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Did the universe loiter at high redshifts?
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We show that loitering at high redshifts (z = 6) can easily arise in braneworld models of dark energy
which, in addition to being spatially flat, also accelerate at late times. Loitering is characterized by the fact
that the Hubble parameter dips in value over a narrow redshift range which we shall refer to as the
“loitering epoch.” During loitering, density perturbations are expected to grow rapidly. In addition, since
the expansion of the universe slows down, its age near loitering dramatically increases. An early epoch of
loitering is expected to boost the formation of high-redshift gravitationally bound systems such as 10°M,
black holes at z ~ 6 and lower-mass black holes and/or population III stars at z > 10, whose existence
could be problematic within the LCDM (lambda + cold dark matter) scenario. Loitering models also
help to reduce the redshift of reionization from its currently (high) value of z.,, = 17 in LCDM
cosmology, thus alleviating a significant source of tension between observations of the high-redshift
universe and theoretical model building. Currently a loitering universe accelerates with an effective
equation of state w < —1 thus mimicking phantom dark energy. Unlike phantom, however, the late-time
expansion of the universe in our model is singularity free, and a universe that loitered in the past will

approach a LCDM model asymptotically in the distant future.
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I. INTRODUCTION

Standard big-bang cosmology, as epitomized in its most
recent avatar, LCDM (lambda + cold dark matter), is in
excellent agreement with a host of cosmological observa-
tions including galaxy clustering, fluctuations in the CMB,
and the current accelerating epoch. Yet it appears that
recent observations at modest redshifts (6 < z =< 20) may
have some surprises in store for LCDM.

(1) In less than a decade of observations, the number of
known high-redshift QSO’s has shown an almost
20-fold increase. Indeed, over 400 QSO’s with red-
shifts z >4 are known at present, and the seven
highest redshift quasars have z > 5.7 [1]. If quasars
shine by virtue of an accreting black hole at their
centers, then all these QSO’s must host = 10°M,,
black holes. Whether such highly massive black
holes can successfully form in a LCDM universe
which is less than a billion years old at z ~ 6 re-
mains an open question, but most theorists seem to
agree that theoretical models of the growth of black
holes, whether by accretion or through BH-BH
mergers, are under some tension to explain the
observations [1,2].

(i1) In addition to the presence of large supermassive
black holes at z ~ 6, there is indirect evidence to
suggest that a population of less massive black holes
and/or population III stars was already in place by
z = 17 and may have been responsible for ionizing
the universe at lower redshifts." Whether the LCDM

"WMAP observations give 7 =0.17 £ 0.06 for the optical
depth which translates into z = 17 £5 for the reionization
redshift in LCDM cosmology [3].
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model can form structure early and efficiently
enough to successfully reionize the universe by z ~
17 is a moot point [4]. In any case, both (i) and (ii)
provoke the concerned cosmologist to look for al-
ternative models, which, while preserving the mani-
fold strengths and successes of LCDM, will also be
able to provide a compelling resolution to the issues
raised above. In this paper, we show that one such
model—a braneworld universe which loiters at an
early epoch—may provide an attractive alternative
to LCDM.

II. LOITERING UNIVERSE

A considerable body of evidence exists to suggest that
the universe is currently accelerating, i.e., that its expan-
sion rate is speeding up rather than slowing down [5].
Models of dark energy incorporate this effect by making
the deceleration parameter change sign while the Hubble
parameter is usually assumed to be a monotonically de-
creasing function of the cosmic time.” In the present paper,
we show that this need not necessarily be the case and that
compelling dark-energy models can be constructed in
which H(z) dips in value at high redshifts. In these models,
dH(z)/dz =0 at z;,; > 1, which is called the “loitering
redshift.”” (A universe which loiters has also been called a
“hesitating”” universe, since, if H(zj,;) = 0, the universe
hesitates at the redshift z,; for a lengthy period of time—
before either collapsing or reexpanding.) Loitering in-
creases the age of the universe at high z and also provides

*Phantom models may provide an exception to this rule, see
[6] and references therein.
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a boost to the growth of density inhomogeneities, thereby
endowing a dark-energy model with compelling new
properties.

