�i (1)
where P is the total momentum, p is the four momentum of
the fermion, h�j is the vacuum of QED and � represents all
discrete quantum numbers of the bound state jP�i (such as
spin and orbital angular momentum).

As in [10], we work in a time-ordered formalism where
the Fock space structure of K and �P is seen explicitly.
The time-ordered rules are obtained by taking a Fourier
transform over p0. The fermion propagator has forward
and backward moving parts in �t;p� space
= K SΨP ΨP
P

p

P − p

pk

FIG. 1. The Bethe-Salpeter equation. The blobs represent the
wave function �P, K is the interaction kernel and S is the two-
particle propagator.
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SF�t;p� 
Z dp0

2�
exp��itp0�

i
p6 �m� i�

� �t����p� exp��itEp� ���t�����p�

� exp�itEp� (2)

where Ep �
������������������
p2 �m2

p
and the projection operators ��

are defined by

���p� 
��0Ep � � � p�m

2Ep
: (3)

Similarly, the photon propagator in �t;p� space reads in
Feynman gauge

D��
F �t;p� � �

g��

2jpj
��t� exp��ijpjt� ���t�

� exp�ijpjt��: (4)

In Coulomb gauge (p �A � 0) we have an instantaneous
contribution from the D00 component

D00
C �t;p� � ��t�

i

p2 ; Di0
C � D0i

C � 0;

Dij
C�t;p� �

�
�ij �

pipj

p2

�
1

2jpj
��t� exp��ijpjt� ���t�

� exp�ijpjt��: (5)

In the usual time-ordered perturbation theory one integra-
tes over all time differences from zero to infinity. The
integrals give energy denominators which are denoted by
vertical cuts in the Feynman diagrams in the following
sections.

In the center-of-mass frame of positronium the scale of
the internal momenta and the scale of the binding energy or
the potential energy are

jpj � �m; �E� V � �2m; (6)

respectively. For a moving system we define the relative
momentum by

q  p� P=2: (7)

We expect the transverse components of q and of the
photon momentum k to be the same order as in the rest
frame (6), whereas the longitudinal components and the
energy differences will be affected by the contraction,

qk � kk � ��m; jq?j � jk?j � �m;

�E� ��1�2m
(8)

where � 
������������������������
P2 � �2m�2

p
=2m is the boost parameter of the

bound state (to lowest order in �).
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FIG. 2. Time-ordered single photon exchange diagrams which
arise from the interaction kernel K of Fig. 1. (a) The instanta-
neous Coulomb interaction Ka

�. (b) The exchange of a transverse
photon Kb

�. Time flows to the right.
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A. Structure of the interaction kernel

Next we will identify the leading contributions to K
using time-ordered diagrams in the weak coupling limit.
We will see that they arise from the single photon exchange
part of K which involves only Fock states with one addi-
tional photon. The radiative corrections to the fermion
propagators which are included in S of Fig. 1 renormalize
the mass and change the off-shell dependence of the
propagator. In a nonrelativistic bound state the constituents
are nearly on-shell. Hence to leading order in � these
effects are accounted for by using the physical mass m in
the propagator (2).

When iterated the Bethe-Salpeter equation (Fig. 1) gives
the wave function as an infinite ladder diagram with rungs
composed of the kernel K. We will time order the ladder
and analyze its blocks. We work here in Coulomb gauge,
but it is easy to check that the results are gauge
independent.

Let us first analyze the single photon exchange diagrams
(Fig. 2). Using time-ordered Feynman rules in Coulomb
gauge, we have

Ka
��

i
E�Ep�EP�p

Z d3k
�2��3

i

k2����p�ie�0���p�k�

����P�p�k�ie�0���P�p�

Kb
��

i
E�Ep�EP�p

Z d3k
�2��3

1

2jkj
i

E�Ep�k�EP�p�jkj

�

�
�ij�

kikj

k2

�
���p�ie�i���p�k�

����P�p�k�ie�j���P�p� (9)

where � denotes a direct product between the Dirac spaces
of the fermions. For the energy denominators arising from
the cuts of Fig. 2 we have [using (7) and (8)]1

�EF  E� Ep � EP�p ��E� �2m��1 (10)

�EI  E� Ep�k � EP�p � jkj

� E� Ep � EP�p � �Ep � Ep�k � jkj�

� �Ep � Ep�k � jkj� � �m��1: (11)

