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We show that the complete static black p-brane supergravity solution with a single charge contains two
and only two branches with respect to behavior at infinity in the transverse space. One branch is the
standard family of asymptotically flat black branes, and another is the family of black branes which
asymptotically approach the linear dilaton background (LDB) with antisymmetric form flux. Such
configurations were previously obtained in the near-horizon near-extreme limit of the dilatonic asymptoti-
cally flat p-branes, and used to describe the thermal phase of field theories involved in the domain wall
(DW)/quantum field theory (QFT) dualities and the thermodynamics of little string theory in the case of
the NS5-brane. Here we show by direct integration of the Einstein equations that the asymptotically LDB
p-branes are indeed exact supergravity solutions, and we prove a new uniqueness theorem for static
p-brane solutions satisfying cosmic censorship. In the nondilatonic case, our general nonasymptotically
flat p-branes are black branes on the background AdSp�2 � SD�p�2 supported by the form flux. We
develop the general formalism of quasilocal quantities for nonasymptotically flat supergravity solutions
with antisymmetric form fields, and show that our solutions satisfy the first law of thermodynamics. We
also suggest a constructive procedure to derive rotating asymptotically LDB brane solutions.
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I. INTRODUCTION

The existence of two alternative descriptions of branes,
the classical one within supergravity theories, and the
quantum one in string theory, leads to various holographic
dualities between classical supergravities and quantum
field theories, from which the AdS/CFT correspondence
[1] was originally discovered. This correspondence relates
to nondilatonic branes, such as the M2 and M5 branes of
the M-theory and the D3 brane of string theory, which have
an AdS near-horizon structure. The asymptotic boundary
of the AdS space is conformal to the Minkowski space-
time where the dual conformal field theory lives.

The AdS/CFT conjecture was extended later to the
generic case of string-theoretical dilatonic branes, in which
case the near-horizon geometry is either AdS or
Minkowski with a nontrivial dilaton field depending line-
arly on an appropriate radial coordinate. Such configura-
tions are also supersymmetric in the context of
supergravities (though not maximally supersymmetric as
in the case of nondilatonic branes), but the conformal
symmetry is broken by the dilaton. These backgrounds
are dual to nonconformal QFT-s with 16 supercharges
living on their boundary [2]. In the case of the NS5 brane
[3,4], the corresponding dual theory is not a local field
theory, but the so-called little string theory [5] (LST) living
on the flat six-dimensional world volume of the NS5-brane
in the string frame (for a review and recent references see
[6]).
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More general considerations were presented in [7] (ex-
tending the previous work of [8]) for any dimensions and
various fractions of supersymmetry. It was argued that
although the near-horizon geometry of the extremal dila-
tonic brane is singular, by transforming it to the so-called
‘‘dual’’ frame (the Nambu-Goto frame for the dual brane
probe) one obtains the product of an AdS space with a
sphere. After reduction over the sphere one gets the domain
wall (DW) solution, for which reason the corresponding
duality was termed as the DW/QFT correspondence [8].
The near-horizon configuration of the generic dilatonic
brane is the product of either AdS, or flat space-time
with a sphere endowed with a nontrivial dilaton. In what
follows we will call this field configuration the linear
dilaton background (LDB) independently of any particular
frame or coordinate system used.

By the standard argument, the thermal version of the
dual quantum theory should have as a holographic dual the
linear dilaton background endowed with an event horizon.
Such a configuration was obtained for the NS5 case (dual
to LST) by Maldacena and Strominger in the near-horizon
limit of the near-extremal NS5-brane [9] and for a discrete
family of rotating dilaton branes by Harmark and Obers
[10]. A similar four-dimensional ‘‘horizon-plus-throat’’
geometry was presented earlier by Giddings and
Strominger [11] (see also [12]) as a certain limit near the
horizon of the near-extremal dilaton black hole [13]. The
relation between the linear dilaton background and the
horizon-plus-throat geometry is similar to the relation
between the anti-de-Sitter space and the Schwarzschild-
anti-de Sitter black hole. This configuration was shown to
be a fully legitimate solution of the Einstein-Maxwell-
dilaton four-dimensional theory, thus extending the family
-1  2005 The American Physical Society
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of asymptotically flat and asymptotically AdS/dS black
holes to the asymptotically LDB solutions [14–16]. In
addition, in Refs. [15,16] various generalizations (includ-
ing rotation) of black holes with linear dilaton asymptotics
were obtained. Similar solutions exist in presence of a
dilaton potential [14,17].

The purpose of the present paper is to study systemati-
cally the higher-dimensional asymptotically LDB solu-
tions to the supergravity theories. We reexamine the
generic supergravity equations for the metric, dilaton,
and the antisymmetric form in D dimensions for arbitrary
values of the form rank and the dilaton coupling constant,
assuming the R� ISO�p� symmetry of the world volume
and the SO�D� p� 1� symmetry of the transverse space
and imposing no further restrictions on the ansatz. The
corresponding system of equations is fully integrable, and,
following Ref. [18], we obtain the generic solution con-
taining a number of integration constants. Assuming the
existence and regularity of the (nondegenerate) event hori-
zon, we reduce the number of free parameters to three and
find that the metric functions become constant at infinity
unless some special condition on the parameters is im-
posed. In this special case one obtains the solutions with
linear dilaton asymptotics. In the first generic case, after
trivial coordinate rescalings, one arrives at the usual
asymptotically flat p-branes [19–21]. Thus the asymptoti-
cally LDB p-branes form a degenerate family of solutions
in the full solution space. Remarkably, no other alternatives
regarding the admissible asymptotic behavior exist for
p-branes with regular horizons within the theory with no
dilaton potential and no cosmological constant.

Our general family of nonasymptotically flat branes
includes the nondilatonic case. In this case one deals
with black p-branes on the background AdSp�2 �

SD�p�2 supported by the flux of antisymmetric form. In
particular, we obtain the ~M2 and ~M5 branes of M-theory
approaching at infinity AdS4 � S7 and AdS7 � S4, respec-
tively, and the ~D3-brane of IIB theory approaching AdS5 �
S5. These ‘‘tilde’’ p-branes interpolate between the prod-
uct of flat space and a sphere at the horizon, and the product
of the anti-de-Sitter space and a sphere at infinity. The tilde
p-branes are not supersymmetric unless the mass parame-
ter is set zero, in which case we obtain the linear dilaton
background with a flux.

To calculate the brane tension and other physical char-
acteristics of the asymptotically nonflat solutions one
needs to generalize the formalism of quasilocal charges
developed, in particular, in Refs. [22–24] to the case of an
arbitrary number of space-time dimensions and to the
presence of the antisymmetric form fields. We perform
this and apply it to the case of branes on the linear dilaton
background.

