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Matrix model for a quantum Hall droplet with manifest particle-hole symmetry
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We find that a gauged matrix model of rectangular fermionic matrices (a matrix version of the fermion
harmonic oscillator) realizes a quantum hall droplet with manifest particle-hole symmetry. The droplet
consists of free fermions on the topology of a sphere. It is also possible to deform the Hamiltonian by
double trace operators, and we argue that this device can produce two body potentials which might lead
the system to realize a fractional quantum hall state on the sphere. We also argue that a single gauged
fermionic quantum mechanics of Hermitian matrices realizes a droplet with an edge that has c �
1=2 CFT on it.
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I. INTRODUCTION

Calculating the quantum levels of a nonrelativistic elec-
tron in a uniform magnetic field (in two dimensions) is a
well known problem in quantum mechanics. The classical
motion in the magnetic field is given by circular orbits,
which are centered at two coordinates ~q1 and ~q2, built out
of the phase space variables.

When we turn the problem to quantum mechanics, ~q1
and ~q2 are noncommuting operators, which parametrize
the degeneracy of each Landau level. They can also be
described as the phase space of a single classical variable
(for the sake of argument it can be ~q1). Since these two
coordinates do not commute, there is a minimum area that
the wave function occupies in the phase space determined
by ~q1; ~q2, which can be identified with �h after rescalings.
When we consider a system of free fermions (lets say k),
the lowest lying state of the system will have all the
fermions in the lowest Landau level, but at different values
of ~q1 and ~q2, for which there is a lot of degeneracy.

In order to count states, we can break the degeneracy of
the system by introducing a small perturbing potential
which is a function of ~q1 and ~q2 only, which for simplicity
we take to be quadratic in ~q1 and ~q2, but with very small
coefficients, so that the energy differences associated to
different levels of the ~q1 and ~q2 oscillator are much smaller
than the ones associated to going to a higher Landau level.
We also require this of the Fermi level. We have chosen the
function so that the level sets of the Hamiltonian are
compact. We could have also chosen it so that the level
sets are given by hyperbolas. This is the setup that corre-
sponds to the c � 1 matrix model (see [1] for an introduc-
tory review).

Fermi statistics will force the particles to be located at
different values of ~q1 and ~q2. With our choice for potential
for the ~qi, the Fermi surface will be a circle in the �~q1; ~q2�
plane, and the fermions form a droplet of constant density
in this plane. This is the quantum hall droplet (see for
example [2]). The fact that this droplet is described in a
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phase space of a single classical variable has been used to
provide some hydrodynamical description in terms of a
noncommutative U�1� gauge theory [3].

There are various ways to describe the excitations of the
system. One can consider the collective motion of particles
that deforms the Fermi surface, and one can also consider
taking individual particles from the top of the Fermi sur-
face and giving them a lot of energy. The deformations of
the Fermi surface are given by a free (chiral) boson in 1�
1 dimensions, and this is an example of bosonization (see
[4–6] for a description of the edge physics). One can also
create collective excitations of the particles that describe
holes in the Fermi surface. When we are near the top of the
Fermi sea, particle and hole states behave very similar, so
one has a symmetry that can exchange particle states and
hole states. This symmetry only appears after quantization.
Classically, one has no holes, and the particles occupy zero
area.

This symmetry between holes and particles is a property
of the quantized system, but it is not a property of the
classical dynamics of the theory. In every event that one
has a symmetry in a quantum system, one would like to
describe the system in such a way that the symmetry is
manifest, so that one does not have to solve the dynamics
before seeing if it is there or not. This is also important if
one tries to use arguments based on particle-hole symmetry
in a system where this is not manifest. Indeed, such argu-
ments are used when describing the fractional quantum
hall effect with filling fractions 	 and 1� 	, which are
argued to be equivalent systems, and also as part of the idea
of the fractional quantum hall hierarchy by [7]. Although
we have great confidence in this type of symmetry argu-
ments, it is always useful to see the symmetries explicitly
realized in the ‘‘classical’’ system. In this case the argu-
ments by symmetry are exact, so long as the Hamiltonian
preserves the symmetry. This is one of the main motiva-
tions to write this paper. However, as described above, in
usual setups this symmetry will only appear after quanti-
zation. Thus to have a system which has this symmetry
manifestly, it should be a quantum system to begin with. To
describe our proposal, it is important to first describe a
-1  2005 The American Physical Society
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second approach to arrive at this system based on different
ideas.

A second route that eventually leads to the same system
is to consider a gauged U�N� matrix model for a Hermitian
matrix X, with the U�N� group action by conjugation on X,
and whose action is

S �
1

2

Z
dt tr��DtX�

2 � X2� (1)

The system classically allows a separation of variables into
the eigenvalues of X (as one can always gauge transform a
Hermitian matrix to a diagonal one by a unitary trans-
formation), which we label by �. Quantum mechanically
this is still true, and due to measure factors the eigenvalues
are actually noninteracting Fermions [8]. Each such eigen-
value has a Hamiltonian which is given by

H �
1

2

Z
dt tr�p2

� � �2� (2)

so we end up in the same system that we described above:
free fermions in a harmonic oscillator potential, which we
choose to describe in the phase space of the system.

The wave functions of the � can be described in terms of
a complete basis of symmetric polynomials in the � times
the VanderMonde determinant of the � times an universal
factor exp���2=2�. There are various choices of such
symmetric polynomials. One which is very easy to write
down is the set of all polynomials in the sums of the powers
of �. Each such sum over � is of trace form

P
��

n � tr�Xn�.
A less obvious basis is given in terms of Schur polynomials
for the � [9]. These can be related to characters of X in
various representations of U�N�, which is a very natural
idea in the matrix model. This is analogous to Wilson lines
in various representations of the gauge group in 2D QCD (
see [10–12]). This last description actually offers a very
simple description of particles (as characters of completely
symmetric representations of U�N�) and holes (as com-
pletely antisymmetric representations of U�N� [9,13]). At
this level, the particle-hole symmetry corresponds to
changing symmetry types of representations.