From (10) we have for the energy differences �EF ’
��EI: for the excitation of one photon we need an energy
O�1=�� higher than the binding energy in all frames.
Correspondingly, for the time scales �tI=F  1=�EI=F
we have �tI ’ ��tF. Hence transverse photon exchange
is a rare event in the weak coupling limit: The probability
of finding the bound state in an excited Fock state should
1We will see that the scaling behavior ��1 of �EF is an exact
result whereas �EI / �

�1 holds for kk > 0. For kk < 0 we
would have �EI � ��m. This reflects the fact that for �� 1
backward moving photons are suppressed, see Sec. III.
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be the ratio of the two time scales and thus ��. This
expectation will be confirmed in Sec. IV.

In Fig. 2 and in the above analysis we assumed that all
the fermions move forward in time. However, the fermion
propagator (2) also contains a backward moving compo-
nent. Its inclusion leads to ‘‘Z graphs’’ involving pair
production which are suppressed in the nonrelativistic limit
due to large energy denominators.

Let us pay attention to the coupling structure appearing
in (9). Recalling the definition of �� in (3), we use the
property f��; ��g � 2g�� to write

���p� k������p� � ���p� k�
�
p�

Ep
����p���

�
:

(12)

Using ���p����p� � 0 and the results (7) and (8) we can
estimate

���p� k����p� � O�jkj=E� � O���

p�

Ep
�
P�

E
�O��� (13)

where P0 ’ E 
������������������������
�2m�2 � P2

p
. Inserting (13) into (12) we

have

���p� k������p� � ���p� k�
P�

E
�O���: (14)

A similar analysis for the antifermion coupling reveals that
at leading order we may replace

�����p� !
P�

E
���P� p��� ! �

P�

E
: (15)

Using the above estimates we can see that in a general
frame both diagrams of Fig. 2 are of the same order in �.
Let us first analyze diagram (a). The first factor in Eq. (9)
gives �tF � ���2m�1. Using (15) we have

���p��0 � �0���P� p� �
�
P0

E

�
2
’ 1: (16)

The Coulomb potential gives using (8)
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FIG. 3. Time-ordered two photon exchange diagrams.
Diagrams (a) and (b) arise from iterating the covariant Bethe-
Salpeter equation (Fig. 1) with one photon exchange kernels.
Diagrams (c) and (d) arise from two photon kernels.
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�
Z d3k

�2��3
1

k2 � �
k2
?kk
jkj2

� ��1�2m  V: (17)

Altogether

Ka
� ��tF � V � ���2m�1 � ��1�2m � �0 (18)

where we dropped the k dependent projectors ���p� k�
and ���P� p� k� which belong to a different block of
K � S (see Fig. 1). For diagram (b)�

�ij �
kikj

k2

�
���p��i � �j���P� p�

�

�
�ij �

kikj

k2

�
Pi

E

Pj

E
� �2 k

2
?

k2 �
�2

�2 (19)

where �  jPj=E. The potential contributes

�
Z d3k

�2��3
1

2jkj
i

E� Ep � EP�p�k � jkj

� ��tI
k2
?kk
jkj

� ��2m (20)

and thus

Kb
� � ���2m�1 � �2��2 � ��2m � �2�0: (21)

In particular, due to the couplings (19), the contribution
from transverse photons [Fig. 2(b)] is absent at order �0 in
the center-of-mass frame (� � 0). This is the expected
result: for the hydrogen atom at rest transverse photons
do not contribute at leading order, but appear as spin
dependent interactions at next-to-leading order. The spin
dependent interactions are hidden in the O��� terms of (14)
also when P � 0.

Next we will show that more complicated diagrams
can be neglected in all frames. A representative set of
two photon exchange diagrams is shown in Fig. 3.
Diagram (a) will be included in our approximation.
Diagrams (b) and (d) which include Fock states with two
photons and diagram (c) will be suppressed.

Let us study more closely diagrams (a) and (b).
Diagram (a) simply consists of two separate transverse
photon exchanges of Fig. 2(a), and we have from (18)

Ka
�� � �Kb

��
2 � �4�0: (22)

However, in diagram (b) three of the cuts intersect photon
lines instead of two. Quantitatively, the only difference to
diagram (a) comes from the second cut from the left:

�a�: 1
E�Ep�k�EP�p�k

� ���2m�1 � �tF
�b�: 1

E�Ep�EP�p�k�k0�jkj�jk0j
& ���1m�1 � �tI:

(23)

That is, in diagram (a) the two interactions are separated by
the long time scale �tF, but in diagram (b) both the
interactions must occur within the shorter time scale �tI.
We have
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Kb
�� �

�tI
�tF

Ka
�� � �4� (24)

and the diagram is thus suppressed. The qualitative picture
is that the flight time of a photon is short compared to the
intervals between the exchanges. Thus the probability of
having two photons at the same instant of time is low.
Similar arguments show that diagrams (c) and (d) are also
suppressed.