Summarizing our results, we formulate a generalized
uniqueness theorem claiming that static brane solutions
without naked singularities possessing the R� ISO�p� �
084014
SO�D� p� 1� isometries exist in two and only two real-
izations: one is the usual family of asymptotically flat
p-branes and another is the family of branes which asymp-
totically approach the linear dilaton background. The first
family has a Bogomolnyi-Prasad-Sommerfield (BPS)
limit, while for the second one the BPS limit coincides
with the linear dilaton background itself. We conjecture
that the same should be true for the intersecting branes as
well.

II. LINEAR DILATON BACKGROUND WITH FLUX

We consider the action containing the graviton, a q-form
field strength, F�~d�1�, and a dilaton �, coupled to a form
field with the coupling constant a:

S �
Z
dDx

�������
�g

p
�
R�

1

2
@��@

���
ea�

2�~d� 1�!
F2
�~d�1�

�

(1)

(throughout this paper, the Newton constant G is set to the
value 1=16�). In view of the electric-magnetic duality of
the corresponding equations of motion

g�� ! g��; F~d�1 ! ea� � FD�~d�1; �! ��;

(2)

we will restrict ourselves here to the magnetic solutions.
The asymptotically flat static BPS solution with

ISO�p� 1� symmetry of the world volume and SO�~d�
2� symmetry of the transverse space, (D � p� ~d� 3),
reads [18,19]

ds2 � f4~d=��D�2�ds2p�1 � f2a
2=�~d�f�2dr2 � r2d�2

~d�1
�;

e���1 � f2a=�; F�~d�1� �
2~d����
�

p r~d0e
�a�1=2vol��~d�1�;

(3)

where

ds2p�1 � �dt2 � dx2
p (4)

is the world-volume flat space-time interval,

� � a2 �
2d~d
D� 2

; (5)

(d � p� 1), and

f � 1�
�
r0
r

�~d
: (6)

It depends on two real parameters r0, �1—the horizon
radius and the asymptotic value of the dilaton. Shifting the
horizon from r � r0 to r � 0 via the coordinate trans-
formation

r! �r~d � r~d0�
1=~d (7)

one obtains
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ds2 � H�4~d=��D�2�ds2p�1 �H4d=��D�2��dr2 � r2d�2
~d�1

�;

(8)

e ���1 � H�2a=�; H � 1�
�
r0
r

�~d
: (9)

The desired near-horizon limit of this solution can be
obtained by omitting the constant in the harmonic function
H:

ds2 �
�
r
r0

�
4~d2=��D�2�

ds2p�1 �

�
r0
r

�
4d~d=��D�2�

� �dr2 � r2d�2
~d�1

�;

e����1� �

�
r
r0

�
2a~d=�

;

F�~d�1� �
2~d����
�

p r~d0e
�a�1=2vol��~d�1�:

(10)

This is the solution which we will call LDB presented in
the Einstein frame. For supergravity theories, admitting the
1=2 BPS asymptotically flat p-brane solutions (in which
case � � 4), the linear dilaton background is 1=2 super-
symmetric as well, unless a � 0 in which case supersym-
metry is fully restored in the near-horizon limit. This
solution is supported both by the dilaton and the antisym-
metric form flux.

In the Einstein frame the metric (10) does not have a
clear geometric meaning as r! 1. However, as was clari-
fied in [7,25], the space-time always has the AdS structure
in the so-called ‘‘dual frame,’’ which is the Nambu-Goto
frame for the dual brane probe. Defining the dual frame [7]
by the conformal transformation

ds2dual � e�a����1�=~dds2; (11)

and passing to a new radial coordinate

� � r0 ln�r=r0�; (12)

we find

ds2dual � e2�2
~d����=r0�ds2p�1 � d�2 � r20d�

2
~d�1
: (13)

In terms of the new radial coordinate the dilaton is pre-
cisely linear:

���1 �
2a~d
�r0

�: (14)

In the particular case

� � 2~d; or a2 �
2~d2

D� 2
; (15)

the space-time (13) becomes the direct product of the p�
2-dimensional Minkowski space and a sphere. In ten-
dimensional supergravities (with � � 4) this corresponds
to fivebranes.
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For � � 2~d the metric (13) is the product AdSp�2 �

S~d�1. Introducing the horospherical coordinate

u �
eq�=r0

r0q
; (16)

where

q �
�

2~d��
; (17)

it can be cast into the more familiar form

ds2dual � r20

�
�qu�2ds2p�1 �

du2

�qu�2
� d�2

~d�1

�
: (18)

It should be stressed that the LDB solution (10) is
supported not only by the dilaton field, but by the field of
the antisymmetric form as well. An important particular
case of the above considerations is a � 0, when there is no
dilaton at all. Then the dual frame coincides with the
Einstein frame, so the solution (18) is an exact solution
in the Einstein frame. In fact, in D � 11 supergravity this
corresponds to AdS4 � S7 and AdS7 � S4, while in the D3
sector of type IIB theory—to AdS5 � S5. These are fully
supersymmetric solutions of the corresponding theories.
Being supported by the form flux, strictly speaking they do
not belong to the class of linear dilaton backgrounds. We
still call the solution (10) ‘‘LDB’’ for any values of the
parameters d, ~d, a simply because of its generality.
III. MULTICENTER GENERALIZATION

The transverse part of the Einstein frame LDB metric
(10) is conformally flat, this suggests its multicenter gen-
eralization. To put the derivation into a constructive form,
we invoke the sigma-model formulation of the problem
[21].

Consider the class of metrics with the conformally flat
world-volume part

ds2 � e� �a��=dds2p�1 � e�a�� �=
~dhijdx

idxj; (19)

where ds2p�1 is Minkowskian, and a new scalar  is intro-
duced. It is also convenient to use as the second indepen-
dent scalar the linear combination

" �
D� 2

2
�a ���� (20)

instead of the dilaton �. The antisymmetric form in the
magnetic case can be parametrized by the scalar u via

F � e� ? du; (21)

where Hodge dualization is understood with respect to the
transverse ~d� 2-dimensional space. All scalar quantities
 , ", u are assumed to depend only on coordinates xi,
parametrizing the transverse space.
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Performing the dimensional reduction we obtain the ~d�
2-dimensional gravitating sigma model

S$ �
Z �

R�h� �
1

�
hijTr�@iM@jM�1�

� ���
h

p
d~d�2x; (22)

where the matrix M

M � e� =2
2 u

���
�

p

2 0
u
���
�

p

2
u2�
8 � e 

2 0

0 0 e ��"=2

0
BB@

1
CCA (23)

parametrizes the target space SL�2; R�=SO�1; 1� � R. In
this formula � � 2��������������

�D�2�d~d
p . The corresponding equations

of motion read

1���
h

p @i�
���
h

p
hijM�1@jM� � 0; (24)

Rij�h� � ���1Tr�@iM@jM�1�: (25)

This representation is a convenient starting point for an
application of the harmonic map technique.

