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Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational
wave phasing: The nonspinning case
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We revisit the problem of parameter estimation of gravitational-wave chirp signals from inspiralling
nonspinning compact binaries in the light of the recent extension of the post-Newtonian (PN) phasing
formula to order �v=c�7 beyond the leading Newtonian order. We study in detail the implications of higher
post-Newtonian orders from 1PN up to 3.5PN in steps of 0.5PN ( � v=c), and examine their convergence.
In both initial and advanced detectors the estimation of the chirp mass (M) and symmetric mass ratio (�)
improve at higher PN orders but oscillate with every half-a-PN order. In initial LIGO, for a 10M�–10M�

binary at a signal-to-noise ratio (SNR) of 10, the improvement in the estimation of M (�) at 3.5PN
relative to 2PN is �19% (52%). We compare parameter estimation in different detectors and assess their
relative performance in two different ways: at a fixed SNR, with the aim of understanding how the
bandwidth improves parameter estimation, and for a fixed source, to gauge the importance of sensitivity.
Errors in parameter estimation at a fixed SNR are smaller for VIRGO than for both initial and advanced
LIGO. This is because of the larger bandwidth over which it observes the signals. However, for sources at
a fixed distance it is advanced LIGO that achieves the lowest errors owing to its greater sensitivity. Finally,
we compute the amplitude corrections due to the ‘‘frequency-sweep’’ in the Fourier domain representation
of the waveform within the stationary phase approximation and discuss its implication on parameter
estimation. We find that the amplitude corrections change the errors in M and � by less than 10% for
initial LIGO at a signal-to-noise ratio of 10. Our analysis makes explicit the significance of higher PN
order modeling of the inspiralling compact binary on parameter estimation.
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I. INTRODUCTION

With the advent of a new generation of gravitational
wave (GW) detectors such as LIGO, VIRGO, GEO and
TAMA [1], we are on the eve of a new era in astronomy:
Gravitational Wave Astronomy (see Refs. [2,3] for recent
reviews). The paucity of GW sources within a detectable
distance, as well as the weakness of the gravitational wave
signals, make imperative the necessity for developing op-
timal data analysis techniques, both for their detection and
for the extraction of maximum information from these
signals. It is for this reason that inspiralling compact
binaries, which can be well modeled within the general
relativistic framework, have become one of the most prom-
ising candidate sources for the large and medium scale
gravitational wave detectors.

An efficient data analysis scheme involves two indepen-
dent aspects: first, the theoretical computation of very high
accuracy templates and second, the design of a detection
strategy adapted to the particular signal one is looking for.
These strategies vary according to the type of signal.
Gravitational waves from inspiralling binaries are tran-
sients lasting for a short duration in the sensitivity band-
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width of a ground-based detector. As the binary evolves the
waveform sweeps up in frequency and amplitude, leading
to a characteristic chirp signal. As the phasing of the waves
is known very accurately, it is possible to enhance their
detectability by using matched filtering. Bursts of unknown
shape, as, for example, from a supernova, will be probed by
monitoring the power excesses in the Fourier or time-
frequency domain, but the enhancement in the visibility
of the signal is not as good as when the phasing of the
signal is known and matched filtering can be applied. In
both cases, coincident observations with a network of
detectors would assist the detection significantly, by in-
creasing the confidence level of detection and mitigating
nonstationarity. Continuous sinusoidal signals, as, for ex-
ample, from a spinning neutron star, are also detected by
matched filtering and the signal visibility increases as the
square root of the period for which the signal is observed.
Stochastic signals require cross-correlation of data from
two or more collocated, or geographically close by, detec-
tors. Here, the stochastic signal buried in one of the instru-
ments acts as a matched filter to dig out exactly (or nearly
exactly) the same signal in another. However, since the
filter is noisy the efficiency is greatly degraded and the
visibility improves only as the fourth-root of the duration
of observation.

As a binary inspirals adiabatically, i.e. when the inspiral
time scale is much larger than the orbital time scale, it is
possible to treat the problem perturbatively and expand the
-1  2005 The American Physical Society
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general relativistic equations of motion and wave genera-
tion as a power series in v=c, where v is the characteristic
orbital velocity of the system. This post-Newtonian (PN)
treatment has been successful in modeling the dynamics of
a binary even at the late stages of inspiral and used in the
computation of waveforms necessary for data analysis (see
[4] for a recent review).1 Since radiation back reaction
causes the orbital eccentricity e to fall-off, for small e; as
e / P19=18 and the orbital radius to decay much more
slowly r / P2=3 [5], the binary orbit will essentially be
circular by the time the system reaches the late stages of
the inspiral phase. Thus, in our analysis we shall restrict
our attention to the case of compact binaries in quasicir-
cular orbit, i.e. circular but for the adiabatic decay of the
orbit under gravitational radiation reaction.