In the case of positronium the kernel K includes anni-
hilation diagrams with, e.g., one photon as an intermediate
Fock state. Similar arguments as above show that these
graphs are O��2� and thus suppressed in all frames.

We assumed in this section that momenta of order
jk?j � �m (and kk � ��m) dominate the integrations,
which is true at leading order in �. Transverse photons
with softer momenta jk?j � �2m are suppressed by O���
due to the smaller phase space. However, the flight time of
such photons is comparable with the longer time scale �tF.
This allows an arbitrary number of harder jk?j � �m
(transverse or Coulomb) exchanges while the soft photon
is in flight. As the harder interactions are O��0� contribu-
tions, the diagrams similar to the one shown in Fig. 3(c) but
with, e.g., several Coulomb exchanges are in fact all O���.
Such diagrams are known to contribute to bound state
structure at higher orders in the center-of-mass frame [11].

B. Lorentz contraction of the e�e� wave function

Now we are ready to write the bound state equation
(Fig. 1) in time-ordered form with only the leading dia-
grams included. After the Fourier transform over energy,
the relevant wave function is the equal-time wave function

’P�p��� 
Z dp0

2�
�P�p���: (25)

The equation is shown in Fig. 4. The analytic expression
reads
-4
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FIG. 4. The time-ordered bound state equation in the ladder
approximation. The blobs denote the equal-time wave function
’P defined in (25).
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’P�p� �
i

E� Ep � EP�p

Z d3k
�2��3

�

�
i

k2 �
��p�ie�0’P�p� k�ie�0���P� p�

�

�
i

E� Ep�k � EP�p � jkj

�
i

E� Ep � EP�p�k � jkj

�
�

1

2jkj

�
�ij �

kikj

k2

�

����p�ie�i’P�p� k�ie�j���P� p�
�

(26)

where ’P is understood as a 4� 4 Dirac matrix. In par-
ticular, from the property ���� � 0 of the projection
matrices (3) it follows that

���p�’P�p� � 0 � ’P�p����P� p�; (27)

i.e., the wave function (25) has only forward moving
components in the weak coupling limit.

At leading order in � we may use the replacement (15)
to eliminate the Dirac structure. We have

’P�p� �
�e2

E�Ep�EP�p

Z d3k
�2��3

�
1

k2�
1

E2

�
P2�

�P �k�2

k2

�

�
1

2jkj
�

�
1

E�Ep�EP�p�k�jkj

�
1

E�Ep�k�EP�p�jkj

��
’P�p�k� (28)


1

E� Ep � EP�p

Z d3k
�2��3

V�k�’P�p� k� (29)

where E 
������������������������
P2 � �2m�2

p
. The equation thus reduces to a

scalar equation for the forward moving components of ’P.
In comparison with the 1� 1 dimensional equation of
Ref. [10], we now have a contribution from transverse
photon exchange.
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Let us study the sum Ep � EP�p appearing in the de-
nominator of (29). Expanding in the relative momentum q
of (7) we get

Ep�EP�p�E�
1

2��
�q2

?���2q2
k
��O���1�4m� (30)

where �  E=2m and�  m=2. Note that the form of (30)
is consistent with our expectation (8). For the energy
denominators in the transverse part of (28) we get

E� Ep�k � EP�p � jkj � �E� Ep � EP�p�

� �Ep � Ep�k � jkj�

�
P � k
E

� jkj �O���1�2m�

E� Ep � EP�p�k � jkj � �
P � k
E

� jkj �O���1�2m�

(31)

and the potential defined in (29) becomes

1

4��
V�k���

1

k2�
�2k2

?

