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We derive corrections to the JIMWLK equation in the regime where the charge density in the hadronic
wave function is small. We show that the framework of the JIMWLK equation has to be significantly
modified at small densities in order to properly account for the noncommutativity of the charge density
operators. In particular the weight function for the calculation of averages can not be real, but is shown to
contain the Wess-Zumino term. The corrections to the kernel of the JIMWLK evolution which are leading
at small density are resummed into a path ordered exponential of the functional derivative with respect to
the charge density operator, thus hinting at intriguing duality between the high and the low density
regimes.
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I. INTRODUCTION.

The recent years have seen vigorous activity in an at-
tempt to understand high energy scattering in QCD from
first principles. The precursors of this recent wave are the
classic papers [1,2] as well as later work [3,4].

The equation that governs the evolution of the S-matrix
of a small projectile with energy was derived by Balitsky
[5], and its mean field version by Kovchegov [6]. This
equation takes into account perturbative evolution of the
projectile wave function supplemented by multiple scatter-
ings of the projectile partons on the target. A lot of nu-
merical and analytic work in recent years has been carried
out to understand the properties of the solutions of this
equation both in the ultraviolet and infrared. The depen-
dence of the saturation momentum on rapidity [7], the
property of geometric scaling [8], the power growth of
the total cross section [9] and the disappearance of the
Cronin effect with energy [10] are some stark examples of
the physical information obtained from this equation so far.

A complementary approach to the high energy scattering
problem was initiated in [11,12]. It yields the nonlinear
evolution equation (JIMWLK equation) that governs the
change of the correlation functions of the color charge
density in the hadron wave function. The parameter of
the evolution, as before is the rapidity of the hadron. In
this approach it is assumed that the charge density in the
wave function is high. It has been shown in the last
reference in [11] and in [12] (see also [13]) that when
understood as the equation for the wave function of the
large target, for processes when this target is probed by a
small perturbative projectile, the JIMWLK equation is
equivalent to that of Balitsky as far as the calculation of
S-matrix is concerned.

One of the original motivations to consider the high
energy scattering, is the question of how the scattering
amplitude approach the unitarity limit. The Balitsky-
Kovchegov and JIMWLK equations indeed lead to unitary
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amplitude: at large energies the S-matrix approaches zero
(not to be confused with the unitarity of the total cross
section in the sense of the Froissart bound, which is not
achieved in this framework [9]). However it is clear that the
way the amplitude approaches the unitarity limit is not
properly described by these equations. In the framework of
the Balitsky-Kovchegov the reason is that the evolution of
the projectile wave function is linear, that is gluons are
emitted independently by the ‘‘valence’’ partons in the
projectile. The unitarization of the amplitude is then
achieved only due to the multiple scatterings on the target.
However it is clear that when evolved to large enough
rapidity, the wave function of the projectile becomes dense,
and at that point the gluons have to be emitted coherently
from the charge density distribution in the target, rather
than independently from every parton. At high density the
gluons are produced less efficiently due to these wave
function saturation effects, and this furnishes an additional
mechanism for the unitarization of the scattering amplitude
over and above multiple scatterings. When the target is
large and the projectile is small, the multiple scattering
mechanism is more efficient. However in this situation one
already at low energy starts from the almost vanishing
scattering matrix (black target), and so can not sensibly
study the approach to the black limit. On the other hand, for
a small target, the unitarity corrections due to the wave
function saturation effects in the projectile become impor-
tant at the same rapidity as those due to multiple scatter-
ings, and the approach to the unitarity limit is described
incorrectly when they are omitted.

In the framework of the JIMWLK equation one is faced
with a similar problem. The equation is derived in the limit
of high density. Although its low density limit reduces to
the linear BFKL equation, there is no reason to believe that
it describes correctly the evolution in the intermediate
regime, where the charge density is neither small nor large.
Therefore one cannot consistently use the JIMWLK equa-
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tion to follow the evolution of the wave function of a
‘‘dilute’’ system all the way until it becomes ‘‘dense’’.

