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Centro Multidisciplinar de Astrofı́sica - CENTRA, Departamento de Fı́sica, Instituto Superior Técnico,
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A set of sufficient conditions for the generalized covariant entropy bound given by Strominger and
Thompson is as follows: Suppose that the entropy of matter can be described by an entropy current sa. Let
ka be any null vector along L and s � �kasa. Then the generalized bound can be derived from the
following conditions: (i) s0 � 2�Tabk

akb, where s0 � karas and Tab is the stress-energy tensor; (ii) on
the initial 2-surface B, s�0� � � 1

4 	�0�, where 	 is the expansion of ka. We prove that condition (ii) alone
can be used to divide a spacetime into two regions: The generalized entropy bound holds for all light
sheets residing in the region where s <� 1

4 	 and fails for those in the region where s >� 1
4 	. We check

the validity of these conditions in FRW flat universe and a scalar field spacetime. Some apparent violations
of the entropy bounds in the two spacetimes are discussed. These holographic bounds are important in the
formulation of the holographic principle.
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I. INTRODUCTION

Bounds on entropy set by some specified area that
surrounds a certain volume are called holographic bounds
and are important in the formulation of the holographic
principle of ’t Hooft. There are several such bounds, the
one that concerns us here is a generalization of the cova-
riant entropy bound. The covariant entropy bound, conjec-
tured by Bousso, is the following [1–3]: Let B be a
spacelike 2-surface in a spacetime �M;gab� satisfying
Einstein’s equation and the dominant energy condition.
Its area is denoted by AB. Consider a null hypersurface L
generated by null geodesics, each with tangent vector field
ka which starts at B and is orthogonal to B. Suppose that
the expansion

	 � raka (1)

of ka is nonpositive everywhere on L and L is not termi-
nated until a caustic is reached (where 	 ! �1). Then the
entropy, SL, through L satisfies

SL �
1

4
AB: (2)

Evidences supporting this bound have been studied in
situations where other noncovariant bounds fail, such as
in cosmological spacetimes and other matter systems [1–
5]. The null surface L in the conjecture is required to be
extended as far as possible unless a caustic is reached.
Flanagan et. al [3] modify this bound by allowing L to
be terminated at some spacelike 2-surface B0 before com-
ing to a caustic. Then the inequality (2) is replaced by

SL �
1

4
�AB � AB0 �: (3)
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This is called the generalized covariant entropy bound, or
the generalized Bousso bound.

Recently, Strominger and Thompson [6] suggested a set
of simple assumptions from which the generalized bound
(3) can be derived. The authors in [6] assumed that the
matter entropy can be described in terms of an entropy
current sa, where sa is independent of the null surface L.
Apart from this, the following two conditions are postu-
lated: (i) Let

s � �kasa (4)

be the flux of entropy that crosses the light-sheet L. Let

s0 � karas (5)

be the rate of entropy flux on L and Tab be the stress-energy
tensor. Then

s0 � 2�Tabk
akb; (6)

i.e., the rate of entropy flux is less than the energy flux
throughout the light sheet. (ii) On the initial 2-surface B,
where the affine parameter � is set to zero,

s�0� � �
1

4
	�0�: (7)

Only local quantities are involved in conditions (i) and
(ii). Bousso, et. al [7] suggested a similar set of sufficient
conditions which is stronger, and we do not discuss it here.

Conditions (6) and (7) apply to spacetimes where abso-
lute entropy currents (i.e., entropy currents that do not
depend on the light sheet) are well defined. Moreover, as
we shall show explicitly in Proposition 1, condition (i)
becomes superfluous for testing the generalized bound,
when condition (ii) is regarded as a pointwise condition,
in which case it gives a straightforward criteria for the
generalized covariant bound. Thus, we suggest an even
simpler assumption from which the generalized entropy
bound can be derived: (A) Given a spacetime region one
-1  2005 The American Physical Society



SIJIE GAO AND JOSÉ; P. S. LEMOS PHYSICAL REVIEW D 71, 084010 (2005)
has

s�x� � �
1

4
	�x�; (8)

where x represents any spacetime point within the region.
This is just a generalization of Thomson and

Strominger’s condition (ii), from an initial surface, to the
whole region. Armed with this condition we can prove
Proposition 1 (see next section for the precise formulation
and proof), which states that a necessary and sufficient
condition for the generalized entropy bound to be satisfied
for all light sheets in a region, is that condition (A) (i.e.,
s � � 1

4	) is satisfied. Then, the bound holds in the region
where s <� 1

4 	 and fails in the region where s >� 1
4	.