In this paper, we show that loitering can arise naturally
in a class of braneworld models which also provide a viable
alternative to LCDM in explaining the late-time accelera-
tion of the universe [7]. Before we discuss loitering in
braneworld models, let us briefly review the status of
loitering in standard general relativity. Within a FRW
setting, loitering can only arise in a universe which is
spatially closed and which is filled with matter and a
cosmological constant (or some other form of dark en-
ergy—see [8]). The evolution of such a universe is de-
scribed by the equation

87G poay Ak
=220V _
3 4 3 a?
where p, is the present matter density. Loitering in (1)
arises if the curvature term (1/a?) is large enough to
substantially offset the dark matter + dark energy terms
but not so large that the universe collapses. The redshift at
which the universe loitered can be determined by rewriting
(1) in the form

H? k=1, (1)

o Q1 +23+ 0, +0Q,(0+2% (2
where Q, = —k/aiH}, Q. =87Gpy/3H:, Q\ =
A/3H?, the subscript “0” refers to present epoch, and
the constraint equation requires Q, =1—Q, — Q,.
The loitering condition dh/dz = 0 gives

219,

30,
and it is easy to show that z;,;; = 2 for ), = 0.1 [8]. (Note
that a large value of |}, | can cause the universe to recol-
lapse.) The value of the Hubble parameter at loitering can
be determined by substituting z;; into (2). Note that, since
d/a=H + H?, it follows that (i/a)l.—, = H*(zji) at
loitering. (The special case ¢ = 0, d = 0 corresponds to
the static Einstein universe [9]. For a detailed discussion of
loitering in FRW models with dark energy see [8].
Loitering in more general contexts has been discussed in
[101.)

Interest in loitering FRW models has waxed and waned
ever since the original discovery of a loitering cosmology
by Lemaitre over 70 years ago [11]. Among the reasons
why the interest in loitering appears to have declined in
more recent times are the following: (i) even though loiter-
ing models can accommodate an accelerating universe, the
loitering redshift is usually small: z;,;; = 2 in LCDM; (ii)
loitering models require a large spatial curvature, which is
at variance with inflationary predictions and CMB obser-
vations both of which support a flat universe. As we shall
show, in marked contrast with the above scenario, loitering
in braneworld models can take place in a spatially flat

1+ Loit —
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universe and at high redshifts (z = 6). At late times, the
loitering braneworld model has properties similar to those
of LCDM.

III. LOITERING IN BRANEWORLD MODELS

The braneworld model which we shall consider presents
a successful synthesis of the higher-dimensional Ansitze
proposed by Randall and Sundrum [12] and Dvali,
Gabadadze, and Porrati [13], and is described by the action
(14]

S=M3|: (R—ZAb)—zf K:|
bulk brane
+ f (m2R — 20) + f Lhgy &) )
brane brane

Here, R is the scalar curvature of the five-dimensional
metric g, in the bulk, and R is the scalar curvature of the
induced metric h,, = g,, — n,n, on the brane, where n¢
is the vector field of the inner unit normal to the brane. The
quantity K = K,,h® is the trace of the symmetric tensor
of extrinsic curvature K,, = hiV_ n, of the brane, and
L(h,,, ¢) denotes the Lagrangian density of the four-
dimensional matter fields ¢» whose dynamics is restricted
to the brane (we use the notation and conventions of [15]).
Integrations over the bulk and brane are taken with the
natural volume elements \/—_gd5x and ~/—hd*x, respec-
tively. The constants M and m denote, respectively, the
five-dimensional and four-dimensional Planck masses, Ay
is the five-dimensional (bulk) cosmological constant, and
o is the brane tension.

Action (4) leads to the following expression for the
Hubble parameter on the brane for a spatially flat universe

[7]:

Hz(a)=%+3+%[1t\/1+€2<i3+3—%—£4>}

a a

where

_ pod} o 2m?
3m?’ 3m?’ M3
Note that the four-dimensional Planck mass m is related to
the effective Newton’s constant on the brane as m =
1/\/87G.

The two signs in (5) correspond to the two branches of
the braneworld models and are connected with the two
different ways in which the brane can be embedded in the
bulk. As shown in [7], the “+” sign in (5) corresponds to
late-time acceleration of the universe driven by dark en-
ergy with an “effective” equation of state w = —1
(BRANE2) whereas the ““—"’ sign is associated with phan-
tomlike behavior w = —1 (BRANEI1). The length scale
€ =2m?/M? ~ cHy' in a braneworld which begins to
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accelerate at the current epoch [7,13]. In particular, when
€ = 0 (corresponding to m = 0), Eq. (5) reduces to

+ 2

H? =ﬂ+£+7(p 7)

6 a* oM®

describing the evolution of a RS braneworld [16]. The

opposite limit £ — oo (M = 0) results in the LCDM model

, )

H2(a) = % +B )

while setting A, =0 and o = 0 gives rise to the DGP
braneworld [13].

