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Separate universe and the back reaction of long wavelength fluctuations
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We investigate the back reaction of cosmological long wavelength perturbations on the evolution of the
Universe. By applying the renormalization group method to a Friedmann-Robertson-Walker universe with
long wavelength fluctuations, we demonstrate that the renormalized solution with the back reaction effect
is equivalent to that of the separate universe. Then, using the effective Friedmann equation, we show that
only the nonadiabatic mode of long wavelength fluctuations affects the expansion law of the spatially

averaged universe.

DOI: 10.1103/PhysRevD.71.084016

I. INTRODUCTION

The analysis of large scale cosmological perturbation is
an important issue for obtaining information on the initial
density fluctuation that was generated during the era of the
inflationary expansion of the Universe. However, because
of the nonlinear nature of the Einstein equation, linear
analysis is not sufficient to investigate the evolution of
the early universe. If we consider the expansion law of
the early universe, the back reaction effect owing to the
long wavelength fluctuations is expected to be important.

Let us consider the Universe with large scale fluctuations
of which wavelength is larger than the Hubble horizon.
Each spatial region with the Hubble horizon scale in the
Universe is causally disconnected and evolves indepen-
dently in time. Hence the Universe with large scale
inhomogeneities can be treated as the collection of quasi-
homogeneous and quasi-isotropic Friedmann-Robertson-
Walker (FRW) universes. The realization of this idea is
the separate universe approach [1] that is equivalent to the
lowest order of the gradient expansion of the Einstein
equation. This approach is suitable to treat a universe
with large scale nonlinear inhomogeneities.

An application of this method is the stochastic approach
to inflation [2]. During the inflationary expansion of the
Universe, long wavelength stochastic fluctuations are gen-
erated and the coarse-grained scalar field in each horizon
scale regions behaves as Brownian particles. The random
driving force for the coarse-grained scalar field appears as
the result of the back reaction of long wavelength quantum
fluctuation on the homogeneous background. Another ex-
ample of the large scale inhomogeneity that is tractable by
using the separate universe is the preheating stage after
inflation. Long wavelength fluctuations are amplified by
the parametric resonance associated with the oscillation of
the background inflaton field and the superhorizon scale
structure of the Universe evolves to be highly inhomoge-
neous [3].

On the other hand, our present observable universe is
considered to be homogeneous and isotropic, and the evo-
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lution of the Universe is determined by the Friedmann
equation. Thus, to incorporate the back reaction effect
into the Friedmann equation, we have to take the spatial
average of an inhomogeneous universe [4—13]. The ob-
tained effective Friedmann equation predicts how the ex-
pansion law of the averaged FRW universe is modified by
the back reaction effect. The solutions for the cosmological
constant problem and the dark energy problem are inves-
tigated in this direction [5,6,12].

In this paper, we analyze the back reaction effect by long
wave fluctuations using the renormalization group (RG)
approach [7-9,14]. First, we consider a homogeneous
FRW universe with long wavelength linear fluctuations.
We apply the RG method to this system to understand how
the long wavelength fluctuations modify the background
FRW universe. We found that the effect of the back reac-
tion by long wavelength fluctuations results in spatially
dependent constants of integration of a FRW universe and
the renormalized variables become solutions of the sepa-
rate universe approach. Then, by taking the spatial average
of the solution of the separate universe, we derive the
effective Friedmann equation that involves the back reac-
tion of long wave modes. The obtained equation shows that
the back reaction effect on the averaged FRW universe
appears only for the nonadiabatic type of fluctuations.

The plan of the paper is as follows. In Sec. II, we review
the solution of a FRW universe and long wavelength
perturbations about it. Then, the RG method is applied to
this system. In Sec. III, we derive the effective Friedmann
equation by taking the spatial averaging of the separate
universe. Section IV is devoted to summary and conclu-
sion. We use units in which ¢ = /i = 8§7G = 1 throughout
the paper.