It was noticed that the BPS solutions can be presented as
null geodesics of the target space [26,27]. If the matrix M
depends on x through a single function, M � M�$�x��,
with $�x� being a harmonic function on the curved space
with metric h

1���
h

p @i�
���
h

p
hij@j$� � 0; (26)

the Eq. (24) reduces to the matrix equation

d
d$

�
M�1 dM

d$

�
� 0; (27)

whose solution can be expressed in the exponential form

M � M0e
K$; (28)

where K belongs to the Lie algebra of the group G
(SL�2; R� in the present case), and M0 is a constant matrix
corresponding to the value of M at some normalization
point.

Substituting this into the Einstein equations (25) one
gets

Rij�h� � ��1Tr�K2�@i$@j$: (29)

It follows that in the particular case Tr�K2� � 0 the metric
h is Ricci-flat. This is a constructive way to build null-
geodesic solutions to an arbitrary $-model.

There are two distinct classes of solutions depending on
whether detK is zero or not. In the first (degenerate) case,
taking
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K �

1 1=2 0
�2 �1 0
0 0 1

0
@

1
A; M0 �

2 0 0
0 �1=2 0
0 0 1

0
@

1
A;
(30)

one obtains

M �

2�1� $� $ 0
$ � 1

2 �1� $� 0
0 0 1

0
@

1
A; (31)

where $ is a harmonic function in (~d� 2)-dimensional
Ricci-flat space. Comparing this with the Eq. (23) we get

 � �2 ln�1� $�; " � 0; u �
2����
�

p
$

1� $
;

(32)

which corresponds to the metric

ds2 � �1� $��4~d=��D�2�ds2p�1

� �1� $�4d=��D�2�hijdxidxj: (33)

This is the usual BPS p-brane solution with the harmonic
function H � 1� $ in the Ricci-flat transverse space. The
corresponding dilaton field is given by (�1 � 0)

e a� � �1� $��2a2=�: (34)

The harmonic function has the Coulomb form once the
transverse space is chosen flat hij � (ij:

H � 1� $ � 1�
�
r0
r

�~d
: (35)

The LDB solution (10) corresponds to replacing H by its
limit for r! 0:

H � 1� $ �

�
r0
r

�~d
: (36)

Clearly, it admits the following multicenter generalization

1� $ �
X
n

cn
jr� rnj

~d
; (37)

where cn is a set of real constants. Alternatively, we can
express the multicenter LDB solution in the form

M � M0
0e
K$0
; with $0 �

X
n

cn
jr� rnj

~d
; (38)

i.e., $0 � 1� $, leading to a nondiagonal M0
0 � M0e

�K,
such as used in [16].

In the case of a nondegenerate generating matrix
det K � 0 one gets solutions with naked singularities or
geodesically complete solutions, for details see
Refs. [16,21].
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IV. GENERAL SUPERGRAVITY SOLUTION

Let us now pass to a more general formulation of the
problem. We wish to study the p-brane solutions to the
action (1) whose world volume is given by the d � p�
1-dimensional space with the isometries ISO�p� � R and
whose transverse space is spherically symmetric. The line
element

ds2 � �e2Bdt2 � e2Ddy2p � e2Cd�2
~d�1

� e2Ad-2; (39)

is parametrized by four functions A�-�, B�-�, C�-�, and
D�-�. Assuming this ansatz, the equations for the form
field and the corresponding Bianchi identity

@��
�������
�g

p
ea�F��1����~d� � 0; (40)

@��
�������
�g

p
� F��1����d� � 0; (41)

(where dualization is understood with respect to the full
D-dimensional space-time) can easily be solved in the
magnetic sector as

Fa1;...;a~d�1
� b

���
"g

p
/a1;...;a~d�1

; (42)

or in short notation

F�~d�1� � b vol��~d�1�; (43)

where b is the constant field strength parameter and "gab is
the metric on the unit ~d� 1-dimensional sphere.

The system of equations was derived in the previous
papers [18,28], for convenience we present it here in the
current notation. The Ricci tensor for the metric (39) has
the following nonvanishing components

Rtt � e2B�2A�B00 � B0�B0 � A0 � �~d� 1�C0

� �d� 1�D0��; (44)

Rxx � e2D�2A��D00 �D0�B0 � A0 � �~d� 1�C0

� �d� 1�D0��; (45)

Rrr � �B00 � B0�B0 � A0� � �~d� 1��C00 � C02 � A0C0�

� �d� 1��D00 �D02 � A0D0�; (46)

Rab � f�e2C�2A�C00 � C0�B0 � A0 � �~d� 1�C0

� �d� 1�D0�� � ~dg "gab; (47)

where primes denote derivatives with respect to -. The
integration of the Einstein equations is simplified by im-
posing the gauge condition

A � B� �~d� 1�C� pD: (48)

Using the expressions for the Ricci tensor and substituting
the form field (42), we then find three equations for B, C,
and D with similar differential operators
084014
B00 �
~db2

2�D� 2�
eG; (49)

C00 � �
db2

2�D� 2�
eG � ~de2�A�C�; (50)

D00 �
~db2

2�D� 2�
eG; (51)

where

G � a�� 2B� 2�d� 1�D; (52)

and the following constraint equation

��B0 � kC0 � pD0�2 � B02 � kC02 � pD02 �
1

2
�02

�
b2

2
eG � ~d�~d� 1�e2�A�C�: (53)

The dilaton equation

1�������
�g

p @��
�������
�g

p
@��� �

a

2�~d� 1�!
ea�F2

�~d�1�
(54)

takes the following form

�00 �
ab2

2
eG: (55)

From the field equations it is clear that the functions B,
D, and ~d�=�a�D� 2�� may differ only by a solution of the
homogeneous equation, which is a linear function of -.
Thus we have

D � B� d1-� d0; (56)

� �
a�D� 2�

~d
B��1-��0; (57)

where d0, d1, �0, �1 are free constant parameters.
Substituting this into (52) one finds

G �
��D� 2�

~d
B� g1-� g0; (58)

with

g0;1 � a�0;1 � 2�d� 1�d0;1; (59)

so that the Eq. (49) becomes a decoupled equation for G:

G00 �
b2�
2

eG: (60)

Its general solution, depending on two integration con-
stants 1 (real or imaginary) and -0 reads:

G � ln
�
12

�b2

�
� ln



sinh2

�
1
2
�-� -0�

��
; (61)

with 12 being the first integral
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G02 � b2�eG � 12: (62)

Combining the Eqs. (49), (50), and (51), one obtains for the
linear combination

H � 2�A� C� � 2~dC� 2B� 2�d� 1�D (63)

the second decoupled Liouville equation

H00 � 2~d2eH: (64)

The general solution depending on two parameters 2, -1

reads

H � 2 ln2=2~d� ln�sinh2�2�-� -1�=2��; (65)

the first integral being

H02 � 4~d2eH � 22: (66)

Finally, expressing the metric functions A, C from
(48),(63), one can write the full solution in terms of G, H
as follows:

B �
~d

��D� 2�
�G� g1-� g0�; (67)