Of crucial importance to the present analysis will be the
“dark radiation” term C/a* in (5) whose presence is a
generic feature in braneworld models and which describes
the projection of the bulk degrees of freedom onto the
brane. (It corresponds to the presence of the bulk black
hole.) An interesting situation arises when C <0 and
€%|C|/a* > 1. In this case, if €?|C|/a* is larger than the
remaining terms under the square root in (5), then that‘

H(z) _
Hj
where
___Po _ T _ 1
™ 3mHE 7 3mPHE CeH
Ay C
Q) =——%, Qr=———. 11
Ay 6H(2) C aéHg ( )

The (s satisfy the constraint equation

O+ Q, —2JQ0/1+Qy, + Q=1 (12)

When the dark-radiation term is strongly dominating,
Eq. (5) reduces to

2
#0142+ 0, — 2T+ 2R, (13
0

which is the braneworld analog of (2). The loitering red-
shift in this case can be defined by the condition H'(z).;) =
0; as a result, one gets

4 . /Q~0
1+Zloit=§ QC £ (14)

From this expression we find that the universe will loiter at
a large redshift z),; > 1 provided Q-Q, > Q2. Since

*The negative value of the dark-radiation term implies the
presence of black hole with negative mass—hence, naked sin-
gularity—in the complete extension of the bulk geometry. In
principle, this singularity could be “closed from our view” by
another (invisible) brane.
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equation reduces to °

A 2v—-C

H*(a) ==+ B=*
(@) a’® La?

®

Equation (9) bears a close formal resemblance to (1),
which gave rise to loitering solutions in standard FRW
geometry for k = 1. Indeed, the role of the spatial curva-
ture in (9) is played by the dark-radiation term; conse-
quently, a spatially open universe is mimicked by the
BRANE2 model while a closed universe is mimicked by
BRANEI. In analogy with standard cosmology, one might
expect the braneworld model (5) to show loitering behavior
in the BRANEI] case. This is indeed the case, and strongly
loitering solutions to (5) and (9) can be found by requiring
H'(a) = 0.

Although this is the general procedure which we follow,
for practical purposes it will be more suitable to rewrite (5)
with the lower sign in the form

Q,1+2P3+Q,+20,— 2«/Q€\/Qm(1 +2P+Q, +Qp+ Oy + Qc(l +2)4 (10)

Q2 < 1, this is not difficult to achieve in practice.
Successful loitering of this type requires the following
two conditions to be satisfied:

Qe+ zi6i)* > Q1 + 260)* + Qp + Qp + Qy,
O, ~ Qe Q1+ Zii) (15)

The first inequality ensures that the dark-radiation term
dominates over the remaining terms under the square root
of (10) during loitering, while the second makes sure that
this term is never so large as to cause the universe to
recollapse.

Substituting the value for 1 + z),; from (14) into (15),
we obtain

(00

Q, o

> Oy, (16)

which is a necessary condition for loitering in our brane-
world model.

Finally, the Hubble parameter at loitering is given by the
approximate expression

H i) _ o 32 Q)2

~ () -_— 17
2 N TR Y2 17

Note that conventional loitering is usually associated
with a vanishingly small value for the Hubble parameter
at the loitering redshift [8]. The Hubble parameter at loiter-
ing can be set as close to zero as possible; however, we do
not require it to be very close to zero. A small “dip” in the
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The Hubble parameter for a universe that loiters at zj,;; = 18. Parameter values are ,, = 0.3, Q- = 8.0, Q, = 3.0, and

Q,,/ 10° = 6, 4.5, 3.4 (solid lines, from top to bottom). The left panel shows the Hubble parameter with respect to the LCDM value
while, in the right panel, the LCDM (dashed) and loitering (solid) Hubble parameters are shown separately.

value of H(z), which is sufficient for our purposes, arises
for a far larger class of parameter values than the more
demanding condition H(zy;) = 0.

Moreover, in a wide range of parameters, the universe
evolution may not exhibit a minimum of the Hubble pa-
rameter H(z). In this case, the definition of the loitering
redshift by the condition H'(zj,;) = 0 is not appropriate
and can be generalized in several different ways, one of
which is described in the appendix.

An example of a loitering model is shown in Fig. 1,
where the Hubble parameter of a universe which loitered at
z = 18 is plotted against the redshift, keeping Q,,, ., and
Q¢ fixed and varying the value of (), . The right-hand
panel of Fig. 1 illustrates the fact that the loitering universe
can show a variety of interesting behavior: (i) top curve,
H(z) is monotonically increasing and H'(z) =~ constant in
the loitering interval; (ii) middle curve, H(z) appears to
have an inflexion point (H' = 0, H" =~ 0) during loitering;
(iii) lower curve, H(z) has both a maximum and a mini-
mum, the latter occurring in the loitering regime.