II. RENORMALIZATION OF LONG WAVELENGTH
MODE AND THE SEPARATE UNIVERSE

In this section, we apply the renormalization group
method to a FRW universe with long wavelength perturba-
tions and investigate how the long wave modes modify the
background FRW universe.
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A. The solution of long wavelength fluctuations in a
FRW universe

We consider two scalar fields as the matter fields. The
metric and the scalar fields in a flat slice are written as
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where H, and Xo ) are the background quantities, 6 H and
8 x? denote the linear perturbation about a homogeneous
FRW universe. In this slice, the logarithm of the scale
factor o serves as a time parameter. The background
Einstein equation and the scalar field equation are
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where we have introduced the momentum variable HE)A)
and, @ = 9/d«. By using the Hamilton-Jacobi formalism
[15], these equations are combined to the following equa-

tions for the Hubble function H( )(E)A)) and the scalar fields
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The solution of Eq. (3) is written as
H, HO(X(]) X(()z),dp d,)

where d|, d, are integration constants. By differentiating
Eq. (3) with respect to d;, and integrating the resulting
equation with respect to the time parameter «, we obtain
the remaining two constants of integration ¢, and f:
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These four constants of integration completely specify the
background FRW universe. Thus the background solution
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of the FRW universe can be written as
2) (12 .
X(l ) = X( (o + cos fo dy, dy), )
Hy = Ho(x", x5, dy. d»)

Equations for long wavelength linear perturbations 6 H
and 8 are
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Equation (6) is the Hamiltonian constraint and Eq. (7) is
the momentum constraint. The growing mode solution of
the long wavelength perturbation is obtained by taking the
derivative of the background quantities with respect to the
background constants of integration [16]:
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where C(x) and F(x) are arbitrary functions of spatial
coordinates. The gauge invariant variable that corresponds
to the spatial curvature perturbation in a comoving slice is

(A) _(A)
ZX0¢0X0f0

O

F(x). (14)
The function C(x) corresponds to the adiabatic mode of

perturbations and the curvature perturbation owing to this
mode is constant in time. The function F(x) corresponds to

084016-2



SEPARATE UNIVERSE AND THE BACK REACTION OF ...

the nonadiabatic mode of perturbation and this mode re-
sults in development of the curvature perturbation.

B. Renormalization of long wavelength fluctuations

We apply the RG method to obtain the back reaction of
long wavelength fluctuations on a background FRW uni-
verse. Up to the first order of perturbations, the solution of
the scalar fields is expressed as

(4)
) = i@+ e fo) + 000~ Cle))( )
(A)
+170e) — Faeg)20-), (15)

where we have chosen the functions C and F so that the
perturbation vanishes at a spatial point x = x,. We regard
the perturbations as the secular terms in the spatial direc-
tion and absorb them into the background constants ¢, and
fo. For this purpose, we prepare a renormalization point
x, =xo+ u(x —xp) and redefine the integration con-
stants as follows:

co = c(u) + 8c(u;0), fo=f(u) + 6f(u;0). (16)

The counter terms 6c¢ and & f are chosen to cancel the x
dependence of the perturbation solution:

dc +[Cx,) — Clxy)] =0,

(17)
8f +[F(x,) — Fxp)] = 0.

This defines the renormalization transformation: the value
of the original constants at the spatial point x, are mapped
to the constants at x ,. Then the solution of the scalar fields
up to the first order becomes

x® = XV (a + e(w); f(w) + [Cx) — Cle, )T

+ [F(x) = Flx,) Iy (18)

By assuming that the renormalization transformation de-
fined by Eq. (17) forms the Lie group, we can obtain the
RG equation by differentiating Eq. (17) with respect to wu:

d d
e w—xy-ve Yo —x)-vF (19
du du
and the solution of the RG equation is
c(p) = Clxg + p(x = x0)],
0 0 20)

f(u) = Flxg + p(x — xo)]

The renormalized solution is obtained by setting u = 1:
xien = X¥Wum1 = x¢V(@ + C); Fx). (21)

At the same time, other variables receive the following
renormalization:
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Hy + 8H — Hyen = Holxten), (22)
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By introducing a new time parameter r = [da/(NH,,)
using an arbitrary lapse function N(a, x), the metric be-
comes

ds? = =N*(t, x)di* + e>*"¥)dx?, (25)
and the renormalized variables satisfy the following set of
equations:
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These are the basic equations of the separate universe
approach (the lowest order of the gradient expansion).

In the RG approach to the back reaction problem, the
effect of the back reaction by long wavelength fluctuations
modifies the background constants of integration and the
constants acquire spatial dependence associated with long
wavelength fluctuations. The renormalized solution with
the back reaction effect is equivalent to the solution of the
separate universe. Therefore, we can use the separate uni-
verse as a starting point to derive the spatially averaged
Friedmann equation for an inhomogeneous universe with
long wavelength fluctuations.