From the point of view of the Young tableaux that
characterize the representations of U�N�, this corresponds
to performing a mirror image of the tableaux along the
diagonal (we will refer to this as flipping the tableaux).

The symmetry under permutations of the eigenvalues
(the statistics of the particles) is embedded in the U�N�
group, and it is the residual gauge symmetry after we have
chosen X to be diagonal. In this system, we have a finite
droplet of quantum hall liquid in an infinite sea of holes. If
we want a system that describes finitely many particles and
holes, so that they can appear symmetrically, we would like
to see the statistics under permutation of particle wave
functions particles and the statistics of hole wave functions
in the same way as above: embedded in the gauge group.
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This suggests having a theory with a U�N� �U�M� sym-
metry, which after taking eigenvalues appropriately re-
duces to a SN � SM symmetry of permutations of
eigenvalues. The easiest way to connect the U�N� and
U�M� symmetries by a matrix, is to consider a pair of
rectangular matrices X; Y that transform in the �N; �M�
and � �N;M� representation of the group. We can make the
system ’Hermitian’ if we consider X � Yy, and then we
can consider the gauged matrix quantum mechanics of X; Y
with a simple quadratic action. Such constructions have
appeared in studies of the c � 1 matrix model, when one
considers orbifolds of the matrix model in the dual non-
critical string theory [14].

However, the idea of the particle hole-like symmetry
that would exchange M $ N does not work for that sys-
tem, the first one that one would consider. We show that
fact in this paper. However, if we let X; Y be fermionic
oscillators instead of bosons, then the symmetry under the
exchange M $ N exchanges particles and holes, once
these states have been identified in the theory. This second
option can be also suggested by realizing that if we have
only finitely many holes and particles, then the total phase
space should have area N �M and be compact. Thus the
quantum system should only have a finite dimensional
Hilbert space describing the system. This is one feature
that the fermionic matrix model realizes automatically. As
an aside, droplets of quantum hall liquids on various
Riemann surfaces and higher dimensional spaces have
been considered recently in [15–17].

This paper describes how this symmetry can be under-
stood as particle-hole symmetry in detail for the above
system. The paper is organized as follows. In Sec. II we
describe the relationship between matrix models and the
quantum hall effect in detail. This is review material. Next,
in Sec. III we describe the system of Hermitian rectangular
bosonic matrices, which we label 0A harmonic oscillator to
follow the conventions from string theory. Some of these
results are probably not new, but I am not aware of work
where this is described in the way I present it. Here we pay
special attention to a SL�2;R� symmetry of the system, of
which the Hamiltonian is one of the generators. We show
that single particle states are uniquely characterized by one
irreducible representation of the algebra. This idea be-
comes central later on in Sec. IV when we describe the
fermionic matrix model of rectangular matrices, so that we
can map the system to free fermions on a sphere. In Sec. V
we suggest a possible route to make the particles interact so
that one can in principle describe a fractional quantum Hall
effect (FQHE) system on a sphere. In Sec. VI we describe
for completeness the gauged fermionic matrix model for
square matrices. We show that in this system one has
gauged the particle-hole symmetry. However, the system
still has an edge, which is described by a free chiral
fermion on a circle with antiperiodic boundary conditions.
We then conclude.
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II. THE GAUGED U�N� HARMONIC OSCILLATOR
AND THE QHE

Let us consider the U�N� matrix quantum mechanics
where X is a Hermitian N � N matrix, and where X trans-
forms in the adjoint representation of U�N� by matrix
conjugation. We wish to consider the gauged quantum
mechanics of X, where we choose the Lagrangian to be
given by

L �
Z
dt tr

�
1

2
�DX�2 � V�X�

�
: (3)

We will be interested in the potential V�X� � 1
2X

2 later on,
but for the time being we will comment on general V�X�.
There are two ways to solve the system. Choose the gauge
A � 0, solve the system and impose the gauge constraint.
Another way to solve the system is to eliminate the gauge
redundancy as much as is possible and solve the system in
terms of gauge invariant functions of the variables.

As is well known, this second route can be performed if
we choose the gauge where X is a diagonal matrix with real
entries. All Hermitian matrices are conjugate to these
matrices by U�N� transformation. Under these conditions
the off-diagonal components of X and _X can be set to zero
identically. Therefore the dynamics of the system reduces
to the dynamics of the eigenvalues of X. Classically all we
have to do is replace a diagonal ansätz for X in the
Lagrangian to get the dynamics of the eigenvalues, and a
straight forward calculation shows that they are classically
independent of each other.

Quantum mechanically, we have to consider the change
of variables from X generic to X diagonal in the wave
functions of X. This produces a change of measure for the
eigenvalues of X which is the square of the Van der Monde
determinant [8].

d� � ��X�2
Y

d�i (4)

We also have to remember that there is an unbroken
symmetry of permutations of the eigenvalues of X which
preserves the form of the ansätz, and which can be em-
bedded into the gauged U�N� symmetry. This symmetry is
gauged, so all of the eigenvalues are treated as identical
bosons and with measure given by d�. This measure
dependence can be absorbed in the wave functions of the
eigenvalues �,  0 �  ��X�, with a new measure d�0 �Q
d�. In terms of these wave functions the system de-

scribes totally antisymmetric wave functions of the eigen-
values, and we have a system of N identical noninteracting
fermions in the potential V���. From here, the solvability
of the model depends on the particular form of the potential
V���. For our purposes V��� will be the harmonic oscil-
lator. The system in the ground state will fill the first N
energy levels of the harmonic oscillator.

We can now equally well consider this system as a set of
noninteracting particles in a strong magnetic field. The
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main idea is that when we reduce a system of particles to
the lowest Landau level, the degeneracy of states is cap-
tured by a noncommutative plane of magnetic translations.
As described in the introduction, this is equivalent to the
algebra associated to the phase space of a single quantum
variable X. The idea is to identify this noncommutative
plane with the phase space of an eigenvalue of X. The
quantum of area is determined by the magnetic field, which
will be identified with �h after a suitable rescaling of units.
Here we think of the system as having a complex matrix
X� iP, and its complex conjugate X� iP as a set of
conjugate variables.