At this point, we would like to stress an important
difference existing between the Randall-Sundrum brane-
world (7) and our universe (5) due to which the latter can
accommodate a large value of dark radiation without vio-
lating nucleosynthesis constraints whereas the former can-
not. In the Randall-Sundrum braneworld (7), the dark-
radiation term (C/a*) affects cosmological expansion in
exactly the same way as the usual radiation density p,, so
that this model comes into serious conflict with the pre-
dictions of the big-bang nucleosynthesis if |C| is very large
[17]. In the loitering braneworld, on the other hand, the
dark-radiation term resides under the square root in (5);
due to this circumstance its effect on the cosmological
expansion is less severe and, more importantly, transient.
Indeed, even if the dark-radiation term is very large
(ICl/a* > py, p,), its influence on expansion can only be
« 1/a?, which does not pose a serious threat to the stan-
dard predictions of the big-bang nucleosynthesis.

A loitering universe could have several important cos-
mological consequences:
(i) The age of the universe during loitering increases,
as shown in Fig. 2. The reason for this can be seen
immediately from the expression

_ *© dZ/
H2) = fz (1 +2)HE) (18

Clearly, a lower value of H(z) close to loitering will
boost the age of the universe at that epoch. In Fig. 2,
the age of the universe is plotted with reference to a
LCDM universe, which has been chosen as our
fiducial model. It is interesting to note that, while
the age at loitering can be significantly larger in the
loitering model than in LCDM [#,4;(z30i) ~ few X
fLepm(Zioit) ], the present age of the universe in both
models is comparable [#,;,(0) < 1.2 X #; cpm(0)]4
An important consequence of having a larger age of
the universe at z ~ 20 (or so) is that astrophysical
processes at these redshifts have more time in
which to develop. This is especially important for
gravitational instability which forms gravitation-
ally bound systems from the extremely tiny fluctu-
ations existing at the epoch of last scattering. Thus,
an early loitering epoch may be conducive to the
formation of population III stars and low-mass
black holes at z ~ 17 and also of ~10°M, black
holes at lower redshifts (z ~ 6).

(i) In Fig. 2, the luminosity distance for the loitering
model is shown, again with LCDM as the base
model. The luminosity distance is related to the
Hubble parameter through

“The age of a LCDM universe at z> 1 is #(z) =
(2/3Ho Q) (1 + 2)73/2 =538 X 103(1 + z/10)73/2 years for
Q,, =03and i = 0.7.
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FIG. 2.
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In the left panel, the age of three loitering models is shown relative to the age in LCDM (model parameters are the same as in
Fig. 1). Note that the age of the universe near loitering (z;,;; ~ 18) is significantly greater than that in LCDM although, at the present
epoch, the difference in ages between the two models is relatively small. In the right panel, the luminosity distance in a universe that
loiters at z),; = 18 is shown in comparison with other models. Note that the luminosity distance in the loitering model is only slightly
larger than that in LCDM and smaller than that in a phantom model with w = —1.5.

2 dz

0 H(z)’
One finds from Fig. 2 that the luminosity distance
in the loitering model, although somewhat larger
than in LCDM, is smaller than in a phantom model
with w = —1.5. Since both phantom and LCDM
models provide excellent fits to type Ia supernova
data [5,18,19], we expect our family of ‘high-
redshift loitering models” to also be in good agree-
ment with observations. (A detailed comparison of
loitering models with observations lies outside of
the scope of the present paper and will be reported
elsewhere.)

The reason why both the luminosity distance and
the current age of the universe have values which
are close to those in the LCDM model is clear from
Fig. 1, where we see that the difference between the
Hubble parameters for the loitering models and
LCDM model is small at low redshifts. Since
both D, (z) and #(z) probe H !(z), and since the
value of the Hubble parameter at low z is much
smaller than its value at high z [unless parameter
values are chosen to give H(z);) = 0 with a high
precision], it follows that | D' (z) — DYPM(z7)| <«
DECPM () and |1 (z) — f-CPM(z)| <« LCPM(z) for
7K 1.

The growth of density perturbations depends sen-
sitively upon the behavior of the Hubble parameter,
as can be seen from the following equation describ-
ing the growth of linearized density perturbations
8= (p— p)/p in a FRW universe (ignoring the
effects of pressure):

D, (z) _

1+z (19)

&+ 2HS6 —4wGpd = 0. (20)

In Eq. (20), the second term 2H 6 damps the growth
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of perturbations; consequently, a lower value of
H(z) during loitering will boost the growth rate in
density perturbations, as originally demonstrated
in [8].

