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Naked shell singularities on the brane
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By utilizing nonstandard slicings of 5-dimensional Schwarzschild and Schwarzschild-AdS manifolds
based on isotropic coordinates, we generate static and spherically-symmetric braneworld spacetimes
containing shell-like naked null singularities. For planar slicings, we find that the brane-matter sourcing
the solution is a perfect fluid with an exotic equation of state and a pressure singularity where the brane
crosses the bulk horizon. From a relativistic point of view, such a singularity is required to maintain matter
infinitesimally above the surface of a black hole. From the point of view of the AdS/CFT conjecture, the
singular horizon can be seen as one possible quantum correction to a classical black hole geometry.
Various generalizations of planar slicings are also considered for a Ricci-flat bulk, and we find that
singular horizons and exotic matter distributions are common features.
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I. INTRODUCTION

Recent advances in nonperturbative string theory have
raised the prospect that our universe is a 4-dimensional
hypersurface (brane) embedded within some higher-
dimensional manifold with large extra dimensions. A phe-
nomenological 5-dimensional realization of this idea was
proposed by Randall & Sundrum (RS) in 1999 [1], which
involved one or two 4-dimensional Minkowski branes
embedded in an anti-de Sitter ‘‘bulk’’ 5-manifold (AdS5).
One of the most attractive features of this ‘‘braneworld’’
model is the fact that the 5-dimensional graviton zero mode
is sharply confined near the ‘‘visible brane’’ representing
our universe, implying that the force of gravity has the
appropriate Newtonian behavior at large distances. This
automatically makes the one-brane model in excellent
agreement with most astrophysical tests of general relativ-
ity in the weak gravity regime.

But this virtue is also somewhat of a detriment, because
we must turn to strong gravity phenomena in order to test
the model, and thereby the stringy ideas that motivated it.
The appropriate formalism to deal with nontrivial curva-
ture in the braneworld was developed by Shiromizu
et al.[2] shortly after the RS model first appeared. They
obtained an effective 4-dimensional Einstein equation that
was in part sourced by the (traceless) projection E�� of the
bulk Weyl tensor onto the brane. But this tensor did not
come with a brane-based equation of motion, which means
that the 4-dimensional effective theory is not closed—one
needs to know about the geometry of the bulk to fully
specify the dynamics of the brane. If one insists on using
a purely brane-based formalism, the precise form of E�� is
somewhat arbitrary.

It turns out this ambiguity is not a big problem for
braneworld cosmology. If one has a cosmological brane
which retains a Friedmann-Robertson-Walker (FRW) form
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for all time, it follows that the bulk spacetime shares the
same symmetries; i.e, the bulk is the product of R2 with a
maximally symmetric 3-space, and is sourced by a nega-
tive cosmological constant. Under such circumstances, the
5-dimensional version of Birkhoff’s theorem states that
the bulk is necessarily isometric to the 5-dimensional
Schwarzschild-anti-deSitter (AdS5) solution. This forces
E�� to take the form of the stress-energy tensor of a
cosmological radiation field whose amplitude is controlled
by the mass of the bulk black hole.

But there is another strong gravity phenomenon that is at
least as important as cosmology, namely, black holes.
Spherically-symmetric black hole 4-metrics have fewer
symmetries than their FRW counterparts, which implies
that the bulk geometry is not nearly as constrained as it is
for braneworld cosmology. In turn, this means that E�� is
undetermined by simply specifying that the brane is spheri-
cally symmetric and devoid of matter. Stated in another
way, there is no 4-dimensional Birkhoff uniqueness theo-
rem for braneworld black holes; the bulk Weyl contribution
acts as an arbitrary effective source.

Hence, there are many possible candidates for the
‘‘right’’ model of a braneworld black hole. One way to
get at them is to set the matter content of the brane to zero
and fine tune its tension, which makes the effective brane
field equation �4�R�� � �E��. This has been solved under
spherically-symmetric conditions by a number of authors,
but they all had to assume something about the form of
E��. For example, there is the tidal Reissner-Nordström
solution of Dadhich et al. [3], or the line elements of
Gregory et al. [4] that assume an equation of state for
the ‘‘Weyl fluid.’’ A different line of attack comes from
trying to solve the (scalar) field equation �4�R � constant
[5,6], which comes from the contracted Gauss-Codazzi
equations. Recently, the so-called ‘‘gradient-expansion’’
method has been applied to problem in an effort to sys-
tematically include effects of the extra dimension on the
brane metric [7]. Several workers have also looked at
-1  2005 The American Physical Society
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dynamical case of gravitational collapse on the brane, and
have come to the conclusion that the exterior brane metric
to a collapsing star cannot be static [8] and in some cases is
not even a vacuum [9]. The cumulative effect of these
efforts has been to create a veritable zoo of black hole
candidates, some of which have reasonable physical
properties.

But all of these models are somewhat unsatisfactory
because of ignorance of the bulk geometry. One does not
know if any singularities present extend off the brane, or
the nature and shape of any 5-dimensional horizons.
Hence, one cannot study the thermodynamics of such
objects. Perturbations of these geometries are also ill-
defined because of the under-determined nature of the
effective theory. This means that we cannot address the
stability of these models nor their gravity wave signatures,
which may be an important observational test of extra
dimensions [10]. It is in theory possible to obtain the
bulk geometry by evolving the 4-metric off the brane, but
the problem is analytically complicated [11,12] and robust
numerical progress can only be made for ‘‘small’’ black
holes [13–15].

However, there is at least one credible alternative to
these brane-based approaches. Instead of trying to deal
with effective field equations, one can take known 5-
dimensional solutions and identify branes as slices em-
bedded therein. The most successful example of this pro-
cedure is actually 4-dimensional. Emparan et al. [16]
considered a simple slicing of the 4-dimensional C-metric.
The slice had an extrinsic curvature proportional to its
induced metric, implying a pure tension brane, and a �2�
1�-dimensional black hole intrinsic geometry. Further-
more, the bulk was entirely regular. But unfortunately,
there currently is no 5-dimensional generalization of the
C-metric that allows the same construction for a �3�
1�-dimensional brane black hole, despite concerted efforts
to find one [17]. A different possibility for the bulk mani-
fold is the 5-dimensional black string solution, which is a
simple warped-product model where the brane metric is
precisely Schwarzschild [18,19]. Unfortunately in a one-
brane model, this metric is subject to the well-known long-
wavelength Gregory-Laflamme (GL) instability [20]; how-
ever, one can engineer a two-brane scenario where the GL
instability is cut off [10].