The degeneracy of states can be broken by a small
potential, which is identified with the Hamiltonian for the
eigenvalues. This serves to localize the wave functions of
the particles in the phase space.

Any Hamiltonian function will generically break the
degeneracy, but it will not be solvable. Choosing the har-
monic oscillator has the benefit of producing a rotationally
invariant potential with a solvable spectrum. The lowest
energy state will give a circular droplet whose radius is
determined by the number of particles in the droplet. This
is due to the Fermi statistics of the eigenvalues. The ground
state energy for N particles is exactly 1

2N
2, and it coincides

with the ground state energy of the N2 harmonic oscillators
in the matrix model. In this system the energy measures the
total angular momentum of the system on the plane.

A. Description of the excitations of the system

So far we have described the system in terms of N free
fermions in the harmonic oscillator potential, and we have
calculated the energy of the ground state.

We now want to describe all excited states of the system.
The mathematics of this setup have been recently been
reviewed in a work of the author in [18], see also [19]. The
complete set of wave functions can be given by a Slater
determinant of wave functions of the Harmonic oscillator.
These wave functions are labeled by their occupation
numbers n1; . . . ; nN . They are all different and we can
use the permutation symmetry so that

n1 > n2 > . . .> nN � 0: (5)

The lowest energy configuration has ni � N � i. We will
call these values n0i . The first eigenvalue is chosen at the
top of the Fermi sea, and then we go down.

If we introduce the quantities ~ni � ni � n0i , to this state
we can associate a Young tableaux with up to N rows,
where on row i we put ~ni boxes. Young tableaux can also
be related to the irreducible representations of U�N� built
by tensoring multiple copies of the defining representation.
The energy above the ground state is then the number of
boxes of the tableaux.

A second way to describe the spectrum is given by
choosing the gauge A � 0 first. Then we reduce the system
to N2 free harmonic oscillators, which can be described by
-3
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a set of creation and annihilation operators �ay�ij and aji
with commutation relations given by

��ay�ij; a
l
m � �"im"lm (6)

and the Hamiltonian of the system is H � tr�aya� � 1
2N

2.
The vacuum is U�N� invariant and given by the state j0i,
such that aijj0i � 0 for all pairs i; j. To build excited states
with energy kwe act with k raising operators in the vacuum
and form linear combinations of the states so obtained

Aj1;...jki1...ik
�ay�i1j1�a

y�
i2
j2
. . . �ay�ikjk j0i: (7)

Now we need to impose the gauge constraint on these
states. This boils down to all upper indices being con-
tracted with all lower indices in some order, so that the
state is a singlet under U�N� transformations. We can use
matrix multiplication to write these states as follows

j�s1; n1�; �s2; n2� . . . �sm; nm�i

� tr��ay�s1�n1 . . . tr��ay�sm�nm j0i (8)

and we can commute these past each other so that s1 >
s2 . . .> sm.

This description gives the same counting of states of the
eigenvalue description, provided that we consider si � N.
This constraint can be seen from the fact that the matrix ay

is aN � N matrix, and therefore tr��ay�N�1� can be written
algebraically in terms of lower traces. This second basis
looks like a Fock space of states with one oscillator per
integer 0< i � N, namely tr��ay�i�, with energy i. This
basis is not orthogonal however, so the Fock space struc-
ture is only an approximation. It also follows that this basis
cannot coincide with the basis determined before with
Slater determinants, because that basis is orthogonal.

In the thermodynamic limit (large N), this approxima-
tion of a Fock space is very good (the failure of orthogo-
nality of states is small, of order 1=N2, this is done by
following the ’t Hooft idea of counting nonplanar diagrams
[20].) and these can be described as a free field theory of
collective excitations of the quantum hall droplet. The
states described above change the shape of the droplet.
These are the edge states of the droplet [9]. The oscillator i
can be interpreted as a wave on the edge of the quantum
Hall droplet with i units of angular momentum. This co-
incides exactly the spectrum of a relativistic chiral boson
on a circle with periodic boundary conditions.

We need a way to relate these two descriptions of the
states of the system. This is provided by the identification
of states with energy k and irreducible representations of
U�N� with k boxes. The idea is that we can make a new
basis of states by thinking of the matrix ay as a matrix in
GL�N;C�. The character of g in a representation R is given
by the trace of g in the given representation, (R�g� �
tr�g�R and it is gauge invariant. Therefore we can make a
list of states based on the irreducible representations of
U�N�, by taking the combination (R�ay�. These are the
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Schur polynomials. Many details of these computations
can be found in [21]. This basis of states coincides with
the eigenvalue basis of Slater determinants that we de-
scribed first.

With the dictionary between Young tableaux and Slater
determinants, it is easy to see that single particle and single
hole states are described by completely symmetric and
completely antisymmetric representations. When we are
not too far from the Fermi sea, there is a particle-hole
symmetry. This symmetry can be understood by noticing
that a Young tableaux can be flipped about the diagonal to
produce a new Young tableaux. However, if the Young
tableaux is sufficiently wide, then when we flip it, it
will no longer be an allowed tableaux for a U�N�
representation.

Also if we look at the droplet system as made of two
nonmixing liquid systems, we have a finite droplet of
particles, and an infinite droplet of holes. The symmetry
between particles and holes is clearly broken.

The problem we are concerned with in this paper is to
find a realization of the quantum hall droplet which has this
symmetry manifest in the description of the system, and
where it does not appear only after we have solved the
system in a low energy approximation.

Making the symmetry between holes and particles more
manifest requires us to have either both infinite numbers of
holes and particles, or finitely many of each. We want to
deal with a finite system, so we take the second option.
Finitely many particles and holes filling space requires a
change in topology of the system: the area must be finite.
This gives us a phase space of finite volume, so that the
degeneracy of the Landau levels is finite, and we will only
be able to access a Hilbert space of states of finite dimen-
sion. We will see that the matrix model we propose will be
realizing the second option of possibilities.
III. THE TYPE 0A HARMONIC OSCILLATOR
MATRIX MODEL.