D �
~d

��D� 2�
�G� g1-� g0� � d1-� d0; (68)

C �
1

2~d
H �

d
��D� 2�

G� c1-� c0; (69)

A �
�1� ~d�

2~d
H �

d
��D� 2�

G� c1-� c0; (70)

� �
a
�
G� f1-� f0; (71)

where

c0;1 �
a
�

�
d

D� 2
�0;1 �

�d� 1�a
~d

d0;1

�
;

f0;1 � �0;1 �
a
�
g0;1 �

2~d
a
c0;1:

(72)

Our solution depends on nine parameters: b, d0, d1, �0,
�1, -0, -1, 1, 2. There remains to enforce the constraint
following from Eq. (53)

�~d� 1�22

4~d
�
12

2�
�

d~d
��D� 2�

�2
1 �

2a�d� 1�

�
�1d1

�
d� 1

��D� 2�~d



a2�D� 2��D� 3� � 2~d2

�
d21 � 0;

(73)

so that actually we have only eight independent
parameters.
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V. SOLUTIONS WITH REGULAR
EVENT HORIZON

The ansatz (39) is invariant under translations of -, so
that without loss of generality we can choose -1 � 0.
There remain seven parameters. Also, the results (61)
and (65) do not depend on the sign of -, which we choose
so that the horizon e2B ! 0 corresponds to -! �1, with
1> 0, 2> 0. The main divergent terms in the functions
involved are

G��1-; H ��2-; (74)

so B tends to

B ’
~d

��D� 2�
��1-� g1-�: (75)

We are interested in solutions possessing an event horizon,
that is a zero of

gtt � e2B:

This may happen while -! 1 provided

1� g1 > 0: (76)

In addition, we have to ensure regularity of the horizon. A
sufficient condition is that D and� be finite on the horizon
(it can be shown, along the lines followed in [18], that this
condition is also necessary). When -! 1 we have

D ’ �
~d

��D� 2�
�1� g1�-� d1- (77)

� ’ �
a
�
1-� f1-; (78)

so the coefficients of - in D and � must vanish, which
gives the following two relations

1 �
�

a
f1 (79)

d1 �
~d

a�D� 2�
�1: (80)

Thus using the shift of - and imposing the condition of the
regularity of the horizon we have fixed three parameters,
and five parameters still remain free. But we can rescale -,
t, et x without changing the physical meaning of the
solution, this allows to fix two more parameters, namely,

d0 � 0; d1 � 1: (81)

Combining all the preceding conditions (79)–(81), and the
constraint (53), we obtain

1 � 2 � 2; f1 �
2a
�
; �1 �

a
~d
;

g1 �
��D� 2�

~d
� 2; c1 �

a2

�~d
;

(82)
-6
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so only three parameters remain free: -0, c0, et b. After
suitable rescaling of the brane world volume, the resulting
metric reads

ds2 �
�

e-

2 sinh�-� -0�

�
4~d=��D�2�

��e�2-dt2 � dx2
p�

��2

�
e-

2 sinh-

�
2=~d

�
2 sinh�-� -0�

e-

�
4d=��D�2�

�

�
d$2 �

d-2

~d2sinh2-

�
; (83)

where � is defined as

ln� � c0 �
a2

�~d
ln2�

1
~d
ln~d�

d
��D� 2�

ln
�

4

�b2

�
:

(84)

The corresponding dilaton function is

e a� �
4~d2

�b2
�2~d

�
e-

2 sinh�-� -0�

�
2a2=�

: (85)

Provided -0 < 0, the range of - is the positive semiaxis,
with -! �1 corresponding to the regular horizon, - � 0
to spacelike infinity.
VI. p-BRANES WITH LDB ASYMPTOTICS

For the subsequent analysis it is convenient to make the
transformation of the radial coordinate

e2- �
r

r��
; (86)

with r � �> 0 being the horizon radius, so that

sinh 2- �
�2

4r�r���
;

d-2

sinh2-
�

dr2

r�r���
: (87)

Also, putting

e2-0 �
r�

�� r�
; (88)

with 0< r� <� (note that r� is not an image of -0 with
respect to the map (86)), we obtain for gtt the following
expression:

gtt � �

�
r���� r��r2

���� 2r��r� r���2

�
2~d=��D�2� r��

r
: (89)

An examination of this formula shows that there are two
and only two possibilities. In the generic case r� � �=2
(-0 � 0), one obtains the usual asymptotically flat black
brane solutions [19–21]. In the special case r� � �=2
(-0 � 0), the solution is no longer asymptotically flat,
and reduces to the two-parameter (�, b) configuration
084014
ds2 �
�
r
�

�
4~d=��D�2�

�
�
r��
r

dt2 � dy2p

�

��2

�
r
�

�
2a2=�~d

�
d�2

~d�1
�

dr2

~d2r�r���

�
(90)

e a� �
4~d2

�b2
�2~d

�
r
�

�
2a2=�

; F�~d�1� � b vol��~d�1�:

(91)

The regular event horizon is at r � �, and if � � 0 the
coordinates systems is not well-behaved. To improve this
one has to rescale the radial variable,

r �
�
c
"r~d; (92)

to introduce instead of � a new parameter c as follows

� � b2d=��D�2�ca
2=�~d (93)

and to rescale the coordinates t and x as follows

t!
�
b
c

�
�2~d=��D�2�

t; x!
�
b
c

�
�2~d=��D�2�

x: (94)

In terms of the new coordinates the solution reads after
relabelling "r! r:

ds2 �
�
r~d

b

�
4~d=��D�2�



�

�
1�

c

r~d

�
dt2 � dy2p�

�

�
b

r~d

�
4d=��D�2�


�
1�

c

r~d

�
�1
dr2 � r2d�2

~d�1

�
;

ea� �
4~d2

�

�
r~d

b

�
2a2=�

; F�~d�1� � b vol��~d�1�:

(95)

This is the two-parameter family of asymptotically nonflat
p-branes. When r! 1 the solution approaches the linear
dilaton background (10) with the following identification
of parameters

r0 � b1=~d; ea�1 �
4~d2

�
: (96)

The quantity�1 is no longer the asymptotic value of the
dilaton, but rather an ‘‘inherited value’’ from the asymp-
totically flat p-brane (3). In terms of it the dilaton function
in (95) reads

e ����1� �

�
r
r0

�
2a~d=�

; (97)

which coincides with (9). The parameter c measures the
strength of the singularity at r � 0 and so is presumably
proportional to the mass of the black brane, as will be
checked by a quasilocal computation in Sect. VIII
(Eq. (137)). The parameter b from (95) is proportional to
the form flux, or ‘‘magnetic charge’’ associated with the
solution. It is important to note [15,16], however, that this
charge is the same for all the members of the black brane
-7
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family �b; c� living on the linear dilaton background �b; 0�.
Besides this charge associated with the background, it
therefore makes sense to define a ‘‘proper brane charge’’
as the difference between the total charge of an asymptoti-
cally LDB black brane solution and that of the associated
LDB vacuum. This proper charge is identically zero in the
present case (see also [10]).