But why has it been so hard to find a brane localized
black hole solution in 5 dimensions? Separately, Tanaka
[21] and Emparan et al. [22] have conjectured that the
reason has to do with the AdS/CFT correspondence ([23]
and references therein), which states that the dynamics of
an AdSn manifold are formally dual to behavior of an �n�
1�-dimensional conformal field theory (CFT) living on its
boundary. The authors noted that in the 4-dimensional
model of Ref. [16], the E�� part of the brane’s effective
stress-energy tensor took the form a quantum-corrected
�2� 1�-black hole. That is, the solution on the boundary
084020
of AdS4 was derived from the backreaction of a quantum
field on the classical lower-dimensional black hole geome-
try. Extending the logic to one dimension higher, we are led
to believe that the �3� 1�-braneworld black hole ought to
take the form of Schwarzschild subject to quantum correc-
tions [24]. The precise form of the correction depends on
the choice made for the quantum vacuum. One possibility
has the black hole radiating its mass away via the Hawking
effect (which is what is conventionally regarded as the end-
state of gravitational collapse on the brane) another in-
volves the black hole in thermal equilibrium with a heat
bath at infinity. Yet another choice yields a static configu-
ration with a singularity where the horizon used to be. We
now see the difficulty in finding the 4-dimensional brane
black hole; all of these possibilities represent significant
departures from the canonical Schwarzschild geometry.

The purpose of this paper is to develop spherically-
symmetric and static braneworld models using methods
inspired from the successful construction of 2-brane local-
ized black holes. In particular, we will be considering
various slicings of 5-dimensional black hole metrics,
both with and without a negative cosmological constant
	5 � �6=‘2. We work in isotropic coordinates, which are
developed in Sec. II. In Sec. III, we study the simplest
possible braneworlds based on a planar slicing of the 5-
manifold through the event horizon. The basic methodol-
ogy is similar to the 4-dimensional ‘‘displace-cut-reflect’’
procedure for constructing thin-disk solutions to the
Einstein equations [25]. Intriguingly, we find that brane
4-geometry involves a naked shell-singularity for all cases
we consider; i.e., with 	5 � 0. This is as expected from the
AdS/CFT considerations mentioned above. Because the
planar slicing is selected on purely geometric grounds,
the extrinsic curvature and matter content of the brane-
worlds is not freely specifiable, it is rather forced upon us.
We find that the models are supported by a nontrivial
perfect fluid with a pressure singularity where the brane
intersects the 5-dimensional horizon. Such a singularity
could have been predicted on physical grounds: One re-
quires an infinite amount of force to keep matter suspended
infinitesimally above the surface of a black hole. Hence, an
infinite pressure gradient is needed to keep the brane-
matter static. Finally, in Sec. IV we consider quite general
nonplanar slices. These include slicings with vanishing
Ricci scalar, radial pressure, tangential pressure, and ex-
trinsic curvature, as well as slicings with isotropic pressure
and pure tension branes. In the last case, the only solution
we find corresponds to an Einstein-static universe coinci-
dent with the photon sphere of the bulk black hole. Sec. V
is reserved for conclusions and final comments.

Conventions—We employ the ‘‘mostly positive’’ metric
signature. Lowercase Latin indices run from 0 to 4 and
lowercase Greek indices run from 0 to 3. Metric compatible
covariant derivatives on 5-manifolds are denoted by ra;
while on 4-dimensional submanifolds (3-branes) they are
denoted by r�.
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II. TRANSFORMATIONS FROM SPHERICAL TO
ISOTROPIC COORDINATES

The purpose of this section is to describe how isotropic
coordinates can be constructed for a certain class of
spherically-symmetric manifolds in an arbitrary number
of dimensions, and to derive explicit coordinate transfor-
mations for two special 5-dimensional cases. These special
cases will be used in the next section to construct brane-
world shell solutions associated with vacuum and
Schwarzschild-AdS bulk manifolds, respectively.

A. General transformations for a class of
�d�2�-dimensional spherically-symmetric manifolds

We begin by considering a fairly wide �d� 2�-
dimensional class of spherically-symmetric manifolds
�M;g� whose line element can be expressed as

ds2�M� � �f�R�dt2 � f�1�R�dR2 � R2d�2
d; (1)

where d�2
d is the interval on a unit d-sphere. Our goal is to

find a coordinate transformation that puts this in the iso-
tropic form

ds2
�M�

� �H���dt2 �G����d�2 � �2d�2
d	: (2)

This line element is called isotropic because a further
simple coordinate transformation yields

ds2
�M�

� �H���dt2 �G���
Xd�1

i�1

dx2i ; (3)

with � �
���������������������������������������������
x21 � x22 � 
 
 
 � x2d�1

q
. In these coordinates

each of the spatial directions is on the same footing, hence
the moniker ‘‘isotropic.’’

It is easy to see that the coordinate transformation from
(1) to (2) must satisfy�

dR
d�

�
2
� f�R�G���; R2 � G����2: (4)

This set of equations is solved by

��R� � exp
Z R

R0

du��������������
u2f�u�

p ; (5)

which must be inverted to obtain R � R���. Here, R0 is
some fiducial lower limit of integration that enforces
��R0� � 1. Assuming that such an inversion is possible,
we have the following implicit representations of the iso-
tropic metric functions:

G��� �
R2���

�2 ; H��� � f�R����: (6)

Hence the required coordinate transformation is found.
We make two comments before proceeding: First, it is

straightforward to confirm that if we adopt the familiar 4-
dimensional Schwarzschild solution with d � 2 and
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f�R� � 1� 2M=R, we obtain the usual isotropic coordi-
nate patch found in standard textbooks. Second, we note
that the integral in (5) is complex if f�R�< 0 anywhere in
the interval �R0; R	. Therefore, if the line element (1)
represents a black hole manifold, then the isotropic coor-
dinate patch can only be used to cover the portion outside
the horizon; i.e., the part of the manifold with f > 0. We
will return to this point below.