Let us now consider an orbifold of the matrix model we
discussed in the previous section, the so called type 0A
matrix model [14], but we will consider it in the harmonic
oscillator case, as opposed to in the c � 1 matrix model.
The construction of the orbifold is performed by following
the ideas in [22], and basically leads to a matrix model for a
pair of rectangular matrices. This will provide us with
some techniques to deal with the fermionic matrix model
we will introduce later on, and the physical interpretation
does not change with respect to the previous discussion.

The idea is to orbifold the harmonic oscillator matrix
model by the Z2 action x! �x. This produces a quiver
diagram theory with gauge group U�N� �U�N �M�, and
X is split into two matrices that transform as the �N; ��N �
M�� and the �N �M; �M� representations of the group [22].
These are complex conjugate to each other, so we can
obtain a Hermitian matrix model by thinking of a matrix
-4
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X as

X�
0 X1

X2 0

� �
(9)

and imposing X � Xy.
We can get a complex matrix model with two rectangu-

lar matrices of size N � �M� N� and �N �M� �M re-
spectively, together with their adjoints as their conjugate
variables in phase space by adding the momenta conjugate
to X.

We can again describe the system in terms of eigenval-
ues of the composite matrix X1X2 � diag��2

i � which is
positive definite as X2 � Xy

1 , so that we can pick a gauge
where the gauge group is broken down to a diagonal
U�1�N �U�M�,

X1 �

�1 0 0 . . .

..

. . .
.

0 . . .
0 . . . �N . . .

0
BB@

1
CCA;

X2 �

�1 . . . 0

..

. . .
.

. . .
0 . . . �N

0 . .
. ..

.

0
BBBBB@

1
CCCCCA:

(10)

Again, permutations of the eigenvalues can be embedded
in the gauge group, so we are left with symmetric functions
of the �2i . There is also a Van der Monde-like determinant
(the volume of the gauge orbit) which leads to a measure of
the form

d��
Y

�2Mi d�i
Y
i<j

��2
i � �2

j �
2 (11)

this has been calculated explicitly in [14,23,24] and see
also [25]. The integration region for the measure is given
by �i � 0, as there is no distinction between �i and ��i
(these are identified by the Z2 orbifold action).

After absorbing the square root of the measure in the
wave functions, we get antisymmetric wave functions of
the �2i , and the effective quantum mechanical system gives
rise to the following Hamiltonian

H �
1

2

X
p2
i � �2i � �M2 � 1=4�=�2

i (12)

with the restriction that �i � 0. This has been conjectured
to describe a string theory in AdS2 [26], and we borrow
freely some facts from that paper.

The important point we want to focus on is that system
has an SL�2� algebra for each eigenvalue. Define

D �
1

2
��ipi � pi�i� � �i@�i ; (13)

P �
1

2
�p2

i � �M2 � 1=4���2
i �; (14)
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K �
1

2
�2
i ; (15)

and it is easy to see that these three operators satisfy an
SL�2; R� algebra. A different basis for the algebra is pro-
vided by

L0 � H �
P� K

2
; L� �

1

2
�P� K � iD�;

L� �
P� K � iD

2

(16)

This algebra is similar to the SL�2;R� algebra of a single
harmonic oscillator, with generators aya� 1=2, �ay�2 and
a2.

We can again think of the system as describing a quan-
tum hall droplet. Because of the SL�2;R� symmetry we can
consider it as giving the holomorphic quantization of wave
functions on the Poincare disc (or under a conformal trans-
formation by the upper half plane), which is
SL�2;R�=U�1�.

Now we can repeat the procedure for the system as we
did in the last section, and go again to the gauge A � 0. For
each component of X1;2 we get a harmonic oscillator. The
creation operator and annihilation operators for X1 and
X� 2 � Xy

1 are given by ay; a and by; b.
The SL�2;R� algebra is given by

L0 � H � tr�aya� byb� �M�M� N�; (17)

L� � tr�ayby�; (18)

L� � tr�ab�: (19)

Again, we get a description in terms of waves on the
edge of the droplet by considering traces tr��ayby�n�, each
of which represents one quantum with angular momentum
n on the edge, and energy 2n. This description becomes
accurate in the thermodynamic limit of largeN. Notice that
the normalization of L0 and H differ by a factor of 2 from
the standard SL�2� normalization.

We can also describe the system in terms of representa-
tions of U�N� with k boxes. This works very similar to the
previous discussion in the ordinary matrix model. The only
difference is that we need to take the composite matrix
ayby as the N � N matrix. Here, we get representations of
U�N� and U�N �M� to work with. We take properly
symmetrized products of �ay�ikjk in the upper U�N� indices
characterized by a given Young tableaux. The fact that
these operators all commute with each other means that
whatever symmetry the upper indices have, it is mirrored in
the lower indices. To make singlets we need to contract the
lower U�N �M� indices with those of by, which will have
the same symmetry properties as those for the upper in-
dices for the ay. Therefore the Young tableaux for U�N�
andU�N �M� are identical. The orthogonality of the basis
-5
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thus constructed is fairly easy to prove. This basis should
coincide with the eigenvalue basis.

Now we want to look at the exchange ofN $ M� N, or
M ! �M. As described above, the Young tableaux for
both groups ended up being the same, so this exchanges
particles by particles and holes by holes and fails to give us
what we want. This is why we said in the introduction that
this model does not work to describe particles and holes in
a symmetric way.