The main physical effects that take place in the inter-
mediate density regime are due to the so-called Pomeron
loops. Those are the processes where the gluons, which are
emitted in the wave function at an earlier stage of the
evolution, subsequently ‘‘drop out’’ of the evolution as
their color is ‘‘bleached’’ by other gluons and they cease
their ephemeral existense. The JIMWLK equation contains
only part of the Pomeron loops. Although both, the gluon
emission and the gluon disappearance processes have their
place in the JIMWLK evolution, they are not described
properly at small and intermediate densities (rapidities).
Proper inclusion of these processes must also restore the
t-channel unitarity which is not preserved by the JIMWLK
equation [14]. One would like to have a better handle on
the Pomeron loops, since they are clearly important for the
evolution of the scattering amplitude.

To that end one has to understand the evolution of the
hadronic wave function at arbitrary color charge density.
This is a very challenging problem which at present is not
solved. Recently a first step in this direction was under-
taken [15–17]. These works derive a correction to the
JIMWLK equation, which can be described as the first
term in expansion in powers of the functional derivative
with respect to the color charge density. In the present
paper we go beyond this first step and resum an infinite
number of such terms. The terms we find do not give the
complete kernel of the JIMWLK equation at arbitrary
density. We do however resum all terms which are leading
in the low density regime (plus a little bit extra—see
below). Along the way we find that the framework of the
JIMWLK equation has to be modified to accommodate the
low density regime. In particular, since one cannot treat the
charge density operators as commuting when the density is
not large, the quantum averages can not be written simply
as weighted averages, (functional integrals) over the real
functional W���x��. Rather the charge density variable in
the functional integral must be considered as dependent on
an extra variable t and the weight functional W must
contain a phase which is given by the Wess-Zumino
term. We also show that this auxiliary variable t plays
exactly the same role as the longitudinal coordinate x� in
[12,18], namely, it resolves the ambiguity associated with
the ordering of quantum fields. Thus for all intents and
purposes t can be identified with x�.

The correction terms we derive are resummed in a
compact and suggestive expression. It has a very interest-
ing structure which hints at an intriguing duality between
the low and high density regime.

This paper is organized as follows. In Sec. II we derive
the correction to the correlation functions of the charge
density operator in terms of averages of quantum opera-
tors. In Sec. III we translate this into the corrections to the
functional evolution equation for the functional W���. We
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also explain how the extra variable t and the Wess-Zumino
term arise in this context. Finally in Sec. IV we discuss
several issues and questions which are prompted by our
results.

II. HIGH ENERGY HADRONIC WAVE FUNCTION
AND THE EVOLUTION OF THE CORRELATORS

OF COLOR CHARGE DENSITY.

The JIMWLK evolution equation is a functional evolu-
tion equation for the weight functional W��a�x��. It was
shown in [12] that the form of the evolution is somewhat
simpler whenW is considered to be a function of the phase
of the scattering matrix � rather than �. For our purposes in
this paper however we find it more convenient and straight-
forward to use the original formulation in terms of �[11].
The functional W has the meaning of the probability
density to find a given configuration of the charge density,
so that expectation value of any observable O��� in the
hadronic wave function is given by

hOi �
Z
D�aO���x��W���x��;

Z
D�a�x�W���x�� � 1:

(2.1)

Here xi, i � 1; 2 are the transverse coordinates, and �a�x�
is the surface charge density, defined as the integral of the
three dimensional charge density over the longitudinal
extent of the hadron

�a�x� �
Z
dx��a�x; x��: (2.2)

The JIMWLK evolution equation reads

@
@Y
W��� � �s

(Z
d2xd2y�ab���

�
�a�x�

�

��b�y�

	
Z
d2x�a�x�

�
�a�x�

)
W���: (2.3)

The explicit form of the functionals � and � is not im-
portant for our present purposes, except for the fact that
they both have expansion in powers of �, so that at small �
one has � � O��2� and � � O���.