There are, however, some violations. Indeed, since 	 ’ 0
for light sheets in a small neighborhood of the apparent
horizon, this result indicates that if the apparent horizon is
located in a matter system (where s � smatter > 0) the
generalized covariant entropy bound is generally violated
for light-sheets in a sufficiently small neighborhood of the
apparent horizon. In such a neighborhood one surely has
s >� 1

4	. However, as we will see along the paper, such
kind of violation is due to a collapse of the hydrodynamic
description of matter entropy for light sheets in a small
neighborhood of the apparent horizon. We therefore treat
this kind of violations as trivial violations (see also Bousso
et. al [7]).

We shall apply Proposition 1 to two cases, namely, to a
closed Friedmann-Robertson-Walker (FRW) universe and
to a scalar field spacetime. In both cases absolute entropy
currents sa can be defined.

In the first case, an FRW universe, we test condition (A)
and show that it is valid throughout the spacetime except
for regions very close to the singularity and the apparent
horizon. Thus, following the previous discussion, we con-
clude that there is no meaningful violation to the general-
ized covariant entropy bound in the cosmological
spacetime. Then from Proposition 1 we know that the
generalized covariant entropy bound holds. For complete-
ness we also test Thomson and Strominger conditions (i)
and (ii) (although (ii) is automatically satisfied when (A) is
satisfied) and show they hold. In this manner we complete
the analysis made in [1] for some selected light sheets in an
FRW universe.

In the second case, a time dependent spherically sym-
metric massless scalar field spacetime, the issue is more
interesting, since it yields a new example for testing the
bounds. This spacetime is characterized by a past spacelike
singularity, a timelike naked singularity and an apparent
horizon. Such a study has been initiated by Husain [4]
where covariant entropy bounds in such a time dependent
spherically symmetric massless scalar field spacetime were
examined. We reexamine this issue by checking the suffi-
cient condition (A) (see Eq. (8)) and make improvements
in the following aspects: First, we find that the formula of
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the entropy density proposed in [4] is valid only in a region
that does not include the neighborhood of the naked time-
like singularity. Second, Husain [4] identified, in an un-
usual energy-temperature relation, the coefficient � with
the Stefan-Boltzmann constant. However, � remains un-
determined and the value � � 1

2 adopted in [4] is by no
means generic. Using � � 1

2 , Husain found no violation
for the original Bousso bound (2). On the other hand we
find that in some regions of this spacetime the bound is
violated. We check the Bousso bound for light sheets
hitting the past spacelike singularity and find that the
Bousso bound is violated for such light sheets starting
near the apparent horizon. This violation can not be ex-
plained by the failure of the fluid description for short light
sheets, but can be rescued by a smaller value of �. Thus, by
using the covariant entropy bound one can put an upper
limit in �. Third, Husain [4] found that the generalized
bound is violated for light sheets in the neighborhood of
the apparent horizon. This can be easily explained by our
Proposition 1, since as we have argued, near the apparent
horizon 	 ’ 0, and it is trivial to have matter satisfying s >
� 1

4	 in violation of the bound. By calculating s�x� and
	�x� we can find the boundary hypersurface s � � 1

4 	.
According to Proposition 1 the bound is violated in the
region in-between the apparent horizon and this boundary.
Fourth and final, a length scale argument [7] has been used
to eliminate counterexamples for the generalized bound.
This argument states that if the proper distance of the path
traveled by the light sheet is smaller than the thermal
wavelength of the matter then the hydrodynamic descrip-
tion for the matter fails. Now, Husain [4] showed that for
some light sheets the bound is violated and this violation
cannot be explained by the length scale argument. Thus, in
these cases, the argument is inconclusive to eliminate
counterexamples for the generalized bound. In our analy-
sis, we reach a similar conclusion. However, the length
scale used in [4] is a black body length scale, ��1=4, which
is not consistent with our analysis of the scalar field, where
we show one should use an associated length scale of the
form ��1=6.

In this paper, we use units with c � kB � �h � G � 1
and the ��;�;�;�� metric signature.
II. PROPOSITION

In this section, we propose a simple but useful criteria
for the generalized covariant entropy bound.