Here we should note that Eq. (20) for perturbations
is perfectly valid only in general relativity and, in
principle, may be corrected or modified in the
braneworld theory under consideration. Thus, for
the DGP braneworld model [13] [which corre-
sponds to setting o =0, A, =0 and C =0 in
Eq. (9)], the linearized equation

5+ 2H6 — 47TG,3<1 + %)5 =0 1)
was derived in [20], where
1+ Q2(r) 8wGp(t)
=__  "mtY Q =——" (22
A 1-Q2()’ m(?) 3H?(1) 22)

It is important to note the similarities as well as
differences between (20) and (21). Thus, cosmo-
logical expansion works in the same way for both
models and introduces the damping term 2H$ in
(20) as well as in (21). However, in contrast to (20),
the braneworld perturbation Eq. (21) has a time-
dependent (decreasing) effective gravitational con-
stant

1
Getr = G<1 + §>, (23)
which is expected to affect the growth rate of
linearized density perturbations in this model. For
the generic braneworld model which we study in
this paper [which has nonzero brane and bulk cos-
mological constants and especially nonzero dark
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(iv)

radiation: C # 0 in Eq. (5)], the corresponding
equation for cosmological perturbations remains
to be derived. We expect the form of this equation
to be dependent on the additional boundary con-
ditions in the bulk or on the brane. However, we
anticipate that such an equation will contain the
damping term 2H§& which serves to enhance the
growth of perturbations in the case of loitering. At
the same time, braneworld-specific effects may act
in the opposite direction leading to the suppression
of the growth of perturbations relative to the FRW
model, as is the case, for instance, with the last term
in (21) for the DGP model [20]. This is an impor-
tant issue requiring further investigation, and we
shall return to it in a future paper.

The deceleration parameter g and the effective
equation of state w in our loitering model are given
by the expressions

_H'(2) _
q(2) = ") (1+2)—1,
24)
w(z) = 2q(z) — 1
3[1-Q,:)]

where H(z) is determined from (10) and (12). The
current values of these quantities are
3

JQ
fI0=§Qm[1_ g
1/Qe+,/1+QAb+QC
4 Q¢
X[(14+=-—=)|—-
(1+3a5)] -

Q, S

W0=_1_ .
(1= Q) VO + 1+ 0y +Qc
4 Q¢
N
><<1 3Qm>’ (25)

From Eq. (25) we find that wy < —1if Q- = 0; in
other words, our loitering universe has a phantom-
like effective equation of state. [In particular, for
the loitering models shown in Fig. 1, we have wy =
—1.035, —1.04, —1.047 (top to bottom), all of
which are in excellent agreement with recent ob-
servations [21].] However, in contrast to phantom
models, the Hubble parameter in a loitering uni-
verse (10) does not encounter a future singularity
since Qc, Q, >0 is always satisfied in models
which loitered in the past. (Future singularities
can arise in braneworld models if Q., Q, <0—
see [22] for a comprehensive discussion of this
issue and [23] for related ideas.)

An interesting consequence of the loitering brane-
world is that the time-dependent density parameter
O,.(z) = 87Gp,,(z)/3H?(z) exceeds unity at some
time in the past. This follows immediately from the
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fact that, since the value of H(z) in the loitering
braneworld model is smaller than its counterpart in
LCDM, the value of €,(z) is larger than its coun-
terpart in LCDM. One important consequence of
this behavior is that, as expected from (25), the
effective equation of state (EOS) blows up pre-
cisely when Q. (z) = 1. In Fig. 3, we show that,
in contrast to the singular behavior of the EOS, the
deceleration parameter remains finite and well be-
haved even as w — co. Note that the finite behavior
of g(z) reflects the fact that the EOS for the brane-
world is an effective quantity and not a real physical
property of the theory—see [24] for a related dis-
cussion of this issue and [25] for an example of a
different dark-energy model displaying similar be-
havior. (The deceleration parameter experiences
near-singular behavior at the higher, loitering red-
shift, as H — 0 so that g — 0.)

(v) Finally, we draw attention to the fact that a loitering
epoch at z),;, can significantly alter the reionization
properties of the universe at lower redshifts. This is
likely to be relevant for the following reason. One
of the main surprises emerging from the WMAP
experiment was that the optical depth to reioniza-
tion was 7 = 0.17 = 0.06 [3]. Within the frame-
work of ‘“‘concordance cosmology” (i.e., LCDM),
assuming instantaneous reionization, this translates
into a rather early epoch for the reionization red-
shift z.60n = 17 = 5. (Models with “multiple reio-
nization” epochs usually push the reionization

10

Equation of state

-10

redshift z

FIG. 3. The effective equation of state of dark energy (solid)
and the deceleration parameter (dashed) are shown for a universe
which loitered at z =~ 18. Note that the effective equation of state
of dark energy becomes infinite at low redshifts when Q,,(z) =
1. However, this behavior is not reflected in the deceleration
parameter, which becomes large only near the loitering redshift.
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redshift to still higher values Z.j,, =20 [26].)
“Concordance cosmology” is clearly under some
pressure to explain how the universe could have
reionized at such an early cosmological time (see
[4] for a discussion of these issues and [27] for an
alternative interpretation of the large-angle WMAP
results).