A. Data analysis of the chirp signal: Matched filtering

Among the different methods suggested for the detec-
tion of chirps from inspiralling and merging binaries,
matched filtering (also known as Weiner filtering) is the
most effective technique [6–8]. Matched filtering consists
of passing the detector data through a linear filter, or a
template, constructed from the expected signal h�t;��:
Here � is a ‘‘vector’’ whose components are the parameters
of the template. The templates h�t;�� generally use the
restricted waveform where for binaries in quasicircular
orbits the phase is computed at the highest PN order
available, but the amplitude is taken to be Newtonian,
involving only the dominant signal harmonic at twice the
orbital frequency. This is different from the complete
waveform, which incorporates the PN corrections to the
amplitude, arising from the ‘‘plus’’ and ‘‘cross’’ GW polar-
izations, and hence includes the contribution from other
harmonics (both higher and lower) besides the dominant
one. To date, for nonspinning binaries, the restricted wave-
form is computed to 3.5PN accuracy [9,10] and the com-
plete waveform up to 2.5PN order [11,12]. The best
template is probably the one which consists of the phasing
at 3.5PN and the amplitude at 2.5PN. Presently, both the
detection and parameter estimation problems mainly em-
ploy the restricted PN waveform although there have been
some investigations on the ensuing improvement achieved
when corrections arising from the other harmonics are
incorporated by using the complete waveform [13–15].
In this paper, we confine ourselves mostly to the restricted
waveform; specific amplitude corrections arising from the
‘‘frequency-sweep’’ are considered, however, in Sec. IV.

In matched filtering, the unknown set of parameters
characterizing the signal are measured by maximizing
the correlation of the data with a whole family of templates
which correspond to different values of the parameters.
The parameters of the template which maximizes the out-
1In our nomenclature, �v=c�n corresponds to n
2 post-Newtonian

(PN) order. Henceforth, we shall use units in which c � G � 1:

084008
put of a matched filter is an estimate of the true parameters.
The parameters of a signal measured in a single experiment
will be different from the actual values due to the presence
of noise. Parameter estimation basically aims at computing
the probability distribution for the measured values of a
signal. Given a measured value from a single experiment
one then uses the probability distribution function to com-
pute the interval in which the true parameters of the signal
lie at a specified confidence level (see Sec. II for a sum-
mary of the theory of parameter estimation). In the next
section, we discuss the types of error bounds proposed in
the literature in the context of GW data analysis.

B. Parameter estimation of chirp signal: Different kinds
of error bounds

In parameter estimation it is of interest to obtain the
distribution of the measured values and error bounds on the
measured values of the parameters. To this end, the starting
point would be to construct the Fisher information matrix,
the inverse of which, the covariance matrix, provides an
estimate of the possible errors in the measurement of the
parameters [7]. Error bounds obtained using the covariance
matrix are called the Cramer-Rao bounds [16]. However,
for low values of the signal-to-noise ratio (SNR) the actual
errors involved may be much larger than the errors esti-
mated by this method. Cramer-Rao bounds fall-off as the
inverse of SNR, whereas the actual errors need not follow
this behavior. One usefulness of the Cramer-Rao bound is
that, they are asymptotically valid in the limit of high SNR
and hence provides a basis to test all other estimates.

An alternate, and more general, way is to estimate the
errors by Monte Carlo methods [17–19]. In this method,
one mimics the detection problem on a computer by per-
forming a large number of simulations corresponding to
different realizations of the noise in each one of them. The
advantage here is that one no longer assumes a high SNR,
which is a crucial assumption in computing the covariance
matrix. In Ref. [18] exhaustive Monte Carlo simulations
were carried out to compute the errors in the estimation of
the parameters and the covariances among them. It used the
initial LIGO configuration and took into account only the
1PN corrections assuming, as usual, the orbit to be quasi-
circular. It was shown that the covariance matrix grossly
underestimates the errors in the estimation of the parame-
ters by over a factor of 2 at a SNR of 10. This discrepancy
disappears when the SNR is approximately 15 for a
Newtonian filter and 25 for the 1PN case. Further, the
reason for the discrepancy was explained in detail in
Ref. [20]. Extending the Monte Carlo simulations of
Ref. [18] by the inclusion of higher order terms would be
computationally quite expensive [20].