B. The 5-dimensional Schwarzschild black hole in
isotropic coordinates

We now turn our attention to the 5-dimensional
Schwarzschild black hole. Usually, this is expressed as

ds2
�M�

� �

�
1�

R2
0

R2

�
dT 2 �

�
1�

R2
0

R2

�
�1
dR2

�R2d�2
3; (7)

Here, R0 represents the position of the black hole horizon
and is also related to the ADM mass of the central object.
For our purposes, it is useful to adopt dimensionless radial
and time coordinates by making the changes R ! R0 �
R and T ! R0 � t. If this is accompanied by a simulta-
neous scaling of the interval ds2

�M�
! R2

0 � ds2
�M�

, we have
the line element is in the standard form (1) with

f�R� � 1� 1=R2; d � 3: (8)

Notice that when we are working in dimensionless coor-
dinates, there are no freely specifiable parameters in the
solution, and the horizon is always at R � 1.

By application of the formula (5) with R0 set to unity—
as dictated by the horizon position in these coordinates—
we obtain the transformations

� � R�
���������������
R2 � 1

p
; R �

�2 � 1

2�
: (9)

From these, it is clear that the � coordinate is only well
defined for R> 1; i.e., outside the black hole horizon. The
explicit form of the isotropic metric functions is

H��� �
�
�2 � 1

�2 � 1

�
2
; (10a)

G��� �
�
�2 � 1

2�2

�
2
: (10b)

In order to check our work, we have confirmed by direct
calculation of the Einstein tensor that these metric func-
tions represent a 5-dimensional vacuum solution. In-
triguingly, they provide a solution for all �, not just
� > 1—this will be important later on. It is also interesting
to note that the Killing vector @t in these coordinates
becomes null at � � 1, but is nowhere spacelike. This is
a direct affirmation of our previous conclusion that the
isotropic coordinates do not cover the region inside the
horizon, which is characterized by @t 
 @t > 0.
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1The reader should be wary of a common alternative definition
of F, namely

F�z;m� �
Z sinz

0

dt������������������������������������
�1� t2��1�mt2�

p :

Our definition (19) matches the one found in the MAPLE sym-
bolic computation software.
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C. The 5-dimensional Schwarzschild-AdS black hole in
isotropic coordinates

Moving on, we come to the case of a 5-dimensional
black hole sourced by a negative cosmological constant;
i.e., the Schwarzschild-AdS 5-manifold (AdS5). The con-
ventional form of such a solution is

ds2�M� � �FdT 2 �F�1dR2 �R2d�2
3; (11a)

F � F �R� � 1�
R2

0

R2 �
R2

‘2
: (11b)

Here, R0 is again related to the ADM mass of the black
hole while ‘ is related to the (negative) cosmological
constant. It is convenient to rewrite F as

F �
�R2 �R2

���R
2 �R2

��

R2‘2
; (12)

where

R 2
 �

‘2

2

� �������������������
4R2

0

‘2
� 1

s
 1

�
: (13)

When the solution is written in this way, it is apparent that
there is an event horizon at R � R�. We again wish to
make use of dimensionless coordinates, this time defined
by the substitutions:

R ! R�R�; T ! t�R�;

ds2
�M�

! ds2
�M�

�R2
�:

(14)

We must also define new parameters as follows:

� �
‘

R�

; a� �
R�

R�

�
���������������
�2 � 1

q
: (15)

With these manipulations, the S� AdS5 line element can
be expressed in the form of Eq. (1) with

f�R� �
�R2 � a2���R

2 � 1�

�2R2 ; d � 3; (16)

and t and R as dimensionless coordinates. As in the vac-
uum example discussed in the previous subsection, the
horizon is located at R � 1; but unlike the Schwarzschild
case, there is an adjustable parameter in the dimensionless
solution, namely �.

We now obtain the S� AdS5 line element in isotropic
coordinates. The first step is to put the S� AdS5 expres-
sion for f into our general expression for ��R�; i.e., Eq. (5).
We again set the lower limit of integration R0 as the
position of the horizon at R � 1. This results in

��R� � exp
	
1

��
F
� ���������������

1�
1

R2

s
; s�

�

: (17)

Here,
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s� �

���������������
�2 � 1

�2 � 2

s
; �� �

���������������
�2 � 2

�2

s
; (18)

and F is an incomplete elliptic integral of the first kind,
defined by1

F�z; k� �
Z z

0

dt�������������������������������������
�1� t2��1� k2t2�

p : (19)

One comment about this coordinate transformation is in
order: the limit of ��R� as R! 1 is a constant value,
namely

�max � exp
	K�s��
��



; (20)

where K�k� � F�1; k� is a complete elliptic integral of the
first kind. So, the R! � transformation maps the semi-
infinite interval R 2 �1;1� onto some finite region � 2
�1; �max�. This is unlike the vacuum case above, since
Eq. (9) implies that �! 2R as R! 1.

The above expression (17) for � as a function of R is
indeed invertible with the aid of the Jacobi sn and cn
functions, which are implicitly defined by

sn �F�z; k�; k� � z; (21)

and

cn �z; k� � cosfarcsin�sn �z; k�	g: (22)

In many respects, these behave like the familiar trigono-
metric sine and cosine functions —, in particular, they are
periodic in their first argument. The old radius R as a
function of the isotropic radius � is then given by

R��� � nc �’���; s��; (23)

where nc �z; k� � 1=cn �z; k� and we have defined

’��� � �� ln�: (24)

The periodic nature of the nc function in R��� means that
we should restrict � to lie within some finite interval in
order to have a sensible coordinate transformation—how-
ever, this is no surprise because we have already deter-
mined from Eq. (17) that ��R� 2 �1; �max� for R 2 �1;1�.

Finally, the isotropic metric functionsG andH are easily
found from Eqs. (6), (16), and (23):
-4
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G��� �
nc2�’���; s��

�2 ; (25a)

H��� �
sc2�’���; s�� � a2�sn

2�’���; s��

�2 ; (25b)

where the Jacobi sc function is defined like a tangent;
i.e., sc �z; k� � sn �z; k�=cn �z; k�. We note sn �0; k� �
sc �0; k� � 0 for all k and ’�1� � 0, therefore H�1� � 0.
That is, at � � 1 the Killing vector @t becomes null.
Elsewhere, H��� is explicitly non-negative, which again
confirms that the isotropic coordinates only cover the
region outside the black hole horizon with @t 
 @t < 0.
Again, we have confirmed by direct computation that the
above metric functions solve the 5-dimensional field equa-
tions:

Gab �
6

�2 gab; (26)

for all �.
III. BRANEWORLDS FROM PLANAR SLICINGS
OF ISOTROPIC CHARTS

In the previous section, we developed isotropic coordi-
nate patches for a fairly wide class of spherically-
symmetric manifolds and for two special 5-dimensional
cases. We now attempt to generate braneworld models
from these special cases by considering their planar slic-
ings, first for the purely Schwarzschild bulk spacetime and
then for the S� AdS5 manifold. While the latter is more
technically complicated than the former, we will see that
the basic physics associated with both cases is remarkably
similar.