Loitering has the capacity to alter these conclusions
dramatically. The electron scattering optical depth
to a redshift z,.,, is given by [28,29]

_ Zeion M,(2)O7dz
7-(Zreion) - C/O (1 ¥ Z)H(Z), (26)

where n, is the electron density and o is the
Thompson cross-section describing scattering be-
tween electrons and CMB photons. Clearly, were
H(z) to drop below its value in LCDM it would
imply a lower value for z.;,,. Since this is precisely
what happens in a loitering cosmology, one expects
Zreionlloitering < ZreionlLCDM if ZJoit = 20. As an ex-
ample, consider the loitering models shown for
illustrative purposes in Fig. 1. Not surprisingly,
the redshift of reionization drops tO Zpjon = 12
(from the LCDM value z,;,, = 17) for the loitering
models shown in Fig. 1. By decreasing the redshift
of reionization as well as increasing the age of the
universe, the loitering braneworld helps in alleviat-
ing the existing tension between the high-redshift
universe and dark-energy cosmology.

IV.INFLATION IN BRANEWORLD MODELS WITH
LOITERING

The loitering braneworld models considered in the pre-
vious section place certain constraint on the duration of the
inflationary stage, as we are going to show. First, we note
that, during the inflationary stage, the Hubble parameter as
a function of the scale factor can be approximated with a
great precision as follows [cf. with (9)]:

pi(a) . 2\/—_C

Ha) = 3m? ta*’

27)

where p;(a) is the energy density during inflation, which
typically changes very slowly with the scale factor a.
Since, on the contrary, the last term in (27) changes rapidly
during inflation, one can easily see that inflation should
have a beginning in this model at the scale factor roughly
given by the estimate

5 6m*/—C
ar ~———
p;

1
Using (A6) from the appendix, one can write the following
estimate for the redshift z; at the beginning of inflation:

(1 +)? = %[\/gﬂmf(zlon)(l 0] (29)

1

(ﬁf ~ 2/’)’ 0 /0. 0c.  (28)

ap
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where the loitering redshift z).;, and the quantity f(z(),
which quantifies the degree of loitering and takes values in
the range between zero and unity, are defined in the
appendix.

To estimate the fotal number of the inflationary
e-foldings, we consider a simple model of inflation based
on the inflaton ¢ with potential V(¢) = 3m3 >, In this
case, as can be shown, inflation proceeds at the values of
the scalar field ¢; =~ Mp = +/87m and ends approximately
at ¢¢ =~ M3/~/127. This leads to the following relation
between the typical energy density during inflation and at
its end:

— =127 (30)
f

Then using (29) and the estimate for the redshift at the end
of inflation

T 1/4
1+zf=@=—rh=( pf) 31)
a To  \Q:po

which assumes that preheating takes place instantaneously
with effective temperature T},, we can estimate the redshift
ratio

4 [ 4p? Q }1/4
s 27popr QS (o) (1 + Zioi)?
167 p; Q, 1/4
~ : (32)
|: 90 QLA (zed + Zloit)2:|

Here, (), = 1072 is the current value of the radiation
density parameter.

For our typical loitering redshift z;,; = 18, for the de-
gree of loitering f(zj0;) ~ 1, and for the estimate of the
inflationary energy density in agreement with the CMB
fluctuations spectrum as [30] p;/po ~ 10''2, this will re-
strict the total number of inflationary e-foldings N by

eV = < 102 = ¢, (33)
if

It is interesting that the fofal number of inflationary
e-foldings in the loitering braneworld is close to the ex-
pected number of e-foldings associated with horizon cross-
ing in inflationary models [30]. The exact upper bound on
the number of inflationary e-foldings depends on a con-
crete model of braneworld inflation in the presence of
loitering, and we propose to study this issue in greater
detail in a future work.

Returning to (27), we would like to draw the reader’s
attention to the fact that, depending upon the form of the
inflaton potential, the evolution of the Hubble parameter at
very early times could have proceeded in two fundamen-
tally different and complementary ways:

(1) If the shape of the inflaton potential V(¢) is suffi-

ciently flat, then, for a field rolling slowly, p; = p,
behaves like a slowly varying A term. As a result,
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the 1/a” term is expected to dominate at early times
giving rise to a cosmological “bounce” (H = 0)
when the two terms in (27) become comparable.
(i) Alternatively, it might well be that the potential
V(¢) is not uniformly flat, but changes its form
and becomes steep for large values of ¢ (within
the context of chaotic inflation). In this case, the
bounce will be avoided if, for small values of a,
pi(a) increases faster than the 1/a” term in (27).
Such a rapid change in p;(a) at early times will be
accompanied by the fast rolling of the inflaton field
until the latter evolves to values where the potential
is sufficiently flat for inflation to commence.
Interestingly, both (i) and (ii) lead to departures from
scale invariance of the primordial fluctuation spectrum on
very large scales, and have been discussed in [31,32],
respectively, as providing a means of suppressing power
on very large angular scales in the CMB fluctuation spec-
trum. In analogy with the discussion in these papers, we
expect that the present loitering scenario too may give rise
to a smaller amplitude for scalar perturbations on the
largest scales, thereby providing better agreement with
the CMB anisotropy results obtained by COBE [33] and
WMAP [3]. These issues will be examined in greater detail
in a companion paper.