More rigorous bounds (Weiss-Weinstein bound and Ziv-
Zakai bound) on the parameter estimation of inspiralling
binaries are discussed in Ref. [21]. They compare, at the
Newtonian order, the results obtained by these bounds with
-2
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the Cramer-Rao bounds and the numerical Monte Carlo
results. At large SNR, they find all theoretical bounds to be
identical and attained by Monte Carlo methods. At SNRs
below 10, the Weiss-Weinstein bound and the Ziv-Zakai
bound provide increasingly tighter lower bounds than the
Cramer-Rao bound.

C. Parameter estimation and the phasing formula:
An update

Intrinsic parameters, like masses and spins, characteriz-
ing the signal can be estimated from the data collected by a
single detector. On the other hand, the distance to the
source and its position in the sky require at least three
geographically separated detectors forming a detector net-
work [22–24]. Cutler and Flanagan [22] have shown that,
to a good approximation, it is sufficient to use Newtonian
waveforms in these analyses. We will not, however, con-
cern ourselves with the estimation of distance in the
present work.

Cutler and Flanagan [22] initiated the study of the
implications of higher order phasing formula as applied
to the parameter estimation of inspiralling binaries. They
used the 1.5PN phasing formula to investigate the problem
of parameter estimation, both for spinning and nonspinning
binaries, and examined the effect of the spin-orbit parame-
ter � (assumed constant) on the estimation of parameters.
They find that parameter estimation worsens by a factor of
about ten because of the inclusion of �. The effect of the
2PN phasing formula was analyzed independently by
Poisson and Will [25] and Królak, Kokkotas and Schäfer
[26]. In both of these works the focus was to understand the
new spin-spin coupling term � appearing at the second PN
order when the spins were aligned perpendicular to the
orbital plane (constant � and �). Compared to Ref. [26],
Ref. [25] also included the a priori information about the
magnitude of the spin parameters, which then leads to a
reduction in the rms errors in the estimation of mass
parameters. It was shown that the effect of the inclusion
of � is less drastic than � and that it worsens parameter
estimation only by a factor of order unity. In a more recent
work [27], the implications of including the spin couplings
on the parameter estimation and the tests of alternative
theories of gravity were studied using the LISA noise
curve.

D. Summary of the current work

Starting with a brief summary of parameter estimation in
Sec. II, we discuss in Sec. III A the nature of the ‘‘chirp’’
signals from nonspinning binaries using the 3.5PN phasing
formula [10] which is now completely determined follow-
ing the recent computation of the hitherto unknown pa-
rameters at 3PN [28–34].

We study parameter estimation using three different
noise curves: advanced LIGO, initial LIGO and VIRGO.
Our choice is motivated by the fact that initial LIGO and
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VIRGO are the more sensitive instruments among the first
generation of interferometric detectors with a somewhat
different combination of bandwidth and sensitivity while
advanced LIGO is prototypical of second generation in-
struments currently being planned. We will use the planned
design sensitivity curves of initial LIGO and VIRGO as in
Ref. [35] and advanced LIGO2 as in Ref. [2] and discuss in
Sec. III B the sensitivity and span of these instruments for
binary coalescences.

As mentioned earlier, Poisson and Will [25] analyzed
the implications of the 2PN phasing formula on parameter
estimation of spinning binaries [36]. However, extending
this to higher orders is not possible at present since spin
effects beyond 2PN have not yet been computed.
Therefore, in this work we will follow the procedure
adopted in [25], but consider only the nonspinning case.
We study in Sec. III C the effect of higher order phasing
terms by incorporating them in steps of half-a-PN order
from 1PN up to 3.5PN and examine the convergence of
parameter estimation with PN orders. We compare the
errors for the different noise curves and assess their relative
performance in two different ways: at a fixed signal-to-
noise ratio (Sec. III C), with the aim of understanding how
the sensitivity bandwidth improves parameter estimation,
and for a fixed source (Sec. III D), to gauge the relative
importance of sensitivity and bandwidth. We have exam-
ined the correlation of parameter estimation results to the
number of useful cycles [37] and the sensitivity bandwidth
(Sec. III E), which together can explain the performance of
different detectors with regard to parameter estimation.

In Sec. IV we study the effect of the amplitude terms
arising from the ‘‘frequency-sweep’’ dF=dt within the
stationary phase approximation [38]. These corrections
cause the SNR (which is related to the total energy emitted
by the system) of a given binary to vary as we go from
lower to higher PN orders. The results are compared
against the standard restricted waveform approach and
should be viewed as a prelude, albeit inconsistent, to
parameter estimation using the complete waveform. We
conclude in Sec. V with a summary of our results, their
regime of validity, limitations and future directions.