The equation was derived for parametrically large den-
sities � / 1

�s
. We will now extend the derivation to include

also the small density region � / 1. The easiest way to do
this is to consider directly the evolution of the hadronic
wave function. Although the original derivation in [11] was
given in the language of the path integral, it can be for-
mulated directly in terms of the wave function [19]. One
-2
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starts at the initial rapidity with a wave function j��Y�i �
jvi which contains only valence degrees of freedom,
namely, those with the longitudinal momentum k	 above
some cutoff value �. This wave function defines the charge
density correlation functions

hvj�a1�x1�:::�
an�xn�jvi: (2.4)

When boosted by a small amount, the valence wave
function gets dressed by a cloud of the Weiszacker-
Williams gluons. The change of the wave function can be
calculated explicitly. The evolved wave function has the
following structure [19]

j��Y 	 �Y�i �

("
1�

�Y
2�

Z
d2x�bai �x�b

a
i �x��

#

	 i
Z
d2xbai �x�

Z �

�1��Y��

dk	

�1=2jk	j1=2

� ayai �k	; x�

)
B�ay; a�jvi: (2.5)

Here the creation operators ay�k	� create gluons with soft
momenta, which are not present in the valence state jvi.
The field b depends only on the valence degrees of free-
dom. It is determined as the solution of the ‘‘classical’’
equation of motion

@ib
a
i 	 g�abcbbi �x�b

c
i �x� � g�av�x�

�ij�@ib
a
j � @jb

a
i 	 g�abcbbi b

c
j� � 0:

(2.6)

This is precisely the ‘‘classical background field’’ that
appears in [11]. The only subtlety is that the commutator
in the first equation was dropped in [11], which is indeed
appropriate for large charge densities. In this case it is
straightforward to see that the commutator term is O��s�
correction to the first term in the equation and can therefore
be neglected. In fact for small charge densities, � � O�1�
the field b is of order g, and so the commutator term is
again negligible. We keep it here for completeness, as it
can in principle be important in the intermediate regime.
The �v in the right hand side of Eq. (2.6) is the color charge
density of the valence degrees of freedom only, that is of
the gluons with longitudinal momentum above the cutoff
�. We stress again, that in the present paper we consider �v
and bi to be fully quantum operators which act on the
Hilbert space of the valence degrees of freedom.

The term in the curly brackets in Eq. (2.5) is simply an
expansion to first order in �Y of the coherent operator
085004
C � exp

(
i
Z
d2xbai �x�

Z �

�1��Y��

dk	

�1=2jk	j1=2
�ayai �k	; x�

	 aai �k
	; x��

)
; (2.7)

which affects the shift of the soft modes of the gluon field
by the ‘‘classical field’’ bai �x�

CyAai �k
	; x�C � Aai �k

	; x� 	
i
k	
bai �x�: (2.8)

In Eq. (2.5) we have only kept C to first order in �Y, since
we mean to calculate the first derivative with respect to Y,
and thus the higher order terms do not contribute. The last
ingredient in Eq. (2.5) that requires explanation is the
operator B. This operator is the exponential of the qua-
dratic form of a’a and ay’s which also depends on the
valence charge density �v. Its role is to perform the
Bogolyubov transformation on the soft gluon fields, mix-
ing the creation and annihilation operators [19]. The two
operators in Eq. (2.5), C and B correspond precisely to the
two steps in the calculation of [11]—the expansion of the
quantum fields around the classical background b, and
subsequent integration over the soft modes keeping only
quadratic terms in the Lagrangian. The more complicated
mathematics of [11] (the one loop integration over the soft
modes) is coded in the operator B. However luckily for us,
it has the property that for small densities it becomes a unit
operator B�� � 0� � 1. Thus in the small density regime it
only brings in perturbative corrections, and therefore in the
following we set it to unity.

In fact, once we set B � 1 the wave function Eq. (2.5)
becomes precisely the one used to derive the Balitsky
equation in [20], with the substitution of the lowest order
Weiszacker-Williams field

R
d2y xi�yi

�x�y�2
�a�y� by bai �x�. Of

course, b which solves the nonlinear equations Eq. (2.6),
when expanded to first order in �, reduces to this
expression.

Given the evolution of the wave function, we can now
calculate the evolution of the correlation functions of the
charge density. Since the boost operation ‘‘opens up’’ the
Hilbert space of the soft modes, we have to consider also
the contribution of these modes to the charge density
operator

�a�x� � �av�x� 	
Z �

�1��Y��
dk	aybi �k	; x�Tabca

c
i �k

	; x�

(2.9)

where Tabc � ifabc is the SU�N� generator in the adjoint
representation.