Near the horizon the space-time asymptotes to the prod-
uct Mp�2 � S~d�1, similarly to the case of the
Schwarzschild geometry, this can be easily seen by intro-
ducing the tortoise radial coordinate. Thus our black branes
on the linear dilaton background interpolate between the
product of a flat space and a sphere near the horizon (with
fixed value of the dilaton) and the linear dilaton back-
ground at infinity. This is somehow inverse to the situation
with BPS asymptotically flat p-branes which interpolate
between the linear dilaton background at the horizon and
flat space (with constant dilaton) at infinity.

Computing the scalar curvature for the solution (95) one
gets

R �
4d~d2

�2�D� 2�r2

�
r~d

b

�
4d=��D�2�

�
�� ~d�

�D� 2�a2c

2dr~d

�
:

(98)

At infinity r! 1

R� r�2a2=�; (99)

so in the dilatonic case (a � 0) the scalar curvature van-
ishes. In the nondilatonic case a � 0 one finds a constant
value throughout the whole space-time

R �
4d~d2��� ~d�

�2�D� 2�
(100)

independently of whether c is zero or not (for c � 0 the
space-time coincides with (13) and is the product
AdSp�2 � S~d�1). Note that for 2d � �D� 2� (even D)
and a � 0 the Lagrangian possesses a conformal symme-
try and thus R � 0 identically.

Using the relations (96) one can pass to the dual frame
via the conformal transformation (11):

ds2dual � e2�2
~d����=r0�



�

�
1�

c

r~d

�
dt2 � dy2p

�

�

�
1�

c

r~d

�
�1
d�2 � r20d�

2
~d�1
: (101)

This metric approaches the product space AdSp�2 � S~d�1

as r! 1, unless 2~d � �. In this latter case the asymptotic
space is the product of the (p� 2)-dimensional
Minkowski space with a sphere, Mp�2 � S~d�1.

A. NS5

In the particular case D � 10, a � �1, p � 5 the solu-
tion (95) reads
084014
ds2 �
�
r
r0

�
1=2



�

�
1�

c

r2

�
dt2 � dy25

�

�

�
r0
r

�
3=2


�
1�

c

r2

�
�1
dr2 � r2d�2

3

�
;

e�����1� �
r
r0
; F�3� � r20 vol��3�

(102)

(r20 � b). Passing to the string frame

ds2string � e����1�=2ds2; (103)

and changing the radial variable

r �
���
c

p
cosh$; (104)

we obtain

ds2string � �tanh2$dt2 � r20d$
2 � dy25 � r20d�3; (105)

e 2����1� �
r20

c cosh$
; F�3� � r20 vol��3�: (106)

This is the product of the two-dimensional black hole, a
three-sphere, and a five-dimensional flat space, as found
earlier in Ref. [9] and used as a holographic counterpart to
the little string theory.

B. Black holes

Specifying d � 1, p � 0, ~d � D� 3, we obtain the
following two-parametric family of multidimensional
(magnetic) black holes asymptotically approaching the
linear dilaton background in the Einstein frame

ds2 � �

�
rD�3

b

�
4�D�3�=��D�2�

�
1�

c

rD�3

�
dt2

�

�
b

rD�3

�
4=��D�2�

�


�
1�

c

rD�3

�
�1
dr2 � r2d�2

D�2

�
;

ea� �
4�D� 3�2

�

�
rD�3

b

�
2a2=�

;

F�D�2� � b vol��D�2�:

(107)

Transforming to the ‘‘Schwarzschild‘‘ radial coordinate

~r � r���1b2�D�4�=��D�2�;

� � 1�
2�D� 4��D� 3�

��D� 2�
;

(108)

one obtains the metric

ds2 � �Udt2 �
d~r2

U
� R2d�2

D�3; (109)

with
-8
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U �

�
rD�3

b

�
4�D�3�=��D�2�

�
1�

c

rD�3

�
;

R2 � r2
�
b

rD�3

�
4=��D�2�

;

(110)

which was found earlier by Chan, Horne, and Mann [14]
and interpreted as ‘‘charged dilaton black hole with un-
usual asymptotic.’’

In the nondilatonic case a � 0 one obtains

ds2 � �

�
rD�3

b

�
2
�
1�

c

rD�3

�
dt2

� b2=�D�3�


�
1�

c

rD�3

�
�1 dr2

r2
� d�2

D�2

�
: (111)

Contrary to expectations, this is not a black hole. Changing
the coordinates r̂ � rD�3 � c=2 one can rewrite this as the
product space AdS2 � SD�2. Thus the asymptotically LDB
black holes exist only in the dilatonic version. This is not
true, however, for higher p-branes.
VII. p-BRANES ON AdSp�2�S
~d�1

For theories without the dilaton, a � 0, our general
solution (94) describes black branes on the background
AdSp�2 � S~d�1. The background is supported by the anti-
symmetric form flux

F�~d�1� � r~d0 vol��~d�1�: (112)

In this case the Einstein and dual frames coincide and we
obtain

ds2 �
�
r
r0

�
2~d=d



�

�
1�

c

r~d

�
dt2 � dy2p

�

�

�
1�

c

r~d

�
�1
�
r0
r

�
2
dr2 � r20d�

2
~d�1
: (113)

This metric describes a black p-brane on the fluxed back-
ground AdSp�2 � S~d�1 for p � 1 (for p � 0 as we men-
tioned above the metric is gauge equivalent to the
background itself). The event horizon is at r � c1=~d and
in the near-horizon limit the geometry is the product space
Mp�2 � S~d�1. Therefore the solution (113) interpolates

between the product space Mp�2 � S~d�1 at the horizon

and AdSp�2 � S~d�1 at infinity. Recall that the usual
asymptotically flat extremal nondilatonic branes interpo-
late between AdSp�2 � S~d�1 at the horizon (throat) and
MD at infinity [25].

Denoting our brane solutions by tilde, we list the follow-
ing particular cases
084014
~M2: ds2 �
�
r
r0

�
4


�

�
1�

c

r6

�
dt2 � dy22

�

�

�
1�

c

r6

�
�1
�
r0
r

�
2
dr2 � r20d�

2
7;

r0 � b1=6; (114)

~M5: ds2 �
�
r
r0

�

�

�
1�

c

r3

�
dt2 � dy25

�

�

�
1�

c

r3

�
�1
�
r0
r

�
2
dr2 � r20d�

2
4;

r0 � b1=3; (115)

~D3: ds2 �
�
r
r0

�
2


�

�
1�

c

r4

�
dt2 � dy23

�

�

�
1�

c

r4

�
�1
�
r0
r

�
2
dr2 � r20d�

2
5;

r0 � b1=4: (116)

These solutions are not supersymmetric unless c � 0, in
which case they become AdS4 � S7, AdS7 � S4, and
AdS5 � S5, respectively.
VIII. QUASILOCAL CHARGES

In order to find the physical characteristics of the non-
asymptotically flat solutions, one can use the Hamiltonian
formulation of the problem similar to that applied earlier to
four-dimensional linear dilaton black holes [15,16]. Our
approach closely follows that of Brown and York [22] and
Hawking and Horowitz [23] (for a recent review see [29]).