Proposition 1 A necessary and sufficient condition for
the generalized entropy bound to be satisfied for all light
sheets in a region is that condition (A), i.e., s � � 1

4	, is
satisfied everywhere in the region.

Proof: We use the coordinate system ��; x1; x2� intro-
duced in [3] to describe the light sheet L, where �x1; x2� is
any coordinate system on the initial two-surface B and � is
the affine parameter of the null generators. Associated with
-2
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each generator, one can define an area-decreasing factor
[3]:

A ��� � exp

"Z �

0
d ��	� ���

#
; (9)

which has the following obvious properties:

A �0� � 1; (10)

and

A 0��� � A���	���: (11)

Then the entropy crossing L can be expressed as [3]

SL �
Z
B
d2x

��������������������
dethAB�x�

q Z �1�x�

0
d�s�x; ��A�x; ��; (12)

where x � �x1; x2� is a point on B, hAB�x� is the induced 2-
metric on B, �1�x� is the affine parameter at the endpoint
of the generator which starts at x on B and ends on B0,
s�x; �� is the entropy density at the point �x1; x2; ��, and
A�x; �� is the area-decreasing factor for the null generator
that starts at point x. Following [3], we shall rescale the
affine parameter along each generator such that �1�x� � 1
at B0. Then, from Eqs. (11) and (12), if s � � 1

4	 in the
neighborhood of the light sheet, we have

SL � �
1

4

Z
B
d2x

��������������������
dethAB�x�

q Z 1

0
d�A0�x; ��

�
1

4

Z
B
d2x

��������������������
dethAB�x�

q
A�x; 0� �A�x; 1��

�
1

4
�AB � A0

B�: (13)

In the last step, we have used the formulas given in [3]:

AB �
Z
B
d2x

��������������������
dethAB�x�

q
; (14)

AB0 �
Z
B
d2x

��������������������
dethAB�x�

q
A�x; 1�: (15)

Note that the result in Eq. (13) is independent of the
rescaling for �1�x�. Thus, we have proved the sufficient
part.

Now we prove the necessary part of the proposition. If
the inequality (13) holds for all light sheets in a region,
choose any one of them, and for convenience do a different
rescaling of the affine parameter, such that �1�x� � ��.
Let B shrink to a sufficiently small area and let B0 be
sufficiently close to B (i.e., �� ! 0). Then we obtain the
‘‘local version’’ of Eq. (12)

SL � s�0�AB��; (16)

where s�0� is the entropy density on B (since B has shrunk
to an arbitrarily small area, s can be treated as a constant on
B) and we have used Eqs. (10) and (14). On the other hand,
Eq. (15) becomes
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AB0 �
Z
B
d2x

��������������������
dethAB�x�

q
A����

� ABA�0� �A0�0����: (17)

Hence,

AB � AB0 � �ABA
0�0���: (18)

Substituting Eq. (16) and (18) into Eq. (3) we get
condition (A), which is what we wanted to show.

By investigating condition (A), we shall be able to
identify the regions where the bound holds for all the light
sheets lying inside it. It is worth noticing that Proposition 1
does not cover the case when a light sheet crosses both the
s >� 1

4 	 zone and the s <� 1
4	 zone.

Our next remark explores the implication of Strominger
and Thompson’s sufficient conditions (i) and (ii).

Remark Suppose conditions (i) and (ii) in [6] are sat-
isfied for a light-sheet L. Then s � � 1

4	 is satisfied at all
points on L.

The proof of this remark was almost given in [6]. Under
the two conditions, it is shown in [6] that

s��� � �
1

2

G0���
G���

; (19)

where G �
������
A

p
. It then follows immediately, from

Eq. (11), that s � � 1
4	 all over the light sheet.

Proposition 1 and the Remark imply that the role of
condition (i) could almost be replaced by the single
condition (A). If condition (A) is satisfied everywhere on
the light sheet, then Proposition 1 guarantees that the
generalized Bousso bound is satisfied, no matter whether
condition (i) is violated or not. On the other hand, if
condition (A) holds on the initial surface B but not through-
out the light sheet, the Remark means that condition (i)
must fail at some points on the light sheet. So verifying
condition (i) will not help judge the generalized Bousso
bound. In section III B 2, we show that there exist light
sheets which satisfy the generalized Bousso bound, but
condition (i) fails everywhere on the light sheets.
Therefore, condition (i) is not a necessary condition for
the bound. Further implications of these conditions will be
discussed in the applications of the following section.