Sandwiching the n-th power of � in the wave function
Eq. (2.5) and differentiating with respect to Y we obtain
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@
@Y

h�a1�x1� . . .�
an�xn�i �
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�
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d2xh�bai �x�; �b

a
i �x�; �

a1�x1� . . .�
an�xn��i

	
Z
d2x

X
i

�2�x� xi�T
ai
bchb

b
i �x��

a1�x1� . . .�
ai�1�xi�1��

ai	1�xi	1� . . .�
an�xn�b

c
i �x�i

	
Z
d2x

X
i<j

�2�x� xi��
2�x� xj��T

aiTaj�bc

� hbbi �x��
a1�x1� . . .�ai�1�xi�1��ai	1�xi	1� . . .�aj�1�xj�1��aj	1�xj	1�:::�an�xn�bci �x�i 	 . . .

	
Z
d2x�2�x� xi� . . .�2�x� xn��Tai . . .Tan�bchbbi �x�b

c
i �x�i

)
(2.10)
where now the averages are over the valence state jvi and
the charge density operators are those of the valence de-
grees of freedom only.

The i-th line in Eq. (2.10) contains terms with i operators
� deleted and substituted by the single gluon charge den-
sity operators �2�x� xi�Tai . This structure is completely
transparent. One step in the evolution corresponds to emis-
sion of one gluon. The first term in Eq. (2.10) corresponds
to the rotation of the valence charge density by the charge
of the emitted gluon. All other terms are due to the direct
contribution of the color charge density of the emitted
gluon itself.

Note that the first (double commutator) term on the right
hand side of Eq. (2.10) despite appearances starts with the
same power of � as the left hand side. Both, in the weak
and strong field limit the relevant commutator can be
written as

�bai �x�; �
b�y�� �

�bai �x�
��c�y�

fcbd�d�y� (2.11)

and

�bai �x�
��c�y�

� g
�
Di

1

@ �D

	
ac
�x; y�: (2.12)

Thus each commutator reduces the lowest power of � by
one. This term is contained in the JIMWLK evolution at
large fields, as it can be written as the contribution to the
kernel with two functional derivatives with respect to �
multiplied by a function of � whose Taylor expansion
starts at �2. It will therefore not interest us in the following,
and we will concentrate our attention on the rest of the
terms in Eq. (2.10).

These terms have insertions of Ta in place of �a, and so
one naturally would like to write them down as functional
derivatives with respect to �. Here however one faces the
problem, that the charge density operators do not commute
with each other, and thus the ordering of �’s and b’s in
Eq. (2.10) is important. Fortunately there is a known way of
representing correlation functions of noncommuting vari-
ables as a functional integral. We describe it, as well as its
application to the present case in the next section.
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III. THE FUNCTIONAL INTEGRAL
REPRESENTATION AND THE WESS-ZUMINO

TERM.

The general problem we have to address is how to
represent the correlators of the SU�N� generators �a�x�
in terms of the functional integral. We will describe this
construction in the case of SU�2�. Let us first forget about
the x dependence and also assume that the generators is in
the fixed representation of spin J. The construction for this
case has been worked out in detail in [21]. It is based on the
observation that instead of considering the ordered product
of the generators �a in the representation J, one can con-
sider the correlation function

h�a�t1��b�t2� . . .�c�tk�i ! Jkhna�t1�nb�t2� . . . nc�tk�i

� Jk
Z
Dn�t�na�t1�nb�t2� . . . nc�tk�

� exp

"
i
J
2

�
Z


d2(��)�abcna@�nb@)nc

#
(3.1)

where J is the spin of representation (i.e. for fundamental
representation J � 1=2), na�t� is a unit vector nana � 1
living on a contour C (t is a coordinate on the contour) and

 is an arbitrary two-dimensional surface with the bound-
ary C � �
. Despite the appearance, the two-dimensional
Wess-Zumino action

S�n� �
Z


d2(��)�abcna@�nb@)nc (3.2)

depends only on values na�t� at the boundary and not on the
values n takes on the surface 
.