Before moving on to the particular cases, we comment
on the general algorithm that we will employ. The basic
strategy for the construction of braneworlds from bulk
manifolds covered by isotropic coordinates is the same as
the 4-dimensional ‘‘displace-cut-reflect’’ procedure for
constructing thin-disk solutions to the Einstein equations
[25]. The key is expressing the isotopic line element (2) as

ds�2�M � �H���dt2 �G����dr2 � r2d�2
d�1 � dw2	;

(27)
FIG. 1 (color online). An example of the displace–cut–reflect pr
horizon of the bulk black hole. In the picture, all but the r, w and one
been suppressed. Note that in this case, we have elected to retain the
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where � �
�����������������
r2 � w2

p
. This is nothing more than a general-

ization of cylindrical coordinates on the isotropic spatial
section of (2). To generate a braneworld model, we pick
one of the w � constant hypersurfaces �0 to be the brane.
Naturally, the �0 hypersurface will divide the bulk into two
regions, one of which we discard and replace with the
mirror image of the other half. In this way, we generate a
Z2 symmetric braneworld model. The metric on the brane
is

ds2
��0�

� �H�
�����������������
r2 � w2

0

q
�dt2 �G�

�����������������
r2 � w2

0

q
��dr2

� r2d�2
d�1	; (28)

where w � w0 is the defining equation of �0. We see that
the brane’s geometry will necessarily be static and spheri-
cally symmetric. This procedure is diagrammed in Fig. 1,
where we show the case of a planar braneworld intersecting
a bulk black hole horizon.

One of the features of this procedure is that we have no
control over the extrinsic curvature of the �0 hypersurface;
it is essentially fixed by the bulk geometry and our choice
of a planar braneworld geometry. Now, recall that in the
general relativistic thin-shell formalism, the matter carried
by a geometric defect such as �0 is related in a direct way
to its extrinsic curvature. Therefore, the matter content of
our braneworld is given to us from the model, rather than
being something that we have input directly into the for-
malism. What exactly is the nature of the matter confined
to �0? To answer this, we need the normal to the family of
w � constant hypersurfaces �w:

na � G1=2�
�����������������
r2 � w2

p
�@aw: (29)

We need the projection tensor and extrinsic curvature
associated with �w

hab � gab � nanb; Kab � hcarcnb; (30)

which leads to the following expression for the stress-
energy tensor of matter on the brane:

'25Sab � �2�Kab � habTrK�: (31)

Here, evaluation at w � w0 is understood and '25 is the 5-
dimensional gravity-matter coupling. In these coordinates,
ocedure when the �0 hypersurface is planar and intersects the
of the angular coordinates in the Sd�1 part of the metric (27) have
singularity-free half of the 5-manifold in the braneworld model.
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we expect that Sww � 0 since Sabna � 0. We will use this
expression below to read off the properties of the brane
matter in specific models.

A. Braneworlds from a Schwarzschild bulk

We now apply our braneworld construction to the iso-
tropic representation of the 5-dimensional Schwarzschild
metric derived in Sec. II B. Using Eqs. (10) and (28), we
obtain the following 4-geometry on the brane:

ds2
��0�

� �

�
r2 � w2

0 � 1

r2 � w2
0 � 1

�
2
dt2 �

	
r2 � w2

0 � 1

2�r2 � w2
0�



2
d)2

3;

(32)

where d)2
3 � dr2 � r2d�2

2 is the metric on flat Euclidean
3-space. We will denote the metric on �0 as h�*. This
metric is static, spherically symmetric, and asymptotically
flat in the r! 1 limit. One of the first things that one
notices about this metric is that if w0 2 ��1; 1	 there is a

Killing horizon at r �
���������������
1� w2

0

q
� r0—which we denote

by H —where the norm of @t vanishes. It should be clear
that H is the intersection of the braneworld �0 with the 5-
dimensional black hole horizon � � 1. Now, it is clear that
the induced metric on H is degenerate with signature �0�
���, hence it is a null surface as must be true for all

Killing horizons.
Another important feature of H is that it is the location

of a curvature singularity. To see this, consider the
Kretschmann curvature scalar:

K � R�*�+R�*�+ �
1024P�r; w0�

�r2 � w2
0 � 1�8�r2 � w2

0 � 1�2
;

(33)

where P�r; w0� is a complicated 12th order polynomial in r

and w0 satisfying P�
���������������
1� w2

0

q
; w0� � 12w4

0. Therefore, K
diverges on H signifying that the latter is a singular
hypersurface.2 Hence, in this spacetime a Killing horizon
and a curvature singularity are coincident. This is an un-
usual, but not entirely unprecedented feature of this model.
For example, one sees similar behavior in the extremal
Dp-brane solutions of supergravity theory [26]. However,
in the majority of those geometries the Killing horizon is
also an event horizon. Is it the same true for this brane-
world spacetime?

The answer is no, as we now demonstrate. The key is to
show that there is a null geodesic of finite affine length that
connects the singularity with arbitrary points in the exterior
region. Radially outgoing geodesics in this spacetime have
the following tangent vector field in the affine parametri-
zation:
2For the moment, we exclude the w0 � 0 case.
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k�@� � E
�
1

H
@
@t

�
1��������
GH

p
@
@r

�
; k�r�k* � 0; (34)

where E is the energy parameter. From this, we see that the
affine length �/ of a light ray travelling from H to some
r1 > r0 is

�/ �
1

E

Z r1

r0

��������
GH

p
dr: (35)

The integrand here is manifestly finite, hence �/ is simi-
larly finite and H cannot be an event horizon.

Furthermore, H is not even a trapping horizon.3 To see
this, we introduce the time and radial unit vectors:

t̂ �@� � H�1=2@t; r̂�@� � G�1=2@r: (36)

Then, for every 2-sphere �t; r� � constant we can define
vectors tangent to ingoing and outgoing radial null con-
gruences as

‘� �
1���
2

p �t̂� � r̂��; ~k� �
1���
2

p �t̂� � r̂��; (37)

respectively. Now, the induced metric on the 2-spheres is
q�* � h�* � t̂�t̂* � r̂�r̂* and the expansion of the in-
going and outgoing congruences are

1�‘� � q�*r�‘*; 1�~k� � q�*r�
~k*; (38)

respectively. Now, we want to know whether or not the 2-
spheres that are the constant time slices of H are apparent
horizons. They will be if the outgoing expansion scalar
vanishes for r � r0. A quick calculation shows:

1�~k� �
rG;r � 2G

2rG3=2
; (39)

whereG;r � dG=dr. It is straightforward to verify that this
reduces to

1�~k� �
w2

0���������������
1� w2

0

q ; (40)

on H . Since the expansion is clearly nonzero for w0 � 0,
we can conclude that H is not a trapping horizon for such
cases.