2k2

�
1

k2��kkjkj
�

1

k2��kkjkj

�
(32)

� �
1

k2 �
�2k2

?

k2�k2
? � ��2k2

k
�

� �
1

�2�k2
? � ��2k2

k
�

(33)

in terms of the parallel and perpendicular components of k
and with �  jPj=E. In particular, the contribution from
the transverse photons [second term in (32)] is proportional
to �2 and vanishes in the center-of-mass frame. Requiring
the potential energy (33) to be commensurate with the
relative kinetic energy in (30) finally verifies our expecta-
tion (8) and the � dependence of the nonleading terms in
(30) and (31).

Let us define the binding energy �M 
������������������
E2 � P2

p
�

2m which should be independent of P. As E� E � �E�
��1�2m, we have

�M � ��E� E� �O��4m�: (34)

Inserting (30), (33), and (34) into (29) we get�
�M�

1

2�
�q2

? � ��2q2
k
�

�
’P�p�

� �
4��
�

Z d3k
�2��3

’P�p� k�
k2
? � ��2k2

k

: (35)

We see that all frame dependence, i.e., the � factors, can be
removed by rescaling kk ! �kk and qk ! �qk. Then the
spectrum is given by the same Schrödinger equation as in
the center-of-mass frame. The e�e� wave function exactly
Lorentz contracts (or expands in k space) in the direction
-5
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of motion. Taking into account the Dirac structure (27), the
result can be written

’P�p��� �
X
s1;s2

u��P=2; s1� �v��P=2; s2�
2EP=2

,s1;s2-P�q� (36)

where u, v are the usual Dirac spinors and -P is given by
Lorentz contracting the usual wave function -CM of the
hydrogen atom at rest:

-P�q� �
1����
�

p -CM�q?; qk=��: (37)

The spin wave function , is normalized as
P
s1;s2 j,s1;s2 j

2 �

1. At leading order in � we were able to replace p and P�
p by P=2 in the Dirac structure of (36).

We finally check that the result (36) is also obtained in
Feynman gauge with the propagator (4). In this gauge the
photon propagator has no instantaneous part and (26)
becomes

’P�p��
i

E�Ep�EP�p

�
Z d3k
�2��3

���p�ie��’P�p�k�ie�����P�p�

�
�1

2jkj

�
i

E�Ep�k�EP�p�jkj

�
i

E�Ep�EP�p�k�jkj

�
: (38)

Using (15), the Dirac structure reduces to a factor ���2.
Further using (31), the potential in Feynman gauge be-
comes

1

4��
V�k� � �

1

�2 �
1

2

�
1

k2 � �kkjkj
�

1

k2 � �kkjkj

�

� �
1

�2�k2
? � ��2k2

k
�

(39)

which is the same result as in Coulomb gauge (33). The rest
of the calculation remains unchanged.
Gγ = G Kγ

(a)

Ψ̄ Ψγ = Ψ̄ Ψ Kγ

(b)

FIG. 5. Derivation of the Bethe-Salpeter equation for the pho-
ton wave function. (a) The generating equation for the five-point
Green function. G is the four-fermion Green function, G� has in
addition a photon insertion and K� is the two-particle irreducible
kernel. (b) The pole contribution giving the Bethe-Salpeter
equation. Arrows on the quark lines were dropped for simplicity.
III. THE e�e�� WAVE FUNCTION

In the preceding section we derived the wave function
for the e�e� Fock state, which is expected to be the
leading component of the bound state in the weak coupling
limit. Now we will analyze the wave function of the e�e��
Fock state: we calculate the distribution of physical, trans-
verse photons in the bound state. We will see that this state
occurs with a probability O���, whereas Fock states with
more photons or e�e� pairs contribute terms of O��2� to
the normalization.

The e�e�� Fock state contributes as an intermediate
state in the derivation of (35), see Fig. 4. However, to
clarify the derivation of its wave function it is best to start
again from the exact covariant formalism: we will briefly
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repeat the analysis of the previous section but now for the
e�e�� Fock state. The photon distribution will be related
to the square of the equal-time wave function of the Fock
state just as in usual nonrelativistic quantum mechanics.
For an analogous calculation on the light-front see [12,13].