V. LOITERING BRANEWORLD MODELS
WITHOUT DARK RADIATION

It is reasonable to investigate whether spatially flat
braneworld loitering models can exist without dark radia-
tion. This will be the purpose of the present section.

Without the dark radiation, Eq. (5) becomes

Hz(a)=%+B+€2—2[l i\/l +€2<%+B—%>}
= {(a), (34)

where, as before, the constants A and B are given by (6).

We look for the extrema of this function of a and
evaluate its values at the extrema. The first and second
derivatives of this function are

! = _3_A + 1
{'(a) = “4<1_W> (35)

and

2
(a) = @(1 - ) = <%> — L e
a [F(a) a*) 2F3/2(q)
respectively, where F(a) denotes the expression under the
square root in (34).
Loitering occurs around the extremal point, i.e., the zero
of (35). We immediately see that this equation has only one

zero, and only when the lower sign is chosen (BRANEI
model), namely, at

PHYSICAL REVIEW D 71, 084018 (2005)

Fay=1="2+p="0 (37)
a 6
It then follows from (36) that the second derivative is
strictly positive at this point; thus, we are dealing with a
true minimum of H?2.

We need to evaluate the Hubble parameter at this point
and to ensure that it is only slightly greater than zero (the

condition of loitering). We have

Ay,

6’

where the extremal point a,;; is the solution of (37).
One can see that this model requires positive value of the

bulk cosmological constant, hence, embedding of the brane

in the five-dimensional de Sitter space rather than anti—

de Sitter space. As can be seen from (37), this model

requires also

H*(ay) = (38)

A

ioit
ie., o <O.
The universe in this model eventually evolves to the
de Sitter phase

2 A
H>—> H =B +?[1 — 1+ €2<B —é’)} (40)
which implies the following restriction (no ‘“‘quiescent”
singularity in the future—see [22]):

€2<|B| + j;b) ~ B < 1. (41)

In principle, we could have the condition €?|B| < 1, in
which case

~ M

6’
i.e., the Hubble parameter would tend to approximately the
same value that it had at the loitering point ay;. Since the
behavior of H? is monotonic after the extremum, this
implies that, beginning from the loitering point, the uni-
verse is effectively in the de Sitter state with the Hubble
parameter given by (42). Thus, there is no loitering phase
as such in this case, but the universe proceeds directly to
the de Sitter phase, which should be expected since the
BRANEI model (34) in the limit € — O passes to the
Randall-Sundrum model, which does not admit spatially
flat loitering solutions without dark radiation.

However, if the condition €2|B| ~ 1 is realized, then

H} (42)

H}~|B| ~¢ 2> % (43)

and the universe evolves to a much higher expansion rate
after the period of loitering.
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The loitering braneworld model without dark radiation
that we arrived at in this section may be problematic from
the viewpoint of braneworld theory since it is embedded
in de Sitter, rather than anti—de Sitter, five-dimensional
space.

VI. CONCLUSIONS

We have demonstrated that a loitering universe is pos-
sible to construct within the framework of braneworld
models of dark energy. An important aspect of braneworld
loitering is that, in contrast to the conventional loitering
scenarios that demand a closed universe, loitering on the
brane can easily occur in a spatially flat cosmological
model. A key role in making the brane loiter is the presence
of (negative) dark radiation—a generic five-dimensional
effect associated with the projection of the bulk gravita-
tional degrees of freedom onto the brane. Our universe can
loiter at large redshifts (z = 6) while accelerating at the
present epoch.” During loitering, the value of the Hubble
parameter decreases steadily before increasing again. As a
result, the age of the loitering braneworld is larger than that
of a LCDM universe at a given redshift. This feature may
help spur the formation of ~10°M, black holes at redshifts
= 6 whose presence (within high-redshift QSO’s) could be
problematic for standard LCDM cosmology [1].° Loitering
is also expected to increase the growth rate of density
inhomogeneities and could, in principle, be used to recon-
cile structure formation models which predict a lower
amplitude of initial ““seed’” fluctuations with the observed
anisotropies in the cosmic microwave background (see
[29], and references therein). In addition, an early loitering
phase could lower the redshift of reionization from its
currently high value of z = 17 for the LCDM model [3].
Finally, we would like to draw attention to the fact that
earlier work on braneworlds has emphasized departure
from the standard Friedmannian behavior either in the
distant past (z = 10°) [16] or else, in the current epoch
and remote future (z =< 2) [7,13,34,35]. In this paper, we
have shown that a braneworld can also show interesting
significant departures from the conventional behavior at
intermediate redshifts z = 6. It is meaningful to ask our-
selves whether this feature of braneworld cosmology is a
unique aspect of the higher-dimensional action (4) or
whether such properties are shared by a larger class of