All this goes to show that when w2
0 2 �0; 1	, we are

dealing with a naked null singularity in this spacetime.
Interestingly, we can find a coordinate system that is
regular there. More precisely, the transformation

u � �e��1=2�r0�t�r��; v � e�1=2�r0�t�r��;

r� �
r
2
�

1

2w0
arctan

r
w0

�
1

r0
ln
r� r0
r� r0

;
(41)

puts our metric in the form
3Defined as the world tube of a series of apparent horizons as
in Ref. [27], for example.
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ds2
��0�

� �
4�r� r0�4 exp�

r0
2w0

arctan r
w0

� r0r
2 �

r20�r
2 � r20 � 2�2

du dv

�

	
r�r2 � w2

0 � 1�

2�r2 � w2
0�



2
d�2

2;

r � r�u; v�:

(42)

All the metric coefficients are well behaved at H , despite
the fact that there is a curvature singularity there.4

The final issue we want to address is the type of brane
matter that sources this model. We can calculate the stress-
energy tensor for the �0 hypersurface from the definitions
leading up to Eq. (31); the result is

Sab � diag��4; p; p; p; 0�; (43)

where

'254 �
24w0

�r2 � w2
0 � 1�2

; (44a)

'25p �
16w0

�r2 � w2
0 � 1�2�r2 � w2

0 � 1�
: (44b)

Therefore the brane matter admits a perfect fluid type
description with energy density 4 and isotropic pressure
p. Forw0 > 0, the density is finite and positive for all r. On
the other hand, the pressure is changes sign from positive to
negative and diverges as r decreases across r � r0. So, in
addition to a curvature singularity at r � r0, we also have a
singularity in some of the matter properties.5

There are two comments to be made about the brane
matter: The first centers around the observation that for
w0 < 0, the exterior density and pressure are both negative.
The reason for this comes from an implicit assumption in
our derivation;, namely, we always discard the part of the
bulk manifold with w<w0 when constructing our brane-
world. If w0 < 0, then there will be a 5-dimensional black
hole on either side of the brane in static equilibrium. The
only way to keep the black holes from crashing into each
other is to separate them with a concentration of repulsive
matter; i.e., matter with 4� 3p < 0. Hence the negative
energy when w0 < 0.

Our second comment has to do with the pressure singu-
larity on H . In 5 dimensions, the brane can be thought of
as a static thin disk of matter, and the disk’s pressure
provides support against gravitational collapse. But recall
that an infinite amount of force is required to maintain a
static matter distribution infinitesimally close to the surface
4A singularity associated with a regular metric in null coor-
dinates is termed ‘‘weak‘‘ in the Tipler sense [28,29].

5As an interesting aside, we note that one can also get pressure
singularities when a ‘‘bouncing‘‘ cosmological brane is em-
bedded in a Schwarzschild bulk [30–33]. In that case, the origin
of the singularity is a cusp in the embedding functions at the
position of the bounce, which can occur within the bulk black
hole event horizon [34].
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of a black hole. Since H is the intersection of the brane
with the 5-dimensional horizon, we see that the pressure
singularity is needed to prevent the disk matter from
falling into the black hole. As viewed from the brane, we
have a spherical distribution of matter on the verge of
gravitational collapse supported by a shell-like pressure
singularity.

To summarize, we have employed a planar slicing of the
isotropic coordinate patch of the Schwarzschild 5-
manifold derived in Sec. II B to derive a class of brane-
world models (32). The models are static and spherically
symmetric, and characterized by a singular null Killing
horizon. We also derived the properties of the brane matter
supporting the 4-geometry, for which there is an effective
perfect fluid description. The energy density is well-
behaved, but we found that the pressure had singular
behavior on the Killing horizon H . The pressure singu-
larity is needed to prevent the collapse of the brane into the
5-dimensional event horizon.

B. Braneworlds from a Schwarzschild-AdS bulk

We now move on to the case of Schwarzschild-AdS bulk
manifolds. While the individual calculations are somewhat
more involved than those of the previous section, the
procedures and results are fairly similar. In this case the
brane metric is

ds2
��0�

� �Hdt2 �G�dr2 � r2d�2
2�; (45a)

G �
nc2�’; s��

r2 � w2
0

; (45b)

H �
sc2�’; s�� � a2�sn

2�’; s��

�2 ; (45c)

’ � 1
2�� ln�r

2 � w2
0�: (45d)

As in the last section, we will suppress the
�����������������
r2 � w2

0

q
argument of the various metric functions. It is useful to

have series expansions of G and H about r � r0 ����������������
1� w2

0

q
, which are

G � 1� 2r0�r� r0� � �r20��
2
� � 4� � 1	�r� r0�

2

�O��r� r0�3	; (46a)

H �
�2�r20
�2 �a2� � 1��r� r0�

2 �O��r� r0�
3	: (46b)

It is immediately obvious from these series that the r � r0
hypersurface is again a Killing horizon H . Also, since we
can directly apply Eq. (39) to this situation, we can use the
above series expansion for G to obtain the expansion of an
outgoing null congruence on H :

1�~k� �
w2

0���������������
1� w2

0

q : (47)
-7



FIG. 2 (color online). The Kretschmann scalar as a function of
r for various braneworlds in the case of an S� AdS5 bulk. Each
of the sharp vertical peaks represent infinite spikes. We have
selected w0 �

���
3

p
=2 and as expected, we see the divergence of K

at r � r0 � 1=2 in all instances. The intersection of the r � rm
line with each of the other curves gives the position of spatial
infinity for each value of �. Hence, we see that the rightmost
spikes are ‘‘beyond infinity’’; i.e., there is only one divergence of
logK for r 2 �r0; rm�.
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This is precisely the same result as in the vacuum-bulk case
and leads us to the same conclusion: H is neither an event
nor trapping horizon.