III. APPLICATIONS

A. Application to a closed universe

We consider a closed, dust-dominated FRW universe
which is described by the metric

ds2 � a2�����d�2 � d�2 � sin2�d	2

� sin2�sin2	d’2�; (20)

where

a��� �
amax

2
�1� cos��: (21)
-3
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In order to test our condition (A) and condition (i) of
Thompson and Strominger [6] we need some prelimina-
ries. The Planck proper time, �PL (where �PL � 1), corre-
sponds to the coordinate time � � �PL, which is obtained
from Eqs. (20) and (21) as �PL � a�1=3

max [1]. Now we
choose the future-directed outgoing light sheet such that
its tangent vector is given by

ka � �@=@��a � �@=@��a: (22)

Since such a universe is homogeneous and evolves adia-
batically, the physical entropy density sphys takes the form
[8]

sphys��� �
s0

a3���
; (23)

where s0 is a constant. s0 can be specified by the require-
ment that the entropy density may not exceed one at the
Plank time. Since, with the help of Eq. (21), a3��PL� �
amax, we have s0 � amax. Note also that the four-velocity of
a comoving observer is

ua �
1

a���

�
@
@�

�
a
: (24)

Thus, the entropy flux can be constructed as

sa � sphys���ua �
s0

a4���

�
@
@�

�
a
: (25)

Then the entropy associated with ka is

s��� � �sak
a �

4

amax�1� cos����2
: (26)

To test condition (A), we calculate the expansion of ka,

	 � 2�cot��=2� � cot��: (27)

It is easy to see that testing condition (A) is equivalent to
testing the following inequality��������4s	

���������
��������csc

3� csc��=2� �� sin�
amax

��������� 1: (28)

In Plank units, amax is a very large number. Then very close
to the singularity, �< �PL, one has that the expression
inside the absolute value in Eq. (28) goes as j�3

PL=�
3j, and

so the inequality Eq. (28) fails in that region. This is not a
real violation of the bound because the region is inside the
quantum regime. In addition, the inequality may fail
around � � �� �=2, where 	 � 0. Now, this is where
the apparent horizon is located. Thus, as long as a light
sheet does not go sufficiently close to the apparent horizon
(by definition, a light sheet can never cross the apparent
horizon), the generalized entropy bound always holds. As
discussed in the introduction, light sheets that are located
in a small neighborhood of the apparent horizon should not
be of our concern since the hydrodynamic description fails
there. We conclude that the generalized entropy bound
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always holds if light sheets are reasonably chosen (not
too close to the singularities or to the apparent horizon).

Now we test condition (i) of Thompson and Strominger
[6]. The derivative of the entropy flux, s0, in condition (i)
for the FRW universe (see Eq. (20)) is given by

s0��� � karas � �
8 sin�

amax�1� cos��3
: (29)

It is also straightforward to compute the energy flux
through the light sheet,

Tabk
akb �

3

4��1� cos��
: (30)

Since Tabkakb is positive, to test condition (i), it is suffi-
cient to test the following inequality

js0���j

2�Tabk
akb

�
16j sin�j

3amax�1� cos��2
� 1: (31)

In Plank units, amax is a very large number. So inequality
(31) can be violated only when � is sufficiently small (or
by symmetry, sufficiently close to 2�). The detail can be
seen by power series expansion of js0���j

2�Tabkakb
around � � 0.

The leading term is

js0���j

2�Tabkakb
�

64

3amax�
3 : (32)

Therefore, only when � & 2:77a�1=3
max � 2:77�PL, can in-

equality (31) be violated. However, this violation takes
place within a few Plank times from the singularity, where
quantum gravity takes effect. Thus, the violation does not
occur in the classical regime. Condition (ii) of Thompson
and Strominger [6] is a particular instance of our
condition (A) and therefore has been tested above.