Let us define the wave function as a coupling to an
e�e�� state

��P�p; k� 
Z
d4xd4ye�ix��p�k��iy�k

� h�jTf � ��0� ��x�A��y�gjP�i: (40)

A covariant equation analogous to the Bethe-Salpeter
equation connecting �� to the wave function � of (1)
may be derived in a way analogous to the derivation of the
original Bethe-Salpeter equation (see [9,14]). We only
sketch the proof here (see Fig. 5). The five-point Green
function G� satisfies the identity shown in Fig. 5(a) which
may be proved diagrammatically. The kernel K� is defined
to be the sum of all two-particle irreducible diagrams, i.e.,
diagrams which cannot be divided into two separate dia-
grams by cutting two fermion lines. The wave equation is
then obtained by calculating the residues at the pole caused
by the bound state [see Fig. 5(b)], i.e., at P2 � M2, where
P is the total momentum andM is the bound state mass. ��

is simply given by adding the kernel K� to �. Note that K�
cannot have a pole at P2 � M2: this would lead to G�

having a double pole.
Let us move to the time-ordered formalism. The equal-

time wave function for the single photon Fock state may be
defined as

��
P �p;k� 

Z dp0

2�
dk0

2�
��P�p; k�

�
Z
d3xd3ye�ix��p�k��iy�k

� h�j � ��0� ��x�A
��y�jP�ijx0�y0�0

 h�j � ��0� ~ ��p� k� ~A��k�jP�i: (41)
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k
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FIG. 7. The calculation of the e�e�� wave function.
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When time ordered, the interaction K� gives rise to several
graphs of which some are shown in Fig. 6. Diagram (c)
arises in fact as a combination of the lowest order kernelsK
and K�, but will be suppressed since the two photons
overlap in time.

Similarly as in Sec. II Awe find that diagram (a) together
with a similar diagram in which the photon is emitted by
the antifermion gives the leading contribution in �. Thus at
leading order in� the wave function (41) is related to’P of
(25) as shown in Fig. 7. The analytic expression is in
Coulomb gauge

�i
P�p;k� �

i
E� Ep�k � EP�p � jkj

1

2jkj

�
�ij �

kikj

k2

�
� �’P�p�ie�j���p� k�

����P� p�ie�j’P�p� k��: (42)

To find the behavior of �i
P for the scales of k and q which

are relevant in the bound state, we may use the previous
analysis to simplify the expression. Using (10) and (15) we
have

�i
P�p;k� �

e

2k2 � 2�kkjkj

�
Pi

E
�
ki�kk
k2

�
� �’P�p� � ’P�p� k���1�O����: (43)

To give a probabilistic interpretation for the result (43)
we need to define the normalization of the wave functions.
We take the normalization of the bound state to be the
‘‘nonrelativistic’’ one (without a 2E factor) so that

hP0�0 j P�i � �2��3��3��P0 � P���0�: (44)

Then we have

1 �
X
�0

Z d3P0

�2��3
hP0�0 j P�i

�
X
�0

Z d3P0

�2��3
hP0�0j1f �f � 1f �f� � � � � jP�i (45)
(a) (b) (c)

(d) (e) (f)

FIG. 6. Time-ordered diagrams arising from the interaction
kernel K�. (a) is a leading diagram in �.
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where the 1’s are projection operators on different Fock
states,2 e.g.,

1f �f� �
Z d3p1

�2��3
d3p2

�2��3
d3k
�2��3

X
s1;s2;�

cys1�p1�d
y
s2�p2�a

y
��k�j0i

� h0jcs1�p1�ds2�p2�a��k�

� �
X
�;�

Z d3p1

�2��3
d3p2

�2��3
d3k
�2��3

2jkj

� ~ y
��p1� ~ ��p2� ~A

��k�j0ih0j ~ y
��p2� ~ ��p1� ~A��k�

(46)

in terms of the momentum space field operators defined in
(41). Replacing h0j ! h�j and using translation invariance
leads to the correct normalization in the weak coupling
limit

1 �
Z d3p

�2��3
Trf’y

P�p�’P�p�g �
Z d3p

�2��3

�
d3k
�2��3

2jkjTrf��y
P �p;k��P��p;k�g � � � � (47)

where � � � stands for the contribution from higher Fock
states and the trace is over the Dirac indices. The proba-
bility distribution for the Coulomb gauge wave function
(43) (with �0

P � 0) is thus

d6P

d3kd3q
�q;k� 

1

�2��6
2jkjTrf�iy

P �P=2� q;k�

��i
P�P=2� q;k�g

�
�

4�2

�2k2
?

jkj3�jkj � �kk�
2

�
j-P�q� �-P�q� k�j2

�2��3
(48)

expressed in terms of the wave function -P defined in (36)
and (37). Inserting the distribution (48) into the normal-
ization condition (47) and using the estimates (8) we see
that the probability for this higher Fock state is O���. This
is in accord with our above result that �tI=�tF is O���: the
2The contribution from e�e��! �, which is a higher order
correction for a nonrelativistic bound state, is not included in
(46).
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fraction of time that a transverse photon is being ex-
changed is of O���. It is straightforward to repeat the
analysis for even higher Fock states and check that their
probability is O��n� with n � 2.