To determine if H is the location of a curvature singu-
larity, we can use the exact expressions for G and H to
calculate the Kretschmann scalar, and then perform an-
other expansion about r � r0. The result is:

K �
12�1� r0�

2�1� r0�
2

r20
�r� r0��2 �O��r� r0��1	:

(48)

This clearly diverges as r! r0, so we have that H is the
site of a curvature singularity. Furthermore, when this fact
is coupled with our knowledge of the fact that H is not an
event horizon, we conclude that it is a naked singularity,
just as before.

One distinctive feature of this case is the asymptotic
structure. Recall that when we derived the isotropic patch
for S� AdS5, the entirety of the region outside the black
hole was covered by a finite interval of isotropic radius � 2
�1; �max�. This would lead us to expect that there might be

some special behavior of the 4-dimensional model at rm �����������������������
�2
max � w2

0

q
. Now, our previous formula for �max (20)

gives us that ’ � K�s�� at r � rm, which allows us to
expand our metric functions about r � rm. Keeping lead-
ing order terms only, we have

ds2
��0�

�
r2m � w2

0

r2m�r� rm�2
��dt2 � �2�dr2 � r2md�

2
2�	: (49)

From this, it is clear that the proper distance between any
point with r 2 �r0; rm� and the r � rm hypersurface is
infinite. Hence, we should regard r � rm as the spatial
infinity of our 4-geometry. With this understanding, we
can now interpret the plots of the brane’s Kretschmann
scalar versus r shown in Fig. 2. These show the expected
divergence of K at r � r0, but there are additional infinite
features at greater values of r. As explained in the caption,
these spikes always occur at r > rm and hence are ‘‘beyond
infinity’’; hence, they need not overly concern us.

We now determine the asymptotic behavior of the ge-
ometry as r! rm by calculating the limiting value of the
Riemann tensor. To lowest order in �r� rm�, we find

R�*�+ � �
r2m

�2�r2m � w2
0�
�+��+

*
+ � +*�+

�
+�: (50)

Hence, we have an asymptotically AdS-structure for the 4-
geometry with total cosmological constant:6
6This was foreshadowed by the form of the asymptotic metric
(49), which suggests that null geodesics could travel an infinite
proper distance in a finite amount of coordinate time—a hall-
mark of AdS-space.
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	4 � �
3r2m

�2�r2m � w2
0�
: (51)

This can be compared with the 5-dimensional cosmologi-
cal constant sourcing the bulk:

	5 � �
6

�2 : (52)

In situations such as these, there are standard formulae that
relate 	5 and 	4 with the brane’s tension / (see Ref. [35],
for example). In particular:

/ � 
���������������������������
6�2	4 �	5�

q
� 

6

�

������������������
w2

0

r2m � w2
0

s
: (53)

To remove the sign ambiguity in the sign of /, we need to
look at the properties of the brane matter sourcing the
model, which are obtained using the general algorithm
outlined above. The resulting expression for the brane’s
stress-energy tensor is extremely complicated and writing
it down here will not convey much insight. But there are a
few points worth mentioning:
(a) T
-8
he brane stress-energy tensor is of the perfect fluid
type with Sab � diag��4; p; p; p; 0�, just as for the
vacuum-bulk case.
(b) A
t r � r0, the density and pressure behave like:

lim
r!r0

'254 � 6w0; lim
r!r0

'25p �
2w0

r0�r� r0�
; (54)



FIG. 3
� � 1=
which
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i.e., the density is finite at the position of the curva-
ture singularity, while the pressure has an asymmet-
ric pole such that p > 0 for r > r0. This exactly
mirrors the vacuum-bulk case [cf. Eqs. (44)].
(c) W
e have the following limiting behavior near spatial
infinity:

lim
r!r�m

'254 � �
6w0

�
������������������
r2m � w2

0

q ; (55a)

lim
r!r�m

'25p � �
6w0

�
������������������
r2m � w2

0

q : (55b)

Therefore, the asymptotic behavior of the brane
matter is that of vacuum energy with cosmological
constant

/ � �
6w0

�
������������������
r2m � w2

0

q : (56)

We identify this as the tension of our brane, which is
negative for w0 > 0. Of course it is in complete
agreement with Eq. (53), which was obtained from
a direct analysis of the asymptotic geometry.
All of these features are manifest in Fig. 3, which shows 4
and p for a particular choice of � and w0.

To summarize this section, we have used planar slicings
of the isotropic coordinate map of S� AdS5 to generate
braneworld models. The 4-manifolds we obtained share
many properties with the ones derived from purely vacuum
5-manifolds in III A;, in particular, they involve null, shell-
like, naked singularities where the brane crosses the bulk
black hole horizon. The models approach AdS4 in the
(color online). Density and pressure of brane matter for
4 and w0 �

���
3

p
=2. Note for these parameters rm � 1:08,

has been selected as the rightmost point on the r axis.
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(appropriately identified) asymptotic region, and they are
supported by perfect fluid brane matter. The pressure di-
verges at the position of the singularity while the density
remains finite. By calculating the asymptotic behavior of 4
and p, we found an explicit expression for the brane
tension, which is negative if w0 > 0.
IV. BRANEWORLDS FROM NON-PLANAR
SLICINGS

In the previous section, we saw that our consideration of
purely planar slicings of black hole 5-manifolds led to
brane matter whose properties were largely given to us
by the geometry. In order to regain some control of the
sources in our model, we now consider braneworlds
formed from surfaces of revolution. For simplicity, we
will limit our work to bulk vacuum-bulk manifolds, though
much of what we do can be straightforwardly generalized
to the S� AdS5 case.