The space-time metric is decomposed à la Arnowitt-
Deser-Misner (ADM)

ds2 � �N2dt2 � hij�dxi � Nidt��dxj � Njdt� (117)

whereN is called the lapse function andNi the shift vector.
This decomposition means geometrically that the space-
time is foliated by spacelike surfaces $t, of metric h�� �
g�� � u�u�, labeled by a time coordinate t with the unit
normal vector u� � �N(�0 . It follows that the timelike
vector field t�, satisfying t�r�t � 1, is decomposed into
the lapse function and the shift vector as t� � Nu� � N�.
The space-time boundary @M consists of initial and final
surfaces $t; t � ti; tf and a timelike surface B to which the
vector u� is tangent. This latter surface is foliated by the
(D� 2)-dimensional surfaces Srt , of metric $�� � h�� �
n�n�, which are intersections of $t and B. The unit space-
like (outward) normal to Srt , n�, is orthogonal to u�.

In the following, we generalize the treatment of the four-
dimensional Einstein-Maxwell-dilaton theory [29] to the
case of the Einstein-dilaton-antisymmetric form theory in
D dimensions.

The starting point is the D-dimensional Einstein-dila-
ton-antisymmetric form action (1) supplemented by a
-9
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boundary term [30] necessary to have a well-defined varia-
tional principle (q � ~d� 1)

S �
Z
M
dDx

�������
�g

p
�
RD �

1

2
@��@���

1

2q!
ea�F2

�q�

�

� 2
Z $tf

$ti

K
���
h

p
dD�1x� 2

Z
B
(

����
8

p
dD�1x: (118)

K is the trace of the extrinsic curvature K�� of $ti;f , while
( is the trace of the extrinsic curvature (�� of B, defined
as

K�� � �h1�r1u� � �
1

2N
� _h�� � 2D��N���; (119)

(�� � �81�r1n�; (120)

where r and D are the covariant derivatives compatible
with the metric g�� and hij, respectively.

The momentum variables conjugate to �, hij, and
Ai1...iq�1

are

p� � �
�������
�g

p
@0�; pij �

���
h

p
�hijK � Kij�; (121)

*i1...iq�1 � �
�������
�g

p
ea�F0i1...iq�1 �

�������
�g

p
Ei1...iq�1 : (122)

First, consider the gravitational part of the action (118).
To obtain the corresponding gravitational contribution to
the Hamiltonian,

HG �
Z
$t

�pij _hij � LG�
���
h

p
dD�1x; (123)

we have used the well-known result expressing the
D-dimensional scalar curvature in terms of the �D�
1�-dimensional scalar curvature and the extrinsic curvature
of $t, together with total derivative terms [23],

RD � RD�1 � K2 � K��K
�� � 2r��u

�r�u
��

� 2r��u�r�u��; (124)

and the following relation

pij _hij � �2N
���
h

p
�K2 � KijKij� � 2pijD�iNj� (125)

obtained by combining the relations (119) and (121).
Using these two results and the Eqs. (117), (119), the

gravitational part of the Hamiltonian reads

HG �
Z
$t

���
h

p 

N��RD�1 �K��K���K2��NiD�

�
p�i���
h

p

��

� 2
Z
Srt

����
$

p
�
Nk�

n�p��N����
h

p

�
dD�2x; (126)

where k � �$�1D1n� is the extrinsic curvature of Srt
embedded in $t. In the same way, the matter contribution
to the Hamiltonian is obtained using the following relations
084014
@0� �
N2�������
�g

p p� � Ni@i�;

@i� � hij@j��
Ni�������
�g

p p�;

F0i2���iq � NjFji2���iq � e�a�
N2�������
�g

p *i2���iq ;

(127)

Fi1���iq � "Fi1���iq � e�a�
�
Ni1

*i2���iq�������
�g

p � Ni2
*i1i3���iq�������

�g
p � � � �

� ��1�qNiq
*i1���iq�1�������

�g
p

�
; (128)

where "F is a �D� 1�-dimensional tensor which indices are
raised and lowered by hij.

Finally, collecting the gravitational and matter parts, one
obtains the following expression for the Hamiltonian

H �
Z
$t

���
h

p
�NH � NiH i � A0i2...iq�1

H
i2...iq�1

A �dD�1x

� 2
Z
Srt

����
$

p
�
Nk�

n�p
��N����
h

p

�
dD�2x

� �q� 1�
Z
Srt

N
����
$

p
A0i2...iq�1

Eji2...iq�1njdD�2x; (129)

where the constraints read

H � �RD�1 � K��K
�� � K2 �

p2
�

2
���
h

p �

���
h

p

2
�@��2

�
e�a�

2�q� 1�!
���
h

p *2 �

���
h

p

2q!
ea�F2; (130)

H j � �D�

�p�j���
h

p

�
� p�@j�

�
1

�q� 1�!
*i1...iq�1Fji1...iq�1

; (131)

H
i2...iq�1

A � ��q� 1�@j*
ji2...iq�1 : (132)

The quasilocal energy is defined as the ‘‘on-shell’’ value
of the Hamiltonian. Since the volume terms in the
Hamiltonian are proportional to constraints which vanish
for a solution of the theory, the quasilocal energy of a
solution is simply given by the surface terms in the
Hamiltonian, i.e. by quantities evaluated on the 2-surface
Srt . We define the quasilocal mass as the quasilocal energy
evaluated in the limit r! 1. However, it is known that the
quasilocal energy is generally divergent at infinity. This
divergence may be regularized by subtracting the contri-
bution of a background solution, provided one can impose
the same Dirichlet boundary conditions on Srt for the
solution under consideration and for the background solu-
tion. Finally, the quasilocal angular momentum of a solu-
-10
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tion may be obtained by carrying out an infinitesimal gauge
transformation (’ � (�t and evaluating the response

J �
(H
(�

: (133)

The resulting quasilocal energy and quasilocal angular
momentum are given by

E � 2
Z
Srt

����
$

p
�
N�k� k0� �

n�p��N����
h

p

�
dD�2x

� �q� 1�
Z
Srt

A0i2...iq�1
� "*ji2...iq�1 � "*

ji2...iq�1

0 �njdD�2x;

(134)

Ji � �2
Z
Srt

n�p
�
i���
h

p
����
$

p
dD�2x

� �q� 1�
Z
Srt

Aii2...iq�1
"*ji2...iq�1njd

D�2x; (135)

where "*ji2...iq�1 � �
����
$

p
=

���
h

p
�*ji2...iq�1 . The quantities with

the subscript 0 are those associated with the background
solution. Here, we have written the formulas of the quasi-
local quantities for a static background solution (Ni

0 � 0
and J0 � 0). Notice that the dilaton does not contribute
directly to the quasilocal energy and quasilocal angular
momentum.