A. The photon momentum distribution

The distribution (48) may be decomposed into three
parts

d6P

d3kd3q
�

�

4�2

�2k2
?

jkj3�jkj � �kk�2
�

1

�2��3
�j-P�q�j2

� j-P�q� k�j2 � 2Ref-P�q�- 
P�q� k�g�:

(49)

In the square of the wave function (43) the first two terms
correspond to graphs where the photon is emitted and
absorbed by the same particle (see Fig. 7), and the inter-
ference comes from photon exchange. The factor which
multiplies the two-particle wave functions in (49) depends
only on k and is basically the distribution of photons
emitted by a single fermion. As one might expect, each
of the three terms is separately infrared divergent as jkj !
0, but the sum is infrared safe as a consequence of the
charge neutrality of the system. However, there is an
ultraviolet divergence as jkj ! 1 which stems from the
first two terms. For high k the photon wavelength is short,
and its emission is incoherent. The divergence reflects the
distribution of photons emitted from a free electron.
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Above we have used an asymmetric coordinate conven-
tion because of notational simplicity. To better understand
the distribution, we use in this section a more natural,
symmetric convention, where the momenta of the fermion,
the antifermion and the photon are P=2� q� k=2, P=2�
q� k=2 and k, respectively. That is, we shift q ! q�
k=2 and thus redefine

q  p� P=2� k=2 (50)

in the presence of a photon. We furthermore define the
Lorentz contracted momentum variables

k̂ � �k̂?; k̂k�  �k?; kk=��

q̂ � �q̂?; q̂k�  �q?; qk=��:
(51)

In terms of these variables the distribution (48) becomes
[remembering (37)]

d6P

d3k̂d3q̂
�

�

4�2

��2k̂2
?

�k̂2
? � �2k̂2k�

3=2�
�����������������������
k̂2
? � �2k̂2k

q
� ��k̂k�2

�
j-CM�q̂� k̂=2� �-CM�q̂� k̂=2�j2

�2��3
:

(52)

The azimuthally averaged photon distribution, integrated
also over the relative momentum q̂ of the fermions, reads
d2P

dk̂d cos4
 k̂2

Z 2�

0
d’

Z
d3q̂

d6P

dk̂3dq̂3

�
�

4�2

��2�1� cos24�

�1� �2�2 cos24�3=2�
���������������������������������
1� �2�2 cos24

p
� �� cos4�2

�
1

k̂

Z 2�

0
d’

Z d3q̂
�2��3

j-CM�q̂� k̂=2� �-CM�q̂� k̂=2�j2 (53)
where 4 is the angle between P and k̂, ’ is the remaining
azimuthal angle and k̂ � jk̂j. Note that the frame depen-
dence only appears in the angular distribution multiplying
the integrals. An exactly Lorentz contracting distribution
would be completely frame independent when expressed in
terms of the variables (51). The angular distribution is the
same as that of a free particle, e! e� �.

B. The photon distribution for the ground state

The photon distribution (53) is valid for any e�e� bound
state wave function -CM. Let us study the ground state

-�0�
CM�q̂� �

������������
512�

�3m3

s
1

�1� q̂2

��m=2�2
�2
: (54)

For the wave function (54) the integral over q̂ in (53) is
independent of the angles 4 and ’. Thus the 4 and k̂
dependence of the distribution completely factorizes, i.e.,

d2P

dk̂d cos4
�

�
2�

f�cos4�g�k̂� (55)

where the angular dependence is

f�cos4�


��2�1� cos24�

�1� �2�2 cos24�3=2�
���������������������������������
1� �2�2 cos24

p
� �� cos4�2

(56)

and

g�k̂� 
1

k̂

Z d3q
�2��3

j-�0�
CM�q̂� k̂=2� �-�0�

CM�q̂� k̂=2�j2:

(57)
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-1 -0.5 0.5 1
cos Θ

0.5

1

1.5

2

f(cos  )Θ γ β(   ^2)/

FIG. 8. The angular dependence the contracted and integrated
photon distribution (53) in the positronium ground state. The
lines show the angular distribution f�cos4�=���2� [defined in
(56)] for � � 0:001, 0:5, 0:9 and 0:999. For � � 0:001 (solid
line) the distribution is close to the symmetric limit (58). For
� � 0:999 (dotted line) the distribution approaches the limit
(59).