III. EFFECTIVE FRIEDMANN EQUATION

In this section, we take the spatial average of the solution
of the separate universe and derive the effective Friedmann
equation. The purpose is to observe how the expansion law
of the spatially averaged FRW universe is modified by the
back reaction effect of long wavelength fluctuations.
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In a flat slice, the metric and the Hubble function of the
separate universe are

2
ds? = — % + e2dx?, (30)
H=HxY(a + cx), f(x))), (31)

where c(x) and f(x) are arbitrary functions of the spatial
coordinates. To proceed with the averaging procedure
analytically, we adopt the perturbative approach. We ex-
pand the solution of the separate universe about a homoge-
neous FRW background up to the second order of
perturbation. By replacing c(x) — ¢ + Sc(x), f(x) — f +
6f(x) and expanding the solution with respect to 6¢ and
6f, the Hubble function up to the second order of pertur-
bation becomes

H = H() + Hl + H2,
Hola] = H(Y"W(a + ¢, f)),
Hl[a] = HO’C5C + HO,f(sf, (32)
1 1
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The metric up to the second order becomes
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(33)
where a time variable ¢t was introduced by
da
t= | ——. (34)
Hy(a)

We can obtain the local scale factor by transforming the
metric (33) to a synchronous frame. We define a new time
variable 7 by the following coordinate transformation:

dp, _ H1[a(7)]

t=1+ Bi(1,x) + By, x), . m,

Then we have
ds? = —dr? + e2elim0]gy2,
alt(r,x)] = alr+ B+ Bl = g + @) + a,
ay = a(7), a; = Hyp, (36)
ay =HyB, + %(%)(,31)2-

The metric (36) has the same form as that of a flat FRW
universe except its spatial dependence of the scale factor.
By assuming that the spatial averaging of the first order
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variables vanishes (c) = (6 f) = 0, the spatially averaged
Hubble parameter is

A = (falitr ) = Hlao] + (52), @7

and the Friedmann equation for the spatially averaged
scale factor

e® = ¢l = (1 + (a,)) (38)
is

da
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dr dr

The term pgr represents the modification of the Friedmann
equation due to the long wavelength back reaction effect.
The explicit form of pgg is given by

d dr )
PBR = 3Ho—[H0 fFO(HO‘”B +2H B + H(Mf)}

dr
X (8f2),
B(r) = H, [ ar2os (40)
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We notice that the expression (40) does not contain &c¢
which is the source of the adiabatic mode of perturbations.
Therefore, for the pure adiabatic type of fluctuation 6¢ #
0,6f =0, we have pr =0. Hence, the effective
Friedmann equation does not contain the back reaction
terms and long wavelength fluctuations owing to the adia-
batic mode do not alter the expansion of the FRW universe.
This result is consistent with the previous analysis of the
back reaction problem [7-9]; the back reaction effect
appears from O(k?) in the long wavelength expansion
and there is no back reaction in the long wavelength limit.
For the nonadiabatic type of fluctuation 6 f # 0, we have a
nonzero value of ppr and the back reaction of long wave-
length fluctuations modifies the expansion law of the FRW
universe. Although these results were previously obtained
for the Universe with inflationary expansion [10,11], our
analysis shows that we need a generally nonadiabatic type
of fluctuation to obtain the long wavelength back reaction
effect on the spatially averaged FRW universe. This result
is independent of the expansion law of the background
FRW universe.

IV. CONCLUSION

In this paper, we discussed the back reaction effect
owing to long wavelength fluctuations from two different
perspectives: One is renormalization of constants by long
wavelength fluctuations. The back reaction of long wave-
length modes leads to the renormalization of constants
contained in the solution of the background FRW universe.
The other is the averaging of the inhomogeneous universe.
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From the first perspective, the long wavelength mode gen-
erates spatial dependence of constants of a FRW universe
and a homogeneous universe becomes an inhomogeneous
one owing to the back reaction effect of long wavelength
modes. From the second perspective, the effective
Friedmann equation gets the additional contribution of
the energy density from long wavelength fluctuations and
the expansion law of the averaged universe becomes differ-
ent from that of the original background FRW universe.
In this paper, we derived a general formula for pgg but
have not examined what type of expansion law can be
obtained by the back reaction of long wavelength modes.
This subject will be reported in a separate publication.
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Note added in proof.—After completion of this work,
we noticed the work by Kolb ef al. [17]. They consider the
second order long wavelength perturbation and derive the
conclusion that only the nonadiabatic mode of the first
order perturbation affects the local Hubble parameter.
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