Now, we are able to compute the mass and the angular
momentum of the solution (95). Since the solution is static,
the angular momentum density Ni � 0 is zero. Also, for
our purely magnetic solution A0i2...iq�1

� 0. So, only the
first term in (134) contributes to the quasilocal mass. The
extrinsic curvature of Srt (a section t � r � constant of (95)
reads

k � �

�
�1� ~d�a2

�
�

2~d2�d� 1�

��D� 2�

�
b�2d=��D�2�r�a

2=�

�

��������������
1�

c

r~d

r
; (136)

The natural candidate for the background solution is the
vacuum of the black branes, i.e. the LDB background
obtained by taking the parameter c equal to zero.
Subtracting its contribution leads, for r! 1, to

M

vol�p-brane�
�

�
�1� ~d�a2

�
�

2~d2�d� 1�

��D� 2�

�
c vol��~d�1�:

(137)

This expression is always positive in view of the inequal-
ities d � 1, �> 0, and D> 2. The first term may be
interpreted as the dilaton contribution to the mass, and
the second as the proper brane contribution. Note that for
nondilatonic branes a � 0, one has a nonzero mass density
only for p � 1; the fact that in this case the would-be black
084014
holes (d � 1) are actually massless is due to the gauge
equivalence, previously pointed out, between the solution
(111) with c � 0 and the background c � 0.

Obviously, the solution (95) being static, the quasilocal
angular momentum is equal to zero.

Now we address the question of the thermodynamics of
the LDB black branes (95). In the case of the standard
asymptotically flat magnetostatic black branes, the first law
is

dM � TdS; (138)

where the temperature is given by the inverse period of
imaginary time (or equivalently by the horizon surface
gravity over 2�) and the entropy by the quarter of the
horizon area in Planckian units. A simple calculation gives
for the temperature and the entropy of (95),

T �
~d
4�

b�2=�c2=��1=~d; (139)

S
vol�p-brane�

� 4�b2=�c�2=��1=~d�1vol��~d�1� (140)

(recall that we use the value of the Newton constant G �
1=16�). Then, using (137) and (139) and (140), the left-
hand side and the right-hand side of Eq. (138) read

dM
vol�p-brane�vol��~d�1�

�

�
�1� ~d�a2

�
�

2~d2�d� 1�

��D� 2�

�
dc;

(141)

TdS
vol�p-brane�vol��~d�1�

�

�
�1� ~d�a2

�
�

2~d2�d� 1�

��D� 2�

�
dc

�
2~d
�

c
b
db:

(142)

So, we see that the first law is satisfied only if the parameter
b, related to the magnetic charge of the solution according
to (91), is not varied. This is consistent with our observa-
tion that this charge is associated not with a specific black
brane, but rather with the LDB background. Since b is not a
parameter of the black branes, it should not be varied
[15,16]. Then, we conclude that the asymptotically LDB
black branes satisfy the first law of thermodynamics.
IX. KALUZA-KLEIN INTERPRETATION
AND ROTATION

Recently the near-horizon limit of near-extremal rotat-
ing branes was discussed by Harmark and Obers [10]. The
field configurations they derived have to be regarded as
rotating counterparts of the static asymptotically LDB
p-branes discussed here. It would be interesting to give a
constructive derivation of these solutions. However it
seems difficult to obtain them via the direct integration
-11



1For the reduced (~d� 3)-metric above, the generic spherically
symmetric harmonic function > is > � c ln��r���=r� � d. It
follows that for the generic (> � constant) asymptotically LDB
p-brane solution, the dilaton � and the p-brane metric function
2 are singular on the horizon.
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of the Einstein equations. Also, owing to the lack of
supersymmetry, they cannot be found via the Bogomolny
equations. Here we suggest a transparent Kaluza-Klein
procedure which could be used to perform this goal in
the case of asymptotically LDB electric p-branes.

Consider the D-dimensional action

SD �
Z
dDx

����������
�gD

p
�
RD �

1

2
�@��2 �

ea�

2�p� 2�!
F2
�p�2�

�

(143)

and specialize to the electric p-brane sector (p � d� 1)

ds2�D� � e�2p2=�~d�1�g��dx
�dx� � e22dy2; (144)

F�p�2� � F��dx� ^ dx� ^ dy1 ^ � � � ^ dyp; (145)

where all fields depend only on the x� (� � 0; � � � ; ~d� 2).
The dimensional reduction to D� p � ~d� 3 dimensions
leads to the action

S~d�3 �
Z
d~d�3x

�������
�g

p
�
R�

p�D� 2�
~d� 1

�@2�2 �
1

2
�@��2

�
1

4
ea���2p~d=�~d�1��2F2

�2�

�
: (146)

The two scalar fields are decoupled by

2 � 1�1

�
�

~d
D� 2

’� a>
�
; (147)

� � 1�1

�
a’�

2p~d
~d� 1

>
�
; (148)

with

12 � a2 �
2p~d2

�D� 2��~d� 1�
; (149)

leading to

S~d�3 �
Z
d~d�3x

�������
�g

p
�
R�

p�D� 2�
~d� 1

�@>�2 �
1

2
�@’�2

�
1

4
e1’F2

�2�

�
: (150)

For the value

12 � 2
~d� 2
~d� 1

()a2 � 4�
2d~d
D� 2

�� � 4�; (151)

this action is the sum of the action for the harmonic field >
in ~d� 3 dimensions and of the Kaluza-Klein dimensional
reduction of the ~d� 4 Einstein-Hilbert action

S~d�4 �
Z
d~d�4x

�����������������
�g�~d�4�

p
R�~d�4�: (152)

This leads to a simple procedure to construct rotating
asymptotically LDB electric p-brane solutions of the ac-
tion (1) for the values of a2 satisfying (151): (1) Start from
the trivial embedding in ~d� 4 dimensions of the ~d� 3 �
D� p Myers-Perry solution [31]; (2) carry out a twisted
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dimensional reduction to ~d� 3 dimensions; (3) oxidize the
resulting solution to D dimensions, taking into account an
arbitrary harmonic function > in (147) and (148). The
associated rotating magnetic p-brane solution may be de-
rived from this by the electric-magnetic duality transfor-
mation (2). In the case p � D� 4, rotating asymptotically
LDB dyonic p-branes have also been generated [32] by a
procedure generalizing that used for D � 4 in [16].