Our main conclusion is that the 3.5PN phasing formula
leads to an improved estimate of the binary parameters. For
instance, in the case of black hole binaries, at a SNR of 10,
the estimate of chirp mass (symmetric mass ratio), more
specifically lnM ( ln�), improves while using the 3.5PN
phasing formula as compared to the 2PN by about 19%
(52%). Improvements are seen in all cases but are rela-
tively smaller for lighter binaries. At a fixed SNR, VIRGO
provides a better estimate of the parameters compared to
both initial and advanced LIGO configurations owing to its
-3
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better sensitivity bandwidth. This is true over the entire
mass range and even for lower mass binaries for which
VIRGO accumulates fewer number of useful cycles. For a
fixed source, however, advanced LIGO measures the pa-
rameters most accurately, as expected, with VIRGO doing
better than initial LIGO. Our investigation of the amplitude
corrections from ‘‘frequency-sweep’’ within the stationary
phase approximation finds that the percentage change in-
duced by this effect in parameter estimation is less than
10% for initial LIGO at a SNR of 10.

II. A BRIEF SUMMARY OF PARAMETER
ESTIMATION THEORY

A firm statistical foundation to the theory of gravita-
tional wave data analysis was laid down by the works of
e.g. Finn and Chernoff [39,40] and Cutler and Flanagan
[22]. This section briefly outlines the problem of parameter
estimation relevant to this paper. Notation and treatment of
this section essentially follow Refs. [22,25,41] (see also
[7,42–44] for further details). We restrict our discussion to
measurements made by a single detector.

A. Matched filtering

The output of a gravitational wave detector contains
both the signal and noise and is schematically represented
as

x�t� � h�t� � n�t�; (2.1)

where x�t� is the signal registered and n�t� is the noise,
which is assumed to be a stationary Gaussian random
variable, with zero mean, i.e.,

n�t� � 0: (2.2)

Here an overbar denotes the ensemble average (over many
realizations of the noise or, equivalently, over an ensemble
of detectors). Let q�t� define a linear filter and c�t� its
correlation with the detector output x�t�

c�t� �
Z 1


1
dt0x�t0�q�t� t0�: (2.3)

Define a new quantity ��q�t�, such that c�t� is normalized
by the square root of its variance,

��q�t� �
c�t�

�c2�t� 
 c�t�21=2
�

2<
R
1
0 df~x�f�~q

��f�e2�ift

�
R
1
0 dfSh�f�j~q�f�j

21=2
;

(2.4)
where ~x�f� and ~q�f� are the Fourier transforms of x�t� and
q�t�; respectively, Sh�f� is the real, one-sided power spec-
tral density defined only for positive frequencies by

n�f�~n��f0� �
1

2
��f
 f0�Sh�f�; (2.5)

and ~n�f� is the Fourier transform of n�t� defined as ~n�f� �R
1

1 dtn�t�e


2�ift. The filtered SNR is defined by the
ensemble average

��q�t� � ��q�t� �
2<

R
1
0 df~h�f�~q

��f�e2�ift

�
R
1
0 dfSh�f�j~q�f�j

21=2
: (2.6)
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An optimal filter is the one which maximizes the SNR at a
particular instant, say t � 0; and is given by the matched
filtering theorem as

~q�f� � �
~h�f�
Sh�f�

; (2.7)

where � is an arbitrary real constant. Thus, the SNR
corresponding to the optimal filter is given by

�2 � 4
Z 1

0
df

j~h�f�j2

Sh�f�
: (2.8)

B. Parameter estimation

Though we may have a prior knowledge of the form of
the signal we will not know what its parameters are.
Indeed, the parameters are to be measured in the process
of matched filtering. This is achieved by maximizing the
correlation in Eq. (2.4) with a whole family of templates
corresponding to different values of the signal parameters.
The parameters of the filter which maximize the correla-
tion are the measured values attributed by the analyst to the
signal presumed to be buried in the data. These parameters
need not agree, in general, with the actual parameters of
the signal since the measured values depend on a particular
realization of the detector noise.

For a given incident gravitational wave, different real-
izations of the noise will give rise to somewhat different
best-fit parameters. However, if the SNR is high enough,
the best-fit parameters will have a Gaussian distribution
centered around the actual values.