We can define a surface of revolution in isotropic coor-
dinates by w � w�r�, which induces the following metric
on �0:

ds2
��0�

� �Hdt2 �G��1� w2
;r�dr

2 � r2d�2
2	; (57)

where w;r � dw=dr and H and G are the isotropic metric

functions (10) evaluated at � �
����������������������
r2 � w2�r�

p
. Like the

planar case, the 4-geometry is static and spherically sym-
metric. Now, let us calculate the Ricci scalar for this
geometry:

�4�R � �
8q1

r2�r2 � w2 � 1�3�r2 � w2 � 1��1� w2
;r�

2 ;

(58)

where q1 � q1�r; w; w;r; w;rr� is given in the Appendix and
we have written w;rr � d2w=dr2. For generic choices of
w�r�, the Ricci scalar will diverge at r � r0, where r0 is the
solution of r2 � w2�r� � 1.7 We therefore identify a cur-
vature singularity at the r � r0 hypersurface, just as in the
planar case. We again expect this singularity to be naked,
because in this case the affine length of a radial null
geodesic with energy E travelling from r � r1 to r0 is

�/ �
1

E

Z r1

r0

���������������������������
GH�1� w2

;r�
q

dr; (59)

which is generally finite, except perhaps for very special
choices of w�r�.
7However, there is one important special case we should
highlight: namely w�r� � constant� r, which is equivalent to
5 � 50 in the original Schwarzschild coordinates. In this case,
we find q1 vanishes identically; i.e., �4�R � 0. Indeed, the
complete set of 4-dimensional curvature invariants is regular at
r � r0, so this braneworld likely does not have a shell singu-
larity. I would like to thank Ken-ichi Nakao and Daisuke Ida for
drawing this case to my attentiion.
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Hence, the nonplanar case is similar to the planar case in
that we can expect to find naked shell singularities.
However, we now have an additional degree of freedom
at our disposal to place certain conditions on the geometry,
the brane matter, or both. Let us now consider a few
examples of how this freedom can be used.

A. Slicings with vanishing Ricci scalar

In the, admittedly short, history of the search for brane-
world black holes, many workers have viewed solutions of
�4�R � 0 as likely candidates. This is because of one of the
contracted Gauss-Codazzi equations, which for a vacuum
bulk reads:

�4�R � �TrK�2 � KabKab: (60)

Since the brane’s stress-energy tensor is essentially deter-
mined by the extrinsic curvature, �4�R must vanish for
models with no brane matter present. However, the reverse
is not true; if �4�R � 0 we do not necessarily have that
K�* � 0. In our case, the imposition of �4�R � 0 will not
guarantee that the extrinsic curvature of the brane vanishes
— it is actually impossible to get K�* � 0 for a nontrivial
slice (cf. Sec. IV E). However, it is still an interesting case
to look at because it does place a constraint on the total
effective matter on the brane, which includes contributions
from both the brane and ‘‘Weyl’’ matter. In order to obtain
w�r� we set q1 � 0 and solve the resulting second-order
ODE numerically. Several representative solutions forw�r�
are plotted in Fig. 4. In this plot, we note the planar solution
w � 0 along with more exotically shaped braneworlds.
FIG. 4 (color online). Numeric solutions for w�r� associated
with �4�R � 0 slicings. The semicircle indicates the position of
the horizon. Note that the topmost curve is incomplete because it
has a vertical tangent when inside the horizon, which caused the
numeric integration to fail.
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B. Slicings with vanishing radial pressure

Another class of interesting braneworld are those with
vanishing principle pressures. Using Eq. (31) with an
extrinsic curvature calculated from

nadxa �
�w;rdr� dw�����������������������
�w2

;r � 1�G
q ; (61)

we find that the brane’s stress-energy tensor is of the form

Sab � diag��4; pr; p?; p?; 0�; (62)

where pr � p? in general. Explicitly, the radial pressure is

'25pr �
q2

r�r2 � w2 � 1�2�r2 � w2 � 1�
����������������
1� w2

;r

q ; (63)

where q2 � q2�r; w;w;r� is given in the Appendix. In this
expression, we see the now familiar pressure singularity at
r2 � w2�r� � 1. To find a braneworld with zero radial
pressure, we need to solve the first-order ODE q2 � 0.
This is actually possible to do in a closed form, and the
exact solution is given in the Appendix. We give a 3-
dimensional representation of one possible braneworld
obtained from this solution in Fig. 5. The plot gives the
impression that the brane approaches a planar geometry
from large r, which is actually not true since the limit of
jw�r�j as r! 1 is itself infinite.

C. Slicings with vanishing tangential pressure

We now turn our attention to braneworlds where the
brane matter satisfies p? � 0. In general, we have
FIG. 5 (color online). The surface of revolution formed from
our analytic solution for w�r� in the case of a pr � 0 slicing (a
wedge has been removed to aid visualization). The spherical
object indicates the position of the black hole horizon. The time
and 1 coordinates have been suppressed, which means that each
horizontal ruling on the surfaces actually represents a 2-sphere.
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'25p? �
�4q3

r�r2 � w2 � 1�2�r2 � w2 � 1��1� w2
;r�

3=2
;

(64)

where q3 � q3�r; w;w;r; w;rr� is given in the Appendix.
Obviously, the ODE to solve for p? � 0 is q3 � 0, which
is a rather complicated expression. We will content our-
selves with numerical solutions, one of which is depicted in
Fig. 6.

D. Slicings with isotropic pressure

We have already seen above that the planar slicings of 5-
dimensional Schwarzschild space give rise to braneworlds
with pr � p?; i.e., with isotropic pressure. But are planar
slicings the only ones that can be modeled as a perfect
fluid? To answer this, consider:

'25�pr � p?� �
4�r2 � w2��rw;rr � w;r � w3

;r�

�w2
;r � 1�3=2�w2 � r2 � 1�r

: (65)

Setting this equal to zero, we find

c21 � r2 � �w� c2�
2; (66)

where c1 and c2 are arbitrary constants. Hence braneworlds
with isotropic pressure have circular cross sections in the
�r; z�-plane and look like off-center spheres as surfaces of
revolution. In the limit of large radius (c1 ! 1), we re-
cover the planar result of Sec. III A.

E. Slicings with vanishing extrinsic curvature

We now turn our attention to braneworlds with Kab � 0,
which represent models with no matter confined to �0. If
FIG. 6 (color online). A numeric solution for w�r� in the case
of a p? � 0 slicing (see the caption of Fig. 5 for an explanation
of the visualization scheme).
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we calculate the extrinsic curvature explicitly, we find

Ktt �
8�r2 � w2��rw;r � w�����������������

w2
;r � 1

q
�1� w2 � r2��w2 � r2 � 1�2

: (67)

Setting this equal to zero yields w � cr, where c is a
constant. Plugging this into Kab , we find the only non-
vanishing components:

K11 � K66 � �
2cr

��������������
c2 � 1

p

�c2 � 1�r2 � 1
: (68)

Setting these identically equal to zero implies c � 0.
Hence the only surface of revolution we can find with
Kab � 0 is w � 0; i.e., the equatorial plane of the black
hole. This result makes intuitive sense, because we know
that surfaces with vanishing extrinsic curvature must be
symmetry surfaces of our spacetime, and the only way to
symmetrically slice our 5-manifold is down the middle.