0 0.01 0.02 0.03 0.04 0.05
k/m

0.01

1

100

g(k)

FIG. 9. The radial behavior for the integrated photon distribu-
tion (53). Solid line is the function g�k̂� defined in (57). Dashed
and dotted lines are the contributions to g�k̂� from the regions
q̂ < 0:7�m and q̂ > 2�m, respectively.

-1 -0.5 0.5 1
cos Θ

1

2

3

4

5

d^2 P/dk dcosΘ

FIG. 10. The angular dependence of the integrated photon
distribution (62) for a system with velocity � � 0:999. Solid,
dashed and dotted lines show the angular distribution for k �
0:3�m, �m and 3�m, respectively.
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The dependence of the function f on � in (56) gives the
deviation from exact Lorentz contraction. The angular
dependence is plotted for various values of � in Fig. 8. In
particular, we have

��2f�cos4� ! �1� cos24� as �! 0 (58)

f�cos4� ! 4�cos4�
1� cos24

cos4
as �! 1 (59)

where  is the step function. Thus for large boosts �� 1
almost all of the photons have kk > 0.

Let us study the (frame independent) radial distribution
g�k̂� of (57). For k̂� �m, the interference term is negli-
gible and we have

g�k̂� ’
2

k̂
(60)

so that the distribution falls as 1=k̂ for large k̂. For k̂� �m
we have

g�k̂� ’
1

k̂

Z d3q̂
�2��3

jk̂ � r-�0�
CM�q̂�j

2 �
4k̂

��m�2
(61)

which reflects the decoupling of long wavelength photons
from neutral positronium. The limit of small and large k̂
behaviors found here is similar for excited states of
positronium.

For general values of k̂ the distribution g�k̂� may be
found numerically. It is also possible to study the correla-
tion between the magnitudes of q̂ and k̂ by including a q̂
dependent cut in the integration of (57). This is illustrated
in Fig. 9. Almost all of the long wavelength photons k̂�
�m are present when the size of the fermion system (given
085006
by 1=q̂) is also large. Conversely, soft photon emission by
compact fermion systems is suppressed.

It is also instructive to plot the photon distribution in
terms of the usual (uncontracted) momentum variable k. In
terms of k the integrated photon distribution (53) for the
ground state becomes

d2P
dkd cos4

�
�
2�

�2�1� cos24�

�1� � cos4�2

�
1

k

Z d3q̂
�2��3

j-�0�
CM�q̂� k̂=2�

�-�0�
CM�q̂� k̂=2�j2 (62)

where the integral only depends on k̂ � k
���������������������������
1� �2 cos24

p
.

For �! 0 we have k � k̂ and the distribution (62) co-
incides with the k̂ distribution described above. However,
for large boosts there is a big difference between the
-9



3The result (67) is missing the constraints x < y < 1 which
appear at the light front. They are unimportant in the weak
coupling limit as x� � and the light-front wave functions are
peaked at y ’ 1=2.

4The time dependence in the case of nonrelativistic center-of-
mass motion was given in [9,18].
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distributions. We plot the angular distribution for different
values of k in Fig. 10 for a system with� � 0:999. There is
a drastic difference when compared to the contracted dis-
tribution of Fig. 8. Because of the Lorentz contraction
effect, the distribution is peaked at forward angles, in
particular, for large k.

In our calculation (43) we assumed that k̂� �m. Hence
the results do not necessarily hold for arbitrarily large
values of k̂. However, it is straightforward to check that
the 1=k behavior is consistent with the small z behavior
�1=z of the Weizsäcker-Williams photon distribution
function

f��z� �
�
2�

�
1� �1� z�2

z

�
log

s

m2
e

(63)

which gives the probability of finding a physical, trans-
verse photon with a longitudinal momentum fraction z in a
high energy electron (see, e.g., [15]).