The lesson we should learn after the two examples we
have studied is that traces always represent edge states of
the system, and that Schur functions (characters of com-
posite operator on irreducible representations) represent
Slater determinant wave functions.
FIG. 1. Flipping the tableaux: upper U�N� indices and lower
U�M� indices of tensors made of products of ay are related by
Fermi statistics by flipping the tableaux through the diagonal.
IV. A FERMIONIC MATRIX QUANTUM
MECHANICS WITH U�N��U�M� SYMMETRY

Now we are ready to describe another matrix model,
which is the main result of this paper. The basic idea is very
simple: consider the type 0A harmonic oscillator matrix
model, except that we use fermionic oscillators instead of
bosonic ones. Thus we have a system with two rectangular
matrices of fermionic creation operators of sizeN �M and
M� N, and we impose a U�N� �U�M� invariance on the
allowed wave functions. Ordinary matrix models for fer-
mionic variables have been studied in [27,28] and they
have similar properties to ordinary matrix models. Here we
are studying the fermionic quantum mechanics for the
matrix harmonic oscillator with rectangular matrices.

The first thing we should notice is that the fact that we
have fermions makes various changes to the system. First,
there are only finitely many degrees of freedom (without
using the gauge invariance there are 22NM states). The
second point is that in some sense fermionic variables
can only be interpreted in terms of operator algebras, but
they cannot be thought of as numbers. Because of this, it is
not possible to diagonalize anm�mmatrix of fermions to
discover the eigenvalues. The reason for this is that as
operators, the entries of the matrices do not commute,
they anticommute. Therefore they cannot be diagonalized
simultaneously as operators to obtain a matrix of c-
numbers on states which can be diagonalized. This makes
some aspects of the description of the system a little bit
awkward, because we have lost part of the semiclassical
description.

We still have the second alternative of using the gauge
A � 0 and writing gauge invariant wave functions by tak-
ing traces. This gives us the same behavior as the edge of a
quantum hall droplet: we obtain one oscillator of the edge
per integer n in the thermodynamic limit N �M large. The
creation operator for such an edge state of momentum n is
given by tr��ayby�n�. Notice that these are bosons, because
they are made out of an even number of fermionic opera-
tors, thus these operators commute. Again one can show
that in the thermodynamic limit there is a similarity to a
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Fock space of bosons made out of these states, and that
they are approximately orthogonal to leading order in
1=NM, so long as we keep the energy finite and not scaling
in the limit. We do see that the system is describing an edge
of some type of quantum hall droplet. Our final purpose is
to investigate this in more detail. In this paper we are
interested in the case N;M finite, and not in the thermody-
namic limit of the system itself.

Here, the ground state of the system has energy �NM.
The negative number is the standard fact that free fermions
contribute oppositely to the zero point energy than free
bosons.

Since these states built out of traces are not orthogonal to
each other, they are not a good basis for wave functions of
the system. As we have seen, there is a second basis of
orthogonal states which correspond to a basis of eigenval-
ues. These are obtained using characters of the groups
U�N� and U�M� associated to different irreducibles of
U�N� and U�M�. We will proceed with this description
now.

A. Description of the spectrum in terms of
Young tableaux.

Let us consider (R�ayby� for R a young tableaux of
U�N�. The Fermi statistics of the �ay�ij show that if we have
two upper indices which are symmetrized, then the two
lower indices are antisymmetrized. Similarly if the upper
indices are antisymmetrized, then the lower indices are
symmetrized. This simple observation is at the heart of
our claims about the properties of this system.

This means that the representations R of U�N� and ~R of
U�M� are correlated

(R�ayby� � ( ~R�b
yay� (20)

where we have to consider two Young tableaux which are
mirror images under the reflection on the diagonal. Notice
that above ayby and byay are matrices of size N � N and
M�M respectively. This is presented in Fig. 1.

In particular, the restrictions on the tableaux from being
allowed both inU�N� andU�M� tell us that the tableaux for
-6
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U�N� have columns of length less than N and rows of
length less than M, while the ones for U�M� have columns
of length less than M and rows of length less than N. Each
box adds two units of energy to the system. The description
of the spectrum is essentially symmetric in the exchange
M $ N, except that we also have to flip the Young tab-
leaux along the diagonal.

In particular, the state with the maximum number of
boxes allowed has energy ��NM� � 2NM � NM, which
is the highest energy state of the ungauged matrix model.

The system has an underlying SU�2� algebra, similar to
the SL�2; R� algebra for the type 0A matrix model de-
scribed previously. This is generated by the Hamiltonian,
H � L0, L� � tr�ayby�, and L� � tr�ab�. The difference
between SU�2� and SL�2;R� is the sign with which L0

appears on the commutator of L� and L�. Notice that
�ay; b� and ��by; a� form two doublets of operators under
this SU�2� symmetry.

The Hamiltonian is L0, so it breaks the SU�2� symmetry
of the system. However, the Cassimir operator L2 com-
mutes with H, so it is a good quantum number. Thus we
can describe the spectrum in terms of the representation
theory of SU�2�. If we want to associate this symmetry
with a two-dimensional topology, it is naturally the isome-
try group of a 2-sphere, so it suggests that the associated
quantum hall droplet should be a state on a sphere.

We can easily see that the system is being given by N
bosons in the spin M=2 representation of SU�2� by count-
ing the degeneracies of L0. This is the same as having M
bosons in the spin N=2 representation. Roughly speaking,
each of the bosons is given by the rows of the Young
tableaux with respect to U�N�.

We write this Hilbert space as follows

SN�VM=2� � SM�VN=2�: (21)

In this description we can think of the system as being
given N free charged bosons on the lowest Landau level of
a sphere with magnetic monopole of strength M, in the
presence of a small amount of gravity (or an electric field
pointed on the same direction: this is the source of the
potential proportional to L0) that makes them settle to the
bottom of the sphere. This description is dual to M free
bosons on the lowest Landau level on a sphere with a
magnetic monopole field of strength N in the presence of
gravity. In these two descriptions, we see that we have a
duality where we exchange number of particles with flux
on a two sphere.

We should point out that in the description of the origi-
nal matrix model we get that N and M appear symmetri-
cally. This symmetry is broken depending only on how we
choose to interpret the system: either N or M bosons on
geometries with different monopole backgrounds.

The total number n of states is

n �

�
N �M
M

�
�

�
N �M
N

�
(22)
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which also suggests a description in terms of N or M
fermions with N �M states available to each. This is the
description we will look for now.