The coordinates ti on the left hand side of Eq. (3.1) are
only important as indicators of the ordering of the opera-
tors. Thus the correlation function of n’s must only depend
on the ordering of the time coordinates, and not on their
values. This is indeed the case. To see this note that the
variation of the Wess-Zumino action under arbitrary trans-
formation of the fields n is
-4
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�S �
I
C
dt�abcna@tn

b�nc: (3.3)

Now let us perform an infinitesimal SU�2� transformation

na�t� ! na�t� 	 �abc�b�t�nc�t�: (3.4)

The action change under this transformation is �S �
�

H
C dt _n

a�t��a�t� Performing this transformation in the
path integral for the correlation function Eq. (3.1) we
obtain

J
d
dt

hna�t�nb�t1� . . . n
c�tk�i � i

Xk
i�1

��t� ti��
adfhnf�t�

� nb�t1� . . .nd�ti� . . . nc�tk�i

(3.5)

where nd�ti� means the exclusion of this term from the
products of the fields in a correlator. This establishes the
piecewise constant nature of the correlation function.
Moreover, remembering that in the equal time limit the
time derivative of the correlation function reduces to the
equal time commutator (as the path integral represents
T-ordered products), one concludes immediately from
Eq. (3.5) that the following equal time commutaion rela-
tions hold

J�na; nb� � i�abcnc (3.6)

This establishes that the following identification is valid

�a � Jna: (3.7)

The fact that the charge density depends on the trans-
verse coordinate simply means that we have to make the
unit field na also x-dependent, but the Wess-Zumino term
is strictly local in x (since otherwise we would introduce
noncommutativity between �’s at different points in the
transverse plain). Finally we should also allow to consider
states with different representation of the SU�2� group.
This is achieved by allowing J to be distributed with
some arbitrary weight and supplementing the integration
measure over na by summation over all half integer J.

All said and done we see that we can represent the
calculation of charge density correlators by the following
functional integral

h�a1�x1� . . .�an�xn�i �
Z
d��x; t��a1�x1; t1� . . .�an�xn; tn�

�W��� (3.8)

In PURSUIT OF POMERON LOOPS: THE JALILIAN. . .
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with the measure of integration being understood as

Z
d��x; t� . . . �

Z

J�x�
x;tdn�x; t� exp

"
i
Z
d2x

J�x�
2

�
Z


d2(��)�abcna�x; t�@�nb�x; t�

� @)nc�x; t�

#
. . . : (3.9)

The generalization of this procedure to the SU�N� group
is somewhat cumbersome and we will not describe it in
detail, but rather only indicate the flow of the argument. It
goes along the following lines. The Wess-Zumino term in
Eq. (3.1) can be thought of as the flux of the magnetic field
of the ’tHooft-Polyakov monopole through the contour 
.
This monopole would sit in some three dimenisonal space,
two of whose dimensions are spanned by the coordinates
on the surface 
. It is of course purely fictitious and should
not be given any physical significance beoynd a simple
mnemonic to describe the mathematical structure of the
relevant Wess-Zumino term. The conservation of the mag-
netic flux of this monopole modulo 4� is the reason why
the Wess-Zumina term does not depend on the surface 
,
but rather only on its boundary, as long as the coefficient J
takes half integer values. In the SU�N� group there are N �
1 such independent magnetic monopoles, whose magnetic
fields and therefore fluxes can be expressed in terms of the
adjoint ‘‘Higgs field’’ of unit length na,
a � 1; . . . ; n2 � 1[22]. Thus there are N � 1 independent
Wess-Zumino terms that can be written for the SU�N�
group. The coefficients of all these terms have to be
quantized for the same reason as J, and this quantization
corresponds to the quantization of the eigenvalues of the
generators of the Cartan subalgebra of the SU�N� group. To
handle the generators of SU�N� in a given representation
one again has to endow �a with a dependence on one extra
coordinate t, and introduce N � 1 Wess-Zumino terms in
the integration measure. The coefficients of these terms
should be equal to the values of the Cartan generators in the
highest weight state of the given representation. Taking
into account x dependence and allowing for the variation of
the representation is achieved in the same way as in
Eq. (3.9).

We note that in the limit of large representations, J !
1, the Wess-Zumino term imposes the constraint _na�t� �
0. Thus the t-dependence of the unit vector n is frozen,
na�t� � na, so that one recovers the formulation of
Eq. (2.1).