B. Application to a scalar field spacetime

1. The exact scalar field solution

We shall now review the scalar field solution presented
in [4,9]. From the Einstein-scalar field equations for mass-
less minimally coupled scalars, a spherically symmetric
solution is given by the metric

ds2 � �tf�r�dt2 � tf�r��1dr2

� tr2f�r���1�
��
3

p
=2�=�

��
3

p
=2��d	2 � sin2	d%2�; (33)

where

f�r� �
�
1�

2

r

�
�
��
3

p
=2
: (34)

(There is also a possibility of choosing �
��
3

p

2 where there is��
3

p

2 in Eqs. (33) and (34) but we do not consider it here). The
-4
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FIG. 1. A spacetime diagram for the scalar field spacetime.
Below the solid line t � G�r�, @a% is timelike. Between t �
G�r� and the timelike singularity r � 2, no observers associated
with the scalar field can be naturally defined.
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corresponding scalar field in the spacetime is

%�t; r� �
1

4
����
�

p lnt
��
3

p

f�r�1=
��
3

p

�: (35)

For future discussions, we introduce the following prop-
erties of the spacetime. The future-directed tangent vector
field of the radial ingoing null geodesics is

ka �
1

f�r�t

�
@
@t

�
a
�

1

t

�
@
@r

�
a
: (36)

The corresponding expansion is

	 �
1

t
�

1

tAH�r�
; (37)

where

tAH�r� �
r2

2�r� 1�
���
3

p
=2�

f�r��1��2=
���
3�

p
; (38)

and the equation t � tAH�r� yields the apparent horizon as
a function of r.

In order to proceed our investigation in a perfect fluid
context, we need to define comoving observers. As sug-
gested in [4], one may choose the four-velocity of the
observers to be parallel to @a%. This requires that @a%
be timelike. Using Eq. (33) one finds

@a% �

����
3

�

s
1

4t
dta �

f0�r�

4
�������
3�

p
f�r�

dra: (39)

Then a straightforward calculation shows that �@%�2 �
@a%@

a%, given by

�@%�2 � gab@a%@b% (40)

�
1

48�t3

�
r� 2

r

� ��
3

p
=2
��9� 3t2�r� 2��2�

��
3

p

r�2�
��
3

p

�

(41)

is negative only for

t < G�r� �
���
3

p
�r� 2�1�

��
3

p
=2r1�

��
3

p
=2: (42)

Thus, our discussion should be confined to the region t <
G�r�, where @a% is timelike and comoving observers can
exist. As mentioned in [4], the spacetime has two curvature
singularities located at t � 0 and r � 2. Figure 1 shows the
plots of the two singularities, the apparent horizon, and t �
G�r�.

Now we review the derivation of the entropy flux 4-
vector in the framework of [4]. Assume the scalar field is a
perfect fluid with stress-energy tensor

Tab � �uaub � P�uaub � gab�: (43)

On the other hand, the stress-energy tensor can be calcu-
lated from the metric (33) as

Tab � @a%@b%�
1

2
gab�@%�2: (44)
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Define

ua � �
@a%�����������������
��@%�2

p (45)

and rewrite Eq. (44) as

Tab � �
1

2
�@%�2uaub �

1

2
�@%�2�uaub � gab�: (46)

When @a% is timelike, ua may be identified as the 4-
velocity of observers comoving with the scalar field.
Therefore, by comparing Eq. (43) and (46), we have the
following relation

P � � � �
1

2
�@%�2: (47)

Now define

! � k; (48)

where k is the amplitude of the scalar field wave vector k.
The energy-momentum dispersion relation is assumed of
the form [4]:

' � (!); (49)

where ( and ) are constants to be determined. We now
calculate the relevant thermodynamic quantities for the
scalar field. It is well-known that the mean occupation
number nk for a Bose gas is (see e.g. [10])

nk �
1

e�'k�,�=T � 1
; (50)

where, 'k is the energy in mode k, , is the chemical
potential, T is the temperature of the gas, and we set the
Boltzmann constant kB � 1. Note that , � 0 for the scalar
field. Following a canonical ensemble standard calculation,
we find that the free energy F inside a volume V is
-5
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FIG. 2. A spacetime diagram depicting the important regions
under discussion. Condition (i) is satisfied below the thick solid
line, while condition (A) is valid above the thin solid line. The
dotted line represents the apparent horizon.
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F �
TV

2�2

Z 1

0
!2 log�1� e�(!)=T�d!

� �
VT�3�)�=)

2�2)(3=)
!
�
3

)

�
/
�
1�

3

)

�
: (51)

Other thermodynamic quantities can be easily derived
from the free energy F. First, we find the relations

P �
)
3
� (52)

� �
1

36(
T2: (53)

From Eqs. (52) and (47), the constant ) can be identified
immediately as

) � 3: (54)

Here, the constant ( remains undetermined. Equation (53)
is a Stefan-Boltzmann law for a gas in one spatial dimen-
sion. In [4], the coefficient of T2 was indeed identified with
a Stefan-Boltzmann constant �, � � 1=36(.