B. Fermionization of the ‘‘eigenvalues’’ and SU�2�.

So far we have obtained a description of the Hilbert
space in terms of identical bosons. We can fermionize this
description. The idea is to think of the system as N fermi-
ons on a sphere with monopole background determined by
the number of states available per fermion. To get N �M
states from which we occupy N, we need to start with the
spin �N �M� 1�=2 representation of SU�2�. This corre-
sponds to a monopole background on a two sphere of
charge N �M. Remember that we can interpret the 2-
sphere as the homogeneous space SU�2�=U�1�. We also
have a small electric field breaking the degeneracy of the
states.

It is easy to show that the representation theory of SU�2�
found before is given by antisymmetric tensors of the
V�M�N�1�=2 representation.

SN�VM=2� ��N�V�M�N�1�=2�� ��M�V�M�N�1�=2�� (23)

Because of Fermi statistics, the N fermions will fill the
bottom of the S2 sphere, leaving M holes at the top as we
have a total of N �M states available to each fermion. So
now we see that N and M can be interpreted as the number
or particles and holes on the sphere, respectively, and we
have a droplet of quantum hall liquid for particles at the
bottom and for holes at the top. The interface between the
two liquids will correspond to the edge of the droplet. We
already have the candidate states that describe the changes
in shape for the droplet, given by traces of the powers of
ayby. These do not distinguish between U�N� and U�M�
symmetry because of the cyclic property of the trace (there
is a ��1� sign associated to this operation which will
become relevant later).

The energy of the ground state will be (if we count the
particle states)

XN
i�1

��M� N � 2i� 1� � ��M� N�N � N2 � �MN

(24)

which coincides with the matrix model. This is just the
SU�2� angular momentum of the lowest weight state in the
antisymmetric tensor product.

Now, the next step is to decide how to interpret the
particle and hole excitations in the system. Following our
previous discussion of the one matrix model in terms of
Young tableaux, we create particles by considering sym-
metric representations of U�N�, and holes by considering
antisymmetric representations of U�N�, these are equiva-
lent to antisymmetric and symmetric representations of
U�M� respectively, from the pairing of Young tableaux.
-7
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Again, we see that the exchange M $ N exchanges the
notions of ’holes’ and ’particles’.

The first ones should build one large eigenvalue for the
N � N matrix aya, while the second ones build a large
eigenvalue for the matrix byb.

It should be clear by now that we have a matrix model
which describes a quantum hall droplet on the topology of
the sphere, and which is also in the presence of gravity or
an electric field. In the thermodynamic limit it has an exact
c � 1 CFT on the edge. Moreover in the matrix model the
particles and holes (N and M) appear symmetrically in
terms of the matrix degrees of freedom.

The coordinates of the particles and holes themselves (as
considered by the eigenvalues of aya and byb) appear as
different composite fields of gauge variant fields, which are
not directly observable. This is what makes possible the
symmetry between particles and holes to be present in this
formulation of the model. Neither one of them is funda-
mental: both are composite objects.

This description is in terms of free fermions: N particles
orM holes, and we can go back and forth between these by
the identification of the following naturally dual vector
spaces

�NVM�N�1
2

� �MV�
M�N�1

2
(25)

because there vector space ��N �M�VM�N�1
2

has dimen-
sion one. We then use the Hilbert space norm to identify V
and V�. Now that we have identified a matrix model which
has all the states to describe a finite number of fermions on
a finite geometry we can perturb the Hamiltonian to obtain
other interesting models, which can include interactions
between the fermions.
1This procedure would not realize the fractional quantum hall
state as the lowest lying state, which has L2 � 0 and energy
MN=2 over the vacuum in the free particle limit.
V. TOWARDS THE FQHE: ADDING
INTERACTIONS.

The fractional quantum hall effect can be obtained by
considering fermions which fill a fraction of a Landau level
and which have repulsive interactions [29]. We also have to
go to the thermodynamic limit so that the number of
particles and holes both scale the same way as we take
the number of particles to infinity, keeping N=M finite and
rational. In this paper we so far have ignored the details of
the large N;M limit, so we will try to provide a method for
studying the system at finite values of N;M. For the
topology of a sphere, the fractional quantum hall state
has also been considered in [7].

In our case we already have described a system of free
fermions, so now we need to add interactions between
them by perturbing the Hamiltonian of the model. Since
we have the correct Hilbert space to describe all wave
functions in the corresponding Landau level, there exists
a perturbation that will produce the desired effect on all of
the states. What is not clear is how simply this perturbation
is described in terms of the natural variables we are work-
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ing with (the a; b fermionic oscillators), and how much of
the details of the FQHE depend on the exact form of the
Hamiltonian.

We would want to perturb the system by adding as few
terms as possible, and we definitely want to do it in such a
way that the terms that we add are SU�2� invariant and that
they involve only two particles at a time. This last part is
where this formulation might become cumbersome. The
only term which would break the SU�2� symmetry is the
unperturbed Hamiltonian, and this will favor the state with
largest negative eigenvalue of L0.

The requirement of invariance under SU�2� transforma-
tions places various constraints on the perturbation. In
particular, it has to commute with L0, so the additional
term in the Hamiltonian and L0 are always mutually di-
agonalizable. The Hamiltonian will then mix states with
the same number of boxes (and which also belong to the
same eigenvalues of L2), and so long as the perturbation is
small, the lowest energy state will be a state with a small
number of boxes (compared to N1 and N2), so it can be
analyzed as a small perturbation of the edge of the quantum
hall droplet.1

This also means that in the matrix basis, the perturbation
will always have the same number of raising and lowering
operators.

For the description to be simple in terms of the matrix
variables, we would want to have a polynomial with few
terms in the fermionic fields. The simplest terms that we
can add involve two raising and two lowering operators.