Let us check that, in the static case, this procedure
reproduces the asymptotically LDB electrostatic p-brane
already found. The ~d� 3-dimensional Tangherlini metric
embedded (with a twist dt! dt� d?) in ~d� 4 dimen-
sions is

ds2~d�4
� d?2 �

�
1�

�

-~d

�
�dt� d?�2 �

�
1�

�

-~d

�
�1
d-2

� -2d�2
~d�1

� d?2 �

�
1�

�
r

�
�dt� d?�2 � r2=~d

�
1
~d2

dr2

r�r���

� d�2
~d�1

�

� e�
~d�1�=�~d�2�1’�d?� A0dt�2 � e�1=�~d�2�1’ds2~d�3

;

(153)

with

e ’=1 �

�
�
r

�
1=2
; A0 � �

r��
�

; (154)

ds2~d�3
� �

�
r
�

�~d=�~d�1� r��
r

dt2 ��2=~d
�
r
�

�
�~d�2�=~d�~d�1�

�

�
1
~d2

dr2

r�r���
� d�2

~d�1

�
(155)

(the twisted dimensional reduction also involves a scale r0
which we have omitted). Carrying out the third step (oxi-
dization) then leads, for the choice > � 0, to

ds2
�D� �

�
r
�

�~d=�D�2�
�
�
r��
r

dt2 � dy2
�

��2=~d
�
r
�

�
a2=2~d

�
1
~d2

dr2

r�r���
� d�2

~d�1

�
; (156)

e a� �

�
r
�

�~d=�D�2�
: (157)

This is essentially the asymptotically LDB black p-brane.1
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X. UNIQUENESS, COSMIC CENSORSHIP,
AND SUPERSYMMETRY

Combining the results of the previous analysis we can
formulate the following uniqueness theorem for static
p-branes with a spherical transverse space:

Theorem: A singly charged p-brane solution of the
Einstein equations with the dilaton and antisymmetric
form sources possessing a regular event horizon and the
R� ISO�p� � SO�D� p� 1� isometries is either
asymptotically flat, in which case it coincides with the
standard black brane solution, or asymptotically LDB
and then it is given by Eq. (95).

These two families are geometrically dual in the follow-
ing sense. The standard asymptotically flat dilatonic
p-branes possess the BPS limit in which the solutions
have a null singularity. The BPS dilatonic branes interpo-
late between the LDB at the horizon and Minkowski space
with a constant dilaton at infinity. The second family
interpolates between the product of flat space with a sphere
(with fixed dilaton) at the horizon and LDB at infinity. For
the second family the BPS limit coincides with the LDB
itself.

Our proof was based on a complete integration of the
corresponding system of equations and subsequent deter-
mination of the free parameters from physical require-
ments. It turns out that if one imposes first the condition
of existence of a regular event horizon, there remain two
and only two options for the asymptotic behavior: either
the solution is asymptotically flat, or it is asymptotically
LDB. A nontrivial feature of this situation is that both
asymptotic configurations are supersymmetric in ten and
11-dimensional supergravities and their toroidal dimen-
sional reductions. Therefore, demanding that the curvature
singularity be hidden behind the event horizon, i.e. impos-
ing the cosmic censorship requirement, we find that non-
supersymmetric black brane solutions always ‘‘choose’’ a
supersymmetric asymptotic. This ‘‘choice’’ is another as-
pect of the relationship which was called in Ref. [33]
‘‘supersymmetry as a cosmic censor.’’ Though this has
been proven here under the assumption of R� ISO�p� �
SO�D� p� 1� isometries (i.e. for singly charged branes),
we expect this to be also true for intersecting branes [34]
(for other early references see [35], intersecting solutions
with extra parameters were also found recently [36]).

It is worth noting that various attempts [37] were made
recently to interpret the supergravity p-brane solution
(obtained under the same ansatz as here) with other free
parameters than the mass, the charge and the asymptotic
value of the dilaton as describing non-BPS string theory
branes (fractional branes, brane-antibrane systems, etc.).
Some of these solutions were used in a formal way without
careful checking of regularity and asymptotic behavior. In
view of the results of Ref. [18], all solutions with extra
parameters other than the mass, the form charge, and the
asymptotic value of the dilaton are either asymptotically
084014
nonflat or contain naked singularities. Here we have proved
in addition that the two-parameter family of asymptotically
nonflat p-branes without naked singularities is necessarily
a p-brane with LDB asymptotics. We realize, however, that
if cosmic censorship is not imposed (which may have some
justification in the string theory context) the solutions with
extra parameters can be useful.

No uniqueness of this kind is expected for the stationary
solutions. Indeed, as was extensively discussed recently,
the higher-dimensional Kerr solution is by no means
unique within the class of regular asymptotically flat sta-
tionary solutions, and other asymptotically flat solutions
such as rotating rings [38] and their generalizations (for
recent references see [39]) including supersymmetric con-
figurations [40] exist with horizon topologies other than a
sphere. Whether these solutions admit asymptotically non-
flat counterparts as in the case of the asymptotically LDB
branes discussed here remains an open question.
XI. CONCLUSIONS

In this paper we have constructively derived the static
black p-brane solutions to supergravity theories which
asymptotically approach the linear dilaton background.
The latter is the bulk configuration which was interpreted
as a holographic dual to certain nonconformal quantum
field theories (DW/QFT correspondence) or (in the case of
the NS5 brane) to little string theory.

In the static case the LDB space-time in the dual frame
factorizes into the product of an AdS space and a sphere.
There are two substantially different cases: dilatonic, in
which the dilaton is linear in terms of a special radial
variable, and nondilatonic, when the asymptotic space-
time has the above factorization property also in the
Einstein frame. This second case is fully supersymmetric,
while in the first one the supersymmetry is partially broken
by the dilaton. p-brane solutions asymptotically approach-
ing the LDB space-time exist only in the black version and
are not supersymmetric; their BPS limit coincides with the
linear dilaton background itself. In the nondilatonic case
the lower member of the family p � 0 (black hole) does
not exist, while in presence of the dilaton all p are possible
(though we did not study explicitly the domain wall and
instanton cases).

We have presented the generalization of the Brown-
York-Hawking-Horowitz formalism of quasilocal charges
to the case of arbitrary dimensions and the presence of
antisymmetric form fields. Using it we have shown that the
asymptotically LDB p-branes satisfy the first law of ther-
modynamics. In this derivation a finite value for the asymp-
totic mass was obtained by subtracting the infinite
contribution of the background LDB. It is worth noting
that the charge parameter associated with the solution
should not be varied, being a property of the background
rather than of a specific brane. Therefore one may consider
the asymptotically LDB branes to be essentially uncharged
-13
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with respect to the form field (this nicely fits with the fact
that their BPS limit is the LDB itself ).

Some stationary solutions of the type discussed here
were obtained previously as near-horizon limits of near-
extremal spinning black branes, and here we have sug-
gested a constructive procedure for their derivations as
solutions to the supergravity field equations. This also
opens an interesting question about the possible existence
of asymptotically nonflat rotating rings. A more obvious
possible generalization could be to intersecting branes of
the type considered here.
084014
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