The entropy density, sphys, takes the form

sphys � 2�T: (55)

Combining Eqs. (45), (47), (53), and (55), we obtain the
entropy flux 4-vector:

sa � sphysua � �
�������
2�

p
@a%: (56)

Husain [4] chose � � 1
2 such that

sa � �@a%: (57)

In order to compare our results with that in [4], we shall
follow this choice and use Eq. (57) to compute entropy.

2. Testing entropy bounds for future-directed ingoing
light sheets

We shall study the light sheets which are generated by
the future-directed ingoing null vectors ka given in
Eq. (36). From Eqs. (35), (36), and (57), we have the
entropy density associated with the null vector:

s � �sak
a �

1

4
����
�

p
t2

� ���
3

p �
r� 2

r

� ��
3

p
=2
�

t

r2 � 2r

�
: (58)

It is also straightforward to calculate s0 and Tabk
akb.

In Fig. 2 we show explicitly where these conditions are
satisfied. We see that there exists a region where
condition (A) is valid but condition (i) fails. If a light sheet
lies in this region, then the covariant bound is satisfied,
although condition (i) fails everywhere on the light sheet.
This illustrates that condition (i) in [6] is not a necessary
condition for the entropy bound.

An important point to note is that the Proposition 1 does
not cover the case when a light sheet crosses the s � � 1

4 	
line. In Fig. 3(a), a light sheet starts near the apparent
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horizon and crosses the s � � 1
4	 line. This standard light

sheet has an initial 2-sphere with fixed radius r0 and fixed
area A0. We can truncate this standard light sheet at any
other inner radius r to get a truncated light sheet with a
given initial 2-sphere specified by r0 and A0. By proceed-
ing inwards with this truncation we get a series of light
sheets, each labeled by the coordinate r and area A�r� at
which it is truncated, all starting at the same initial 2-
sphere (r0,A0). We shall test the bound for each one of
them. Define

ratio �r� �
1

4

S�r�
A0 � A�r�

; (59)

where S�r� is the entropy passing through the light sheet
starting from the fixed 2-sphere with area A0 and ending at
the 2-sphere with area A�r�. If ratio�r� � 1, the generalized
bound, Eq. (3), is satisfied. Figure 3(b) plots the change of
ratio�r�. The ratio is larger than unity in the s >� 1

4	 zone,
and it remains larger than unity after the light sheet enters
the s <� 1

4 	 zone until about r � 140.
In order to decide whether this means a solid violation of

the generalized Bousso bound, we first check in which
scale the fluid description of the matter fails. The entropy
flux computation is invalid if the light sheet is shorter than
the matter thermal wavelength [4,7]. The thermal wave-
length � is estimated from the relation �� 1=k, where k is
the momentum of a fluid particle. From Eq. (48) and the
energy-momentum dispersion relation Eq. (49) () � 3),
we have

��
1

�'1=3
; (60)

where �' is the mean energy per particle. To estimate �', we
first calculate the particle number density, n, by integrating
the occupation number nk (see Eq. (50)) over all modes:
-6
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FIG. 4. Plots of the proper length and thermal wavelength �
for the light sheet in Fig. 3(a). This figure shows that the proper
length of the light sheet is significantly larger than the thermal
wavelength �.
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n �
1

�2

Z 1

0
nk!2d! �

1

�2

Z 1

0

1

e!
3=T � 1

!2d!� T:

(61)

Noting that the energy density �� T2 (see Eq. (53)), we
have immediately �' � �=n� T. Therefore, Eq. (60) gives
the thermal wavelength �� T�1=3. From Eq. (53), we
finally obtain

�� ��1=6: (62)

(This is different from the length scale ��1=4 given in [4],
which follows a black body radiation calculation, but we
believe is not a consistent estimation for the scalar field.)