In the description we had above, all states with same
values of L0 were degenerate in energy, irrespective of
their total SU�2� quantum number. The simplest operator
we can add that breaks this degeneracy is a term propor-
tional to the total angular momentum

"H � .L2 � .�L�L� � L2
0 � 2L0�: (26)

We also have the freedom to add a constant term to "H so
that the energy of the lowest state we had before is not
altered. It is easy to see that this perturbation of the
Hamiltonian has exactly two raising and two lowering
operators.

This perturbation is of double trace type, as each of
L�; L� and L0 is of single trace type. Single trace opera-
tors for diagonal matrices cannot produce interactions
between the eigenvalues (this is a statement one makes
with classical diagonal matrices). Double trace operators
produce interactions between pairs of eigenvalues, triple
trace operators produce interactions between three eigen-
values at a time and so on. In general, for two body
interactions we would expect that the Hamiltonian is of
-8
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double trace type. Double trace deformations of large N
systems are also solvable .

The first term we add clearly lifts some of the degener-
acies. It removes all degeneracies for a system with just
two particles or two holes, but in general for higher num-
bers of particles this will not be enough, as we will have
various representations with the same value of L2. This will
be true for any function f�L2�, but the restriction of being
double trace basically forces us to consider only the term
above.

The next thing we can do is classify all the single trace
operators according to their SU�2� quantum numbers. Let
us consider a trace with only creation operators. For ex-
ample

tr ��ayby�n�: (27)

This state is the highest weight state of a spin n represen-
tation of SU�2�. Acting with lowering operators changes
some of the ay and by for b; a respectively.

Now, since we have matrix-valued variables, the order of
operators inside the trace matters. In principle this means
that the two operators

tr �ayaayby�; tr�aybybby� (28)

would be linearly independent.
However, we are imposing the gauge constraint on the

system, which reads

:ay � a� b � by: � 0 (29)

:a � ay � by � b: � 0 (30)

The multiplication above is matrix multiplication. The
operators written above are the generators of the U�N� �
U�M� symmetry. They are normal ordered, but we keep the
matrix order as written above.

On physical states, the above operators vanish. This
means that when we find these operators inside a trace,
we can use these relations to replace one matrix operator
by another one.

We see this way that different orderings of the letters a; b
do not really matter too much, and the invariant of the
collection of such operators is the length of the word and
the spin L0. The length tells us that the word is obtained
from the highest weight state (27) by commutators with
L�.

In essence, the total set of single trace operators that we
can consider fall into the representations

0 � 1 � 2 � . . . � ~N (31)

where ~N is the smallest of M;N. After we get to
tr��ayby� ~N� there are no more algebraically independent
traces that we can consider.

From here, the double trace operators will come from
considering the singlets in the k � k representation of
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SU�2�, one coefficient for each of the representations
above, in Eq. (31).

Our hamiltonian will contain one coefficient per repre-
sentation of SU�2�. These should be related to the poten-
tials that Haldane [7] used written in terms of Li � Lj for
different particles.

Let us now explore the symmetry between particles and
holes further. It is easy to see that changing M $ N
changes the sign of the highest weight single trace opera-
tor:

tr ��ayby�n� $ tr��byay�n� � �tr��ayby�n� (32)

where we have used the cyclic property of the trace. The
same is true for the lowest weight. However, we see that
this operation also changes L� ! �L� and L� ! �L�,
so not all single trace operators change their sign. If we
take for example

tr�ayaayby� ! tr�bybbyay� � �tr�bbyayby�

’ tr�ayaayby�; (33)

where in the last operation we have used the gauge con-
straint :aya� bby: � 0. This is also compatible with the
change in sign of L� and L�. All together we find that the
perturbed Hamiltonian we have written is actually invari-
ant under exchange of particles and holes as well, because
the ��1� signs we get on the operators square always to one
in the Hamiltonian.

Theoretically this is very convenient. As discussed in the
introduction, this gives us a manifest equality between the
system at filling fraction 	 and 1� 	. We take this result as
strong evidence that the perturbations we are considering
are exactly of the right type to describe the fractional
quantum hall effect.

It would be interesting to determine how many of these
coefficients should be needed to realize a fractional quan-
tum hall state, this is currently under investigation. The
observation that one expects a fractional quantum hall
system when the interactions between the particles are
short range and repulsive should indicate that we need to
go to high spin for the operators to mimic this effect. The
terms with low spin seem to be related to the long range
potentials between the particles. One can make this a little
bit more precise: if we have a total of M� N levels on a
sphere of radius R, then each one occupies an area of order
A� R2=�M� N�. The typical short distance scale between
two particles (or a particle and a hole) is therefore of order

l�
����
A

p
� R=

���������������
M� N

p
(34)

which tells us that we probably do not need the most
general form of the Hamiltonian that we wrote above, but
only consider coefficients with L in the trace up to order���������������
N �M

p
. These should be enough to characterize any

short distance shape of the potential. Curiously, purely
from the matrix model point of view, it is also exactly at
-9



FIG. 2. An allowed Young tableaux for the fermionic matrix
model.

DAVID BERENSTEIN PHYSICAL REVIEW D 71, 085001 (2005)
this order where planar diagrams stop being useful, be-
cause nonplanar diagrams start competing with planar
diagrams due to combinatorics, see the discussion in
[18]. If this is a correct argument, then it suggests that
planar diagrams are still a useful notion to describe the new
ground state of the system and its perturbations. This is
also suggestive of a description in terms of some type of
string, possibly topological. However, we already know of
such type of connections between the fractional quantum
hall effect and two-dimensional conformal field theories,
see for example [31].

We have not yet been able to understand in detail what
features of the perturbation potential will help to form the
fractional quantum hall effect as opposed to some other
type of condensate. It should be clear that to favor systems
with L� 0 we would want the coefficient of L2 to be
greater than zero. This is still under investigation.

VI. A SYSTEM WITH A c� 1=2 EDGE

We have so far described a matrix model which repre-
sents a quantum hall droplet on a sphere. This model is an
‘‘orbifold’’ by a Z2 action, just like the 0A matrix model
was an orbifold by a Z2 action. For completeness, we
should describe the associated fermionic system without
orbifolding. This is just the gauged fermionic quantum
mechanics, based on one fermionic matrix oscillator pair
f; fy.