SAlthough both the degree of loitering and the loitering
redshift are free parameters in our model whose values can be
determined by matching to observations, the loitering brane-
world nevertheless does not claim to resolve the “‘cosmic coin-
cidence” conundrum associated with the current value of the
effective cosmological constant, which plagues most dark-
energy models and usually requires some degree of fine tuning
of cosmological parameters [6,9].

®From Fig. 2, we find that the age of a loitering universe at
Z ~ 6 can be several times that in LCDM cosmology, which is
less than a billion years old at that redshift.
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modified gravity and string-inspired models. Perhaps fu-
ture work will throw light on this question.
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APPENDIX: A NOTE ON THE PARAMETER SPACE
IN LOITERING MODELS

As pointed out in Sec. III, while not all loitering models
pass through a minimum of the Hubble parameter, a mini-
mum value of the ratio H(z)/H cpm(z) is generic and is
exhibited by all models. It is therefore useful to supplement
the definition of loitering given in (14) by defining the
loitering redshift z),; as the epoch associated with the
minimum of H(z)/H cpm(z) (both models are assumed
to have the same value of (}). In order to quantify the
degree of loitering, it is useful to introduce the function

Universe

recollapses

log Q¢

FIG. 4. The parameter space {Q, Q¢} is shown for models
which exhibit (i) weak loitering: f(z,,;;) = 1/2 in (A1) (lower
left corner); (i) strong loitering: 1/2 < f(z,01) <1 in (Al)
(shaded region). The prohibited region corresponding to brane-
world models which recollapse before reaching the present
epoch is shown on the far right. The dashed lines show contours
of {Q, O} with current values of the effective equation of state:
wo = —1.01, —1.015, —1.02, —1.025, —1.03, —1.035 (from left
to right). All models loiter at z;,;; = 20 and have ., = 0.3.
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H*(2)
2
Hicpm(2)

fl@)=1- (AD)

where 0 = f < 1. Small values 0 < f < 1/2 imply weak
loitering, whereas larger values 1/2 < f < 1 correspond to
strong loitering. It is straightforward to derive expressions
for the loitering redshift zj,; and the degree of loitering

S (Zloit) :

3(,/1 + Qp, + Q¢ +/Qp)?

(1 + z)* = 0, , (A2)
2/ ([1+ Oy, + Q¢ + /)
FGio) = v S (A3)

Qm(l + Zloit)3 '

which are valid under the single assumption Q (1 +
Zoi)” K Q1+ z169)*, or

Q< QL1+ Qy, + Q¢ + /02 (A4)

From (A2) and (A3) one has the useful approximate
conditions

PHYSICAL REVIEW D 71, 084018 (2005)

2:Q(J1+ Qp, + Qe +/Q0) = Qu f (z16i) (1 + zi6i),

(AS5)

Qe = %[me(zloit)(l + 2101 I (A6)
In practice, it is often convenient to take the values of
Q.. (1 + z3i), and f(zj05) as control parameters and to
determine the approximate ranges of (¢, (¢, and Q4
from Egs. (A2)—(A6). In Fig. 4, we show, as an example,
the range of allowed values for the parameter pair {Q,, Q}
for a model which loiters at 7;,;; = 20 and has ., = 0.3.
It is necessary to draw the reader’s attention to the fact
that not every set of parameter values gives rise to a
“realistic”’ cosmology. For some of them, the universe
recollapses before reaching the present epoch. (The loiter-
ing braneworld shares this property with a closed FRW
universe, and the reader is referred to [36] for an extensive
discussion of this issue.) It is obvious that the model
approaches a recollapsing universe as the loitering parame-
ter f(zj0i0) — 1. Thus, setting f(z;,;) = 1 in estimate (A6),
we obtain the approximate boundary of the region of
recollapsing universes in the parameter space {Q,, Qc}:
0c0, = 2030+ 2 (A7)
which corresponds to the “prohibited’ region in Fig. 4 for
the particular choice of zj,; = 20 and Q,, = 0.3.
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