Now, after this preamble, we consider the light sheet as
in Fig. 3(a). We let it start near the apparent horizon and
stop at r � 140 where the ratio is close to but larger than 1
according to Fig. 3(b). We define the proper length of the
light sheet as the length between two comoving observers,
one that passes the starting point (near the apparent hori-
zon) and the other that passes the ending point of the light
sheet (near r � 140). Since the comoving frame is not
084010
static, this proper length, L, changes with time and can
be easily calculated from the metric (33) as:

L�t� �
Z rf

r0

���������
t

f�r�

s
; (63)

where r0 and rf are the radial coordinates of the two
comoving observers. Along the light sheet, t is a function
of r, so the proper length, L, can be expressed as a function
of r, as plotted in Fig. 4. The thermal wavelength � is a
function of the temperature. The temperature at each point
on the light-sheet is a function of r, so � is a function of r.
This is also plotted in Fig. 4. Since � is always much
smaller than the proper length, the local entropy descrip-
tion is justified for the light sheet. Thus the generalized
Bousso bound is not valid in this case.

3. Testing the entropy bounds for past-directed ingoing
and past-directed outgoing light sheets

We first investigate the generalized Bousso bound for the
light sheets generated by past-directed ingoing null geo-
desics. The tangent field of these null geodesics takes the
form:

ka � �
1

f�r�t

�
@
@t

�
a
�

1

t

�
@
@r

�
a
: (64)

The entropy density is s � sak
a (note that the sign of this

expression is different from that in Eq. (58) for ka in
Eq. (64) is past-directed), and the expansion for ka can
be calculated straightforwardly. To check condition (A),
we consider the following expression

s�
1

4
	 �

1

4�r� 2�t2

" 
�1�

����
3

�

s !�
r� 2

r

�
1�

��
3

p
=2
r

�

�
2� 2r�

���
3

p
�

1����
�

p

�
t
r

#
: (65)
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Since r > 2, we see immediately that s� 1
4	 < 0 in the

whole spacetime, i.e., condition (A) is satisfied every-
where. Thus, according to Proposition 1, the generalized
Bousso bound holds for all past-directed ingoing light
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FIG. 6. (a) A past-outgoing light sheet located between the
apparent horizon and the past singularity. (b) Plot of ratio�r�
when the light sheet in part (a) of this figure rolls down from the
apparent horizon to the singularity.

084010
sheets. Consequently, the original Bousso bound holds
for all these light sheets. Therefore, with the help of
Proposition 1, both the covariant entropy bounds for
past-directed ingoing light sheets have been easily tested.

Now we investigate the generalized Bousso bound for
the light sheets generated by past-directed outgoing null
geodesics. This is much more complicated. The tangent
field of these null geodesics is

ka � �
1

f�r�t

�
@
@t

�
a
�

1

t

�
@
@r

�
a
: (66)

These light sheets must be located in the past of the
apparent horizon and may terminate at the past singularity
t � 0. Figure 5 shows that condition (A) is violated in a
neighborhood of the apparent horizon. Indeed, it holds only
near the spacelike singularity. An analysis similar to the
one done in Sec. III B 2 shows that the generalized Bousso
bound is violated for light sheets between the apparent
horizon and the s � � 1

4	 surface. One can also check
that condition (i) is nowhere satisfied in the past of the
apparent horizon.

The importance and interest of past-directed (both in-
going and outgoing) light sheets is that it enables us to
investigate the original Bousso bound, since these light
sheets can reach the past singularity. Consider then a
specific light sheet which starts at the apparent horizon
with coordinates �t0; r0� � �13:25; 30� and terminates at
the past singularity with coordinates �tf; rf� � �0; 43:9�,
see Fig. 6(a). The ratio for this light sheet is ratio �
1:545, indicating that the covariant entropy bound is vio-
lated, apriori. One can fix the ending 2-sphere at the
singularity and move continuously the initial 2-sphere
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FIG. 7. Plots of the proper length and thermal wavelength �
for the light -sheet in Fig. 6(a). We consider the light sheet as in
Fig. 6(a), but we let it start near the apparent horizon and stop it
at r � 43:9 where the singularity is located. Since the comoving
frame is not static, this proper length changes with time. But
along the light sheet, the time t is a function of r. So the proper
length can be plotted as a function of r. This figures shows that
the proper length of the light sheet is significantly larger than the
thermal wavelength �.
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TABLE I. The coordinates for the starting spherical surfaces
at the apparent horizon are �t0; r0�. Thus, all light sheets begin at
the apparent horizon and end at the spacelike singularity �t; r� �
�0; rf�, where r � rf is the radial coordinate of the light sheets at
the singularity.

t0 r0 rf ratio

13:25 30 43:9 1:545
1498 3000 4498 1:546
5998 12000 17998 1:547

59998 120000 179998 1:547

LOCAL CONDITIONS FOR THE GENERALIZED. . . PHYSICAL REVIEW D 71, 084010 (2005)
along the original light sheet, labeling each initial 2-sphere
by its coordinate r, and test the Bousso bound for all these
light sheets. This is done in Fig. 6(b), where we obtain the
ratio�r� as a function of the initial 2-sphere r. We see that
the maximum violation occurs when the light sheet starts at
the apparent horizon, the case shown in Fig. 6(a).