The discussion is not too distinct from the our original
fermionic matrix model. The spectrum does not allow for
fermionic eigenvalues, so we also need to be careful to
describe the spectrum correctly.

From the point of view of traces, we get the states

cn � tr��fy�n�: (35)

Notice that by the cyclic property of the trace, cn �
���n�1cn, so that the only values of n allowed are the
odd integers. One also uses this property to show that
fcn; cmg � 0, so that these states are fermions.

There is one fermion mode per odd integer. This is
similar with the mode structure of a chiral fermion on a
circle with antiperiodic boundary conditions. That system
has a c � 1=2 central charge. We conclude that this fer-
mionic matrix model is describing an ’edge’ with a c �
1=2 central charge. It is not usual that one would find such a
system in a FQHE, as the central charge is usually greater
than or equal to one to accommodate for the possibility of
adding and removing charge from the system. This leads to
a U�1� current algebra that measures this charge and has
central charge c � 1, see [32–34] for example, and more
recently [35]. There can be additional degrees of freedom
which might raise the central charge even further (for
example, the Pfaffian state of Moore and Read has this
property [31]).

From the point of view of Young tableaux, we need to
remember that for fermions, as described previously, the
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upper and lower indices in a Young tableaux transform in
representations that are related by flipping along the di-
agonal. To make a gauge invariant state, the upper and
lower indices should correspond to the same tableaux, so
only those tableaux that are symmetric along the diagonal
are allowed, this is shown in Fig. 2.

Notice that the counting of states coincides with the
counting via traces. This is because one can count the
energy of a fermion by a hook centered on the diagonal
of the tableaux. In the example in Fig. 2, one has two hooks
of length 9 and 3, respectively. It is easy to see also that no
pair of these hooks has the same length in any tableaux.
From the point of view of particles and holes (rows and
columns of the tableaux), the Young tableaux indicate that
whenever we give a large amount of energy to a particle we
also are giving the same amount of energy to a hole. The
system is therefore describing correlated particle-hole
states. Notice also that the system does not have the
SU�2� symmetry anymore either. This is because the gen-
erators L� and L� from the previous section are not
allowed operators.

One can consider a third description of the system, based
on a different approach to understanding the fundamental
degrees of freedom as fermionic matrices. The idea is to
remember that one can think of differentials as fermions, so
here we have a set of differential forms which are
Lie algebra valued for the Lie algebra of U�N� matrices.
If we consider the set of U�N� equivariant forms for the
Lie algebra, we will be describing the gauge invariant
states. The relations between the Lie algebra and the
Lie group itself can be used to rethink the problems in
terms of the (differential) cohomology groups of the U�N�
manifold itself. It is known that SU�N� can be considered
as a sphere bundle S2N�1 over the group SU�N � 1�, and
that the cohomology of SU�N� is the cohomology of the
above sphere tensored with the cohomology for SU�N �
1�. We can proceed by induction to get algebraic generators
given by a S3, an S5, etc. Here our Hamiltonian is the
degree of the differential form over SU�N�. To consider
-10
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U�N� �U�1� � SU�N�=ZN , we remember that it is essen-
tially a product space, so we also get a generator for degree
one from the U�1� circle. Thus the system can also be
considered as a topological model on the U�N� group
manifold. The counting of states we obtain this way is
the same as the one we described previously. There is one
fermion oscillator for each odd integer.

The orbifold of this system is obtained by the Z2 iden-
tification f ! �f, and this recovers the quantum hall
droplet on the sphere. An orbifold system by an Abelian
symmetry also has a quantum symmetry that one can
orbifold by and recover the original system. This acts by
exchanging a$ b in the Sec. IV, so that one ends up
identifying the two. One can recover the original formula-
tion by thinking of this as an orbifold of an orbifold, along
the lines of [36]. Notice also that this particular Z2 sym-
metry is exactly the one that identifies particles with holes.
The Z2 quantum symmetry does not commute with the
SU�2� action however, as it does not identify the doublets
properly. This is in contrast to the case of the bosonic
matrix model, where the SL�2;R� symmetry is present in
both the type 0A and type 0B theory.

It would also be interesting to investigate if it is possible
to deform the theory by double trace operators and get
exotic states which are somewhat analogous to a fractional
quantum hall state: a quantum liquid with a gap, but with
no charged excitations.

VII. CONCLUSION

We have argued in this paper that a particular fermionic
gauged matrix quantum mechanics, which describes of a
pair of rectangular matrices, provides a matrix model
description of a quantum hall droplet of noninteracting
particles. This quantum hall droplet lives on a geometry
with the topology of a sphere, and the model has a manifest
particle-hole symmetry.
085001
The way our system is able to do this is that neither the
holes nor the particles are manifest in the model. Rather, it
is by looking at the spectrum of the model that one is able
to identify particle and hole wave functions in the descrip-
tion. Indeed, these can be considered as eigenvalues of two
different matrix-valued composite operators.

Since we have this particle-hole symmetry manifestly in
the system, it is possible to gauge it by performing an
‘‘orbifold of an orbifold construction,’’ as in [36]. Doing
this we recover a single gauged matrix model for a single
fermion. This gave rise to a quantum droplet with an edge
which has a c � 1=2 CFT, namely, a theory with a free
fermion on a circle. It is always interesting to ask if it is
possible to find some realization of the periodic boundary
condition as well, as in the CFT this would correspond to
the description of twist operators.

We have also argued that it is possible to include inter-
actions between the particles, which does not look too
complicated and maybe it is enough to describe fractional
quantum hall phases in the thermodynamic limit. We have
shown that our prescription for introducing interactions
manifestly preserves the particle-hole symmetry of the
original system.

Recently, there has also been a string theory dual pro-
posal for the gauged harmonic oscillator system [37], and
see also [18]. It would not be surprising if it is also possible
to find such a dual string theory for the fermionic oscillator
we have described here.
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