Practically speaking therefore we see that taking into
account noncommutativity of � leads to two major
changes, first the field in the functional integral becomes
dependent on extra coordinate t, and second the measure of
the integration becomes complex with the phase given by
the Wess-Zumino term.
-5
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Nevertheless, given the functional integral representation, we can conveniently rewrite the evolution equations
Eq. (2.10) as a functional derivative operator acting on W���. It is in fact easy to see that the whole hierarchy of
Eqs. (2.10) can be written in a very concise form

Z
d2x

X
i

�2�x� xi�T
ai
bchb

b
i �x��

a1�x1� . . .�
ai�1�xi�1��

ai	1�xi	1� . . .�
an�xn�b

c
i �x�i

�

*Z
d2xbbi �x; t! �1�Tabcb

c
i �x; t! 	1�

Z
dt

�
��a�x; t�

f�a1�x1; t1� . . .�
an�xn; tn�g

+
;

Z
d2x

X
i<j

�2�x� xi��2�x� xj��TaiTaj�bchbbi �x��
a1�x1� . . .�ai�1�xi�1��ai	1�xi	1� . . .�aj�1�xj�1��aj	1�xj	1� . . .�an�xn�bci �x�i

�

*Z
d2xbbi �x; t! �1��TaTd�bcb

c
i �x; t! 	1�

Z t0

�1
dt

Z 	1

�1
dt0

�
��a�x; t�

�

��b�x; t0�

� f�a1�x1; t1� . . .�an�xn; tn�g

+
etc . . . :

(3.10)
Thus, somewhat surprisingly, we can rewrite the right
hand side of Eq. (2.10) (subtracting the first term) as

1

�

*Z
d2xbbi �x;t!�1�

"
Pexp

(Z 	1

�1
dtTa

�
��a�x;t�

)
�1

#
bc

�bci �x;t!	1�f�a1�x1;t1� . . .�an�xn;tn�g

+
(3.11)

where P denotes the path ordering along t. Note that the
linear and quadratic terms in the expansion of the path
ordered exponential are contained already in the JIMWLK
equation (modulo the noncommutativity of �’s). The rest
of the terms are subleading at large �. However at � �
O�1� all the terms in Eq. (3.11) are of the same order and
should be kept. Also note, that by keeping bai as the full
solution of the equation Eq. (2.6)) and not its leading
perturbative term, we are resumming some terms that are
subleading in the low density limit. Partially integrating the
functional derivatives in the functional integral representa-
tion Eq. (3.8) we can finally rewrite the evolution as the
functional equation for W

@
@Y
W���x; t�� � �s

�
OJIMWLK

�
�;
�
��

�
W���x; t��

�

	
1

�

(Z
d2xbbi �x; t! �1�

�

"
~P exp

(
�

Z 	1

�1
dtTa

�
��a�x; t�

)

� 1

#
bc

bci �x; t! 	1�

)
W���x; t�� (3.12)

where ~P is the path ordered exponential with the linear and
quadratic terms subtracted.

This is the main result of the present paper.
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IV. DISCUSSION.

There are several interesting questions that arise from
the previous derivation. First, does the variable t have a
physical meaning beyond being a useful tool to represent
correlators of noncommuting variables? We believe that
the answer to this question is in the affirmative. We remind
the reader that one already had a need in introducing path
ordering in the discussion of high energy evolution. In
particular it was realized in [18] that this was necessary
in order to solve the classical equations of motion for the
gluon field in the presence of the charge density �. The
equation considered in [18] was identical to Eq. (2.6),
except b was considered to be a classical field which
depended on x as well as on the longitudinal coordinate
x�. It then turned out that only one contribution to the
commutator term in the first equation of Eq. (2.6) was
important. This contribution was the one where one of
the b’s had the longitudinal coordinate slightly smaller
than that of the other b. The equation then was formally
solved as

bi�x; x�� � iUy�x; x��@iU�x; x��;

U�x; x�� � P exp

(
i
Z x�

�1
dx���x; x��

)
(4.1)

with the function � itself defined in terms of the matrix U
and the charge density � as � � g2

@2
�U�Uy�. The important

element in these expressions is the path ordering with
respect to x�. Now returning to our present framework
we can ask ourselves what is the solution of the operator
equation (2.6) that appears in the functional integral ex-
pression Eq. (3.12)? It is obvious that in order to solve this
equation one has to follow the procedure identical to that in
[18]. One has to endow b and � with the extra coordinate t,
the commutator term then has the t coordinate of the first
b-factor slightly smaller than that of the second factor, as
-6



In PURSUIT OF POMERON LOOPS: THE JALILIAN. . . PHYSICAL REVIEW D 71, 085004 (2005)
the t-ordering in the classical equation simply reflects the
operator ordering in the operator equation. From that point
on the solution is identical to that of [18] with the path
ordering in x� replaced by the path ordering in t.