Similarly to the discussion in section III B 2, we shall
compare the proper length of the light sheet with the matter
thermal wavelength. As plotted in Fig. 7, the proper length
between the two observers passing the light sheet changes
with r. As well the matter thermal wavelength changes
with r. We see that the proper length of the light sheet
dominates � all the way. Therefore, the length scale argu-
ment does not save the covariant entropy bound.

We still have a trump on the sleeve, which is the Stefan-
Boltzmann constant �. Remember we have followed
Husain’s choice � � 1=2 [4], but this does not need to
be the case. Since the entropy for any light sheet is pro-
portional to

����
�

p
(see Eq. (56)), the bound could be rescued

by choosing a smaller value of �. In Table I we give the
ratio for four light sheets that start at the apparent horizon
with coordinates �t0; r0�, and end at the spacelike singular-
ity with coordinates �t; r� � �0; rf�, where r � rf is the
radial coordinate of the light sheets at the singularity. It
shows that the ratio for these (and by inference all) light
sheets starting at the apparent horizon and ending at the
singularity is almost a constant. The reason behind this
coincidence is unknown to us, but this fact is very instruc-
tive for fixing the covariant bound. We can also let the
initial 2-sphere of each light sheet in Table I move away
from the apparent horizon and plot the change of ratio�r� as
a function of the initial 2-sphere labeled by r. It turns out
that their behaviors are all similar to that in Fig. 6(b).
Therefore, if the entropy density (56) is scaled down by a
factor smaller than 1=1:547, the bound will be saved. This
corresponds to requiring � � 0:21. Thus the covariant
Bousso bound puts an upper limit on the constant �.
IV. CONCLUSIONS

We have investigated the sufficient conditions for the
generalized covariant entropy bound proposed by
Strominger and Thompson [6]. We showed that the condi-
084010
tion s�x� � � 1
4 	�x�, our condition (A), can be used to

identify the regions where the generalized entropy bound
is satisfied for all light sheets. We applied this condition to
a closed, dust-dominated FRW universe and a scalar field
spacetime. We have found that in the closed FRW space-
time, condition (A) is satisfied in most of the spacetime.
Violations occur only in the regions very close to the
apparent horizon and the singularity. According to our
Proposition 1, the generalized Bousso bound is violated
in these regions. But such violations are due to the break-
down of the local description of entropy and the breakdown
of classical relativity. Then, following the original inves-
tigation by Husain, we have studied the covariant entropy
bounds in a scalar field spacetime. Husain has found that
the generalized covariant entropy bound is violated only in
a band region around the apparent horizon surface.
Proposition 1 indicates that such a band region exists in
spacetimes where the matter entropy does not vanish in a
neighborhood of the apparent horizon. We also have
checked the validity of the local description of entropy
for a light sheet which violates the generalized entropy
bound. It turns out that the proper length of the light sheet
is much larger than the thermal wavelength, meaning the
entropy computation is valid in this case. Our formula for
the thermal wavelength, �� ��1=6, is consistent with the
dispersion relation of the scalar field. This is different from
Husain’s estimation �� ��1=4, which obviously follows a
black body argument. Husain showed that there is no
violation for the covariant entropy bound by calculating
the entropy of light sheets hitting the timelike singularity
r � 2. Our calculation shows that the comoving observers
are no longer timelike near the timelike singularity.
Consequently, there is no meaningful definition for entropy
in that region. In contrast, we have considered the past-
directed light sheets which hit the past singularity t � 0.
We have checked condition (A) for past-directed ingoing
light sheets and found it holds for all of them. According to
Proposition 1, both the generalized and the original Bousso
bounds hold for such light sheets. For past-directed out-
going light sheets starting near the apparent horizon, vio-
lations of the bounds have been found. However, these
violations rely on the artificially selected Stefan-
Boltzmann constant �. Our numerical results suggest that
the covariant entropy bound can be rescued by choosing a
smaller value of �. Therefore, the entropy bound conjec-
ture sets an upper bound on �.
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