F. Slicings resulting in a pure tension brane:
Einstein-static universe

The last type of slicing that we consider has the extrinsic
curvature proportional to the induced metric, which repre-
sents a brane sourced by a cosmological constant (i.e.
tension) only. Such a slicing has been previously sought
by Chamblin et al. [18], but due to a particular choice of
embedding scheme was not found.8 Assuming Kab �
�1

6)hab yields the solution:

r2 � w2 � 3� 2
���
2

p
; ) � 3: (69)

Hence, the only pure tension brane solution takes the form

of a static spherical shell of isotropic radius � �������������������
3� 2

���
2

pp
, which corresponds to a Schwarzschild radius

of R �
���
2

p
. The 4-metric in this case can be cast as

ds2
��0�

� �d72 � 2d�2
3; (70)

where 7 � t=
���
2

p
. This is the metric of the Einstein-static

universe. In other words, pure tension static branes around
5-dimensional Schwarzschild black holes take the form of
an Einstein-static universe. Note that the ‘’’dark radiation’’
plays the role that matter would in a 4-dimensional
Einstein-static solution, as can be seen from the effective
Friedman and Raychaudhuri equations of this ‘‘brane cos-
mology,’’ which in dimensionless coordinates read:

1

R2

�
dR
dt

�
2
� �

1

R2 �
1

R4 �
)2

36
� 0;

d2R

dt2
� 0: (71)
8See also the work of Kodama [36,37], which searched for
pure tension branes in quite general bulk manifolds satisfying
minimal symmetry assumptions.
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An interesting observation is that in this case, the brane
is coincident with the photon sphere of the bulk black hole.
This fact could have been anticipated from the following
fact: Any 5-dimensional null geodesic initially tangent to a
pure tension brane �0 will remained confined to that brane.
This can be seen by noting the following result from
Ref. [38]: Given that a null geodesic is momentarily tan-
gent to a hypersurface �0, its acceleration orthogonal to
that surface is proportional to Kabkakb, where ka is the
tangent vector. If �0 is a pure tension brane we haveKab �
�1

6)hab, from which it follows Kabkakb � 0 since kana �
kaka � 0. Hence, there is no acceleration perpendicular to
�0 and null geodesics are confined to pure tension branes.
Surfaces such as this are known as ‘‘totally geodesic’’ with
respect to null paths, which are a special type of umbilical
surface [36].
V. CONCLUSIONS

In this paper we have considered braneworld models
obtained by nontrivial slicings of S� AdS5 manifolds
defined in isotropic coordinates (Sec. II). We have suc-
ceeded in finding a number of static and spherically-
symmetric configurations, but almost all of them are char-
acterized by a naked pressure singularity where the brane
crosses the horizon of the bulk black hole. From a relativity
point of view, such a singularity is required to provide the
infinite force supporting matter infinitesimally above an
event horizon. From the AdS/CFT perspective, such a
singularity can be interpreted as Boulware-type quantum
correction to the horizon of the brane black hole. Generic
models have nonzero matter content; for planar slicings we
recover perfect fluid matter with an exotic equation of state
(Sec. III). Different possible constraints on the 4-geometry
were considered in Sec. IV in the simpler case of zero bulk
cosmological constant. Branes with zero Ricci scalar, ex-
trinsic curvature, vanishing principle pressures, and others
were derived; but the only solution with vacuum (i.e., only
brane tension) turned out to be the braneworld general-
ization of the Einstein-static universe residing on the 5-
dimensional photon-sphere.
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It must be said that none of the braneworlds derived can
be considered as a black hole candidate. The ubiquitous
matter content precludes that, but some interesting points
have been raised nevertheless. We have explicitly seen how
a regular bulk can easily give rise to a singular brane, and
how singular 4-dimensional horizons are a persistent fea-
ture of our construction. Because this is from the diver-
gence of tidal forces on static matter near the surface of a
black hole, we expect it to generalize to any static brane
with matter that intersects a bulk Killing horizon. Whether
or not this extends to the ‘‘real’’ static vacuum braneworld
black hole solution is an open question: it is unclear if one
needs a pressure singularity to support the Weyl fluid
certain to be present in such a model. If so, this provides
strong support for, and physical insight into, the conjecture
that braneworld black holes naturally incorporate quantum
corrections.

One important issue that we have not addressed is the
stability of these models. While it is true that the bulk
geometries are stable, there is no guarantee that the inclu-
sion of a brane boundary will not have a destabilization
effect. Actually finding out if these models are stable is not
an easy task, since all the branes considered tend to break
the S3 symmetry of the bulk, which complicates the analy-
sis of perturbation wave equations. The exception is the
Einstein-static brane universe seen in Sec. IV F, which is
prone to a relatively straightforward stability analysis. We
will report on this case in a forthcoming paper.
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APPENDIX
(a) D
-12
efinitions of various quantities associated with
nonplanar slicings:
q1 � ��8r7w2 � 2w8r� 2r9 � 12r5w4 � 8r3w6 � 2r5 � 2w4r�w;r � 4r2w3 � 4r4w	w;rr
� �w8 � w4 � 6w2r2 � 5r4 � 6r4w4 � 4r2w6 � r8 � 4r6w2�w4

;r � �16wr3 � 8rw3�w3
;r

� ��6w2r2 � 5r4 � w4 � 4r6w2 � r8 � 4r2w6 � w8 � 6r4w4�w2
;r � �16wr3 � 8rw3�w;r � 12w2r2; (A1a)

q2 � ��8w6 � 24r2w4 � 8w2 � 8r2 � 8r6 � 24r4w2�w;r � 16wr; (A1b)

q3 � �r7 � 3w2r5 � �3w4 � 1�r3 � ��w2 � w6�r	w;rr � �r6 � 3r4w2 � �3� 3w4�r2 � w2 � w6	w3
;r

� 4rww2
;r � �r6 � 3r4w2 � �3� 3w4�r2 � w2 � w6	w;r � 4wr: (A1c)
(b) Analytic solution for w�r� in the case of vanishing radial pressure:
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w�r� � 

��������������������������������������������������������������������������������������������������������������������
27=3X4 � 8cr2 � 12� 4r4 � 4c2 � 214=3r2X2 � 28=3cX2

p

8641=6X
; (A2a)

X6 � 3�24r4 � 12r8 � 60cr2 � 36r6c� 12c3r2 � 12� 3c2 � 36c2r4�1=22r6 � 6cr4 � �6c2 � 18�r2

� 2c3 � 9c; (A2b)
where c is an arbitrary constant.
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