We conclude therefore that the ordering variable t that
we have introduced in this paper is identical to the longi-
tudinal coordinate x�[23].

One than immediately is tempted to ask: what about the
other variable, which is introduced to define the Wess-
Zumino term? If t is x�, then the other one may be x	.
The connection here is more tenuous, but we believe it is
true. The Wess-Zumino term can be thought of as the Berry
phase [24] for the state in the J-representation of the charge
density operator. The state depends on x� as a parameter,
and its phase changes as this parameter changes adiabati-
cally along the hadron. The Berry phase arises as a topo-
logical part of the time integral of the simplectic form in
the action. The QCD functional integral in the light cone
gauge (to which the functional integral Eq. (3.1) is sup-
posed to be an approximation) is in fact a phase space path
integral, and contains the simplectic form F	iF�i �
@	bi@

�bi. It is likely that the Wess-Zumino term in
Eq. (3.1) should be properly understood as the time integral
of this simplectic form, and thus the second coordinate
which appears in its definition is indeed the time variable
x	. This is an interesting question, which should be under-
stood better.

Another natural question that arises is whether one can
somehow avoid introducing the noncommuting variables
all together, and thus get rid of the awkward phase in the
‘‘weight functional’’ W. Unfortunately we do not believe
this possible. Suppose we are interested in the expectation
values of some set of observables fOig. If all these observ-
ables are mutually commuting, one can choose a basis in
the Hilbert space (spanned by a set of coordinates which
commute with fOig) such that all the expectation values are
given as averages over the real measure. The measure is the
square of the wave function in the basis we have chosen.
However if we are also interested in averages of other
variables which do not commute with Oi, the calculation
of the expectation value will necessarily probe also the
phase of the wave function. The question is thus whether in
high energy QCD we are only interested in mutually
commuting observables. The observables we would like
to calculate in the hadronic wave function are the averages
of the S-matrix of fast particles scattering on it. In general
these observables do not commute. Physically it simply
means that the probability for scattering of two particles
depends on the order in which these particles scatter, since
the first one to scatter perturbs the target fields. When the
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number of the projectile particles is small and the target
fields are large, this small perturbation is a subleading
effect and thus can be neglected. However for targets
which are not dense this noncommutativity is important,
and so the phase of the wave function comes into play.

Perhaps the most interesting question that is suggested
by our result Eq. (3.12) is whether there is some well
defined duality transformation that maps the high density
regime into the low density regime. Recall, that in the high
density JIMWLK expression the prominent element is the
matrix U defined as

U � P exp

(
i
Z
dx���x; x��

)
: (4.2)

The relation between � and � is fairly complicated, but at
low density it simplifies considerably

��x; x�� � low density
g2

@2
�x; y���y; x��: (4.3)

Thus it looks like the path ordered exponential of density
and the path ordered exponential of functional derivatives
with respect to density roughly exchange their roles in the
high and low density regimes. Of course the swap is not so
straightforward, but nevertheless the appearance of the
path order exponential of �

�� in Eq. (3.12) is very suggestive
that such a transformation can be defined. One could hope
that the knowledge of this transformation will help find the
exact expression for the operator of the high energy evo-
lution valid at arbitrary density �.

Finally we comment on the relation of our results to
those presented in [16]. The paper [16] is not explicit about
the operator ordering of the operators involved, and that
makes the detailed comparison a little ambiguous. Also,
the derivation in [16] are only given in the large Nc
approximation which relies on the dipole model.
However it is easy to see that the general structure of their
result is the same as our expression Eq. (3.12) expanded to
fourth order in the functional derivative. To establish this
one has to use the perturbative relation between � and �
Eq. (4.3) and the commutator of the field b with �
Eq. (2.11) taken to lowest order in the strong coupling
constant. Additionally one has to assume that the func-
tional W depends only on the ‘‘dipole cross section’’
s�x; y� � 1

N tr�U
y�x�U�y��.
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