C. High jPj limit

Finally we check that our result for the photon distribu-
tion (48) is compatible with the light-front results. It is
generally accepted that the usual equal-time picture of
quantum field theory in the infinite momentum frame co-
incides with the one calculated at equal light-front time
x� � t� z � 0. Thus to compare with the light-front re-
sults, we need to take the limit jPj ! 1. It is easy to check
that in this limit our solutions for the e�e� wave function
(37) reduce to the light-front wave functions at leading
order in � (see [12,16]),

-P�q� �

������������
�2��3

jPj

s
-LF�y;q?�

�
1�O

�
m
jPj

��
; (64)

where y is the momentum fraction y  pk=jPj ’ 1=2�
qk=2�m. As the two-particle Fock state is leading in � also
on the light front the normalization can be taken to be 1 �R
dp?

R
1
0 dyj-LF�y;p?�j

2.
The light-front photon distribution is calculated in [12].

As in our calculation the probability of the Fock state with
one additional photon is O���. To compare with our result
we need the relations

jkj � jPjjxj
�
1�O

�
m
jPj

��
1

jkj � �kk
� �x�

2jPjx
�2mx�2 � k2

?

�
1�O

�
m
jPj

��
(65)

where x is the momentum fraction x  kk=jPj ’ kk=2�m.
Note that (8) gives

x� ��

�
y�

1

2

�
: (66)

Inserting (64) and (65) into (48) we find
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P2 d6P

d3kd3q
�q;k� ! d6P

dyd2k?dxd2q?

�x;k?; y;q?�

�
�

�2 �x�
k2
?=x

��2mx�2 � k2
?�

2 j-LF�y;q?�

�-LF�y� x;q? � k?�j
2 (67)

which agrees with the light-front result [12].3

IV. SUMMARY AND DISCUSSION

We studied the frame dependence of nonrelativistic
QED bound states such as positronium or the hydrogen
atom. Starting from the exact field theoretical Bethe-
Salpeter equation we evaluated the wave function to lead-
ing order in � in all Lorentz frames. Using a time-ordered
formalism we confirmed the expected result: the e�e�

equal-time wave functions exactly Lorentz contract in
boosts while the mass spectrum is invariant.

We also solved the leading component of the wave
function of the e�e�� Fock state. We saw that this Fock
state was a next-to-leading correction with a probability
O���. The resulting photon distribution did not contract
exactly in boosts, similarly to the radiation from a single
electron, e! e� �. The infinitely boosted limit of the
distribution was seen to coincide with light-front results.

The ‘‘old-fashioned’’ time-ordered approach is natural
when considering wave functions evaluated at equal time.
The advantages of the time-ordered formalism for bound
states are well known from studies of positronium in the
center-of-mass frame—see, e.g., [17] and references
therein. In our case the time ordering was helpful in the
analysis of the Fock state structure of the bound state and in
determining the correct order of � for various interaction
kernels.

The covariant (four-dimensional) form of the Bethe-
Salpeter equation determines also the dependence on the
relative time t of the bound state constituents. The time
dependent wave function ��t;x� may be derived at weak
coupling as in the 1� 1 dimensional case studied in
Sec. II.C of [10]. The result is4

�P�t;x� � exp
�
�

i�jtj

2�
�����������������������
x2
? � �2~x2

k

q �
~’P�~xk;x?� (68)

where ~xk  xk � �t is the longitudinal distance between
the constituents adjusted for the displacement �t � jPjt=E
of the center of mass, and ~’P is the equal-time wave
function ’P of (36) Fourier transformed to coordinate
space. Combining (68) with our result (36) one may check
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that the covariant Lorentz transformation formula [1] of the
e�e� wave function is satisfied,

�P0 �t0;x0� � S����P�0�t;x�S�1��� (69)

where S��� is the standard spin transformation matrix of
the Dirac equation.

It would be interesting to extend the analysis presented
here to the next-to-leading order in � and check if the
correction to the wave function contracts classically.
Likewise one could consider the frame dependence of
nonrelativistic bound states in other theories, e.g., for states
bound by scalar exchange.

In previous work scant attention has been paid to the
description of moving bound states in field theory, even
though much is known about the center-of-mass frame
solutions, in particular, for nonrelativistic systems.
However, the problem is nontrivial and certainly worth
085006
studying. The usual center-of-mass equal-time wave func-
tions are related by an infinite boost to the light-front wave
functions which appear in the parton model. Hence a better
understanding of the behavior of (relativistic) bound states
under boosts could help to relate the nonrelativistic quark
model and the parton model of hadrons. Evaluating the
boosted wave functions of the simpler, nonrelativistic sys-
tems which we studied here is a first step towards under-
standing the boost properties of relativistic systems such as
hadrons.
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