Let ~�a denote the ‘‘true values’’ of the parameters and let
~�a � ��a be the best-fit parameters in the presence of
some realization of the noise. Then for large SNR, errors
in the estimation of parameters ��a obey a Gaussian
probability distribution of the form [39]

p���a� � p�0�e
�bc��b��c=2; (2.9)

where p�0� is a normalization constant. In the above ex-
pression �ab � �hajhb�, where ha � @h=@�a, is the Fisher
information matrix evaluated at the measured value �̂ of
the parameters �. Here, �j� denotes the noise-weighted
inner product. Given any two functions g and h their inner
product is defined as:

�gjh� � 2
Z 1

0
df

~g��f�~h�f� � ~g�f�~h��f�
Sh�f�

: (2.10)

Using the definition of the inner product one can reexpress
�ab more explicitly as

�ab � 2
Z 1

0

~h�a�f�~hb�f� � ~ha�f�~h
�
b�f�

Sh�f�
df: (2.11)

The variance-covariance matrix, or simply the covari-
ance matrix, defined as the inverse of the Fisher informa-
tion matrix, is given by

�ab � h��a��bi � ��
1�ab; (2.12)
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where h�i denotes an average over the probability distribu-
tion function in Eq. (2.9). The root-mean-square error�a in
the estimation of the parameters �a is

�a � h���a�2i1=2 �
��������
�aa

p
; (2.13)

and the correlation coefficient cab between parameters �a

and �b is defined as

cab �
h��a��bi
�a�b

�
�ab����������������
�aa�bb

p : (2.14)

[There is no summation over repeated indices in
Eqs. (2.13) and (2.14).] As a consequence of their defini-
tion the correlation coefficients must lie in the range
�
1; 1: When the correlation coefficient between two
parameters is close to 1 (or 
1), it indicates that the two
parameters are perfectly correlated (respectively, anticor-
related) (and therefore redundant) and a value close to 0
indicates that the two parameters are uncorrelated; covari-
ance close to 1 (or 
1) among parameters causes a large
dispersion in their measurement.

In our analysis we will apply the method outlined above
to three prototypical systems normally considered in gravi-
tational wave studies related to ground-based detectors.
These include a binary neutron star system (NS-NS), a
neutron star-black hole system (NS-BH) and a binary black
hole system (BH-BH). Throughout our analysis we shall
assume that the mass of a NS is 1:4M� and that of a BH is
10M�:
III. PARAMETER ESTIMATION USING THE 3.5PN
PHASING FORMULA

Having outlined the essential results from the theory of
parameter estimation, we proceed to address the question
of extracting the parameters from the chirp signal using the
3.5PN phasing formula. Our computation parallels the one
by Poisson and Will [25] except that we confine our
attention to the case of nonspinning binaries whereas
Ref. [25] dealt with spinning binaries.

A. Fourier transform of chirp at 3.5PN order

To compute the Fisher information matrix we would
need the Fourier transform ~h�f� of the signal h�t�. (Note
that here and below f is the Fourier transform variable
which should not be confused with F, the instantaneous
frequency of emitted radiation.) Following earlier works,
we employ the stationary phase approximation (SPA) to
evaluate the Fourier amplitude of the waveform. Given a
function B�t� � 2A�t� cos$�t�, where d lnA=dt�
d$�t�=dt and jd2$=dt2j � �d$=dt�2, the SPA provides
the following estimate of the Fourier transform ~B�f�:
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~B�f� ’
A�tf������������
_F�tf�

q ei��f�tf�
�=4; f � 0; (3.1a)

where �f�t� � 2�ft
$�t�; (3.1b)

and
d$
dt

� 2�F�t�: (3.1c)

In this equation tf is defined as the time at which F�tf� � f
and �f�tf� is the value of �f�t� at t � tf. Starting from the
3.5PN phasing formula in [10], the Fourier transform has
been explicitly calculated in Refs. [35,45]. This Fourier
domain waveform, which forms the basis of our further
calculations, is given by

~h�f� � Af
7=6ei �f�; (3.2)

where A / M5=6Q�angles�=D, and to 3.5PN order the
phase of the Fourier domain waveform is given by

 �f� � �f�tf� 

�
4

� 2�ftc 
$c 

�
4
�

3

128�v5

XN
k�0

*kv
k; (3.3)

where v � ��Mf�1=3, M � m1 �m2 is the total mass of
the binary, � � m1m2=M

2 is the dimensionless mass ratio
and D the distance to the binary. We shall find it useful in
our study to deal with the chirp mass defined by M �

�3=5M rather than the total mass M: The coefficients *k’s,
k � 0; . . . ; N; (with N � 7 at 3.5PN order) in the Fourier
phase are given by

*0�1; (3.4a)

*1�0; (3.4b)

*2�
20

9

�
743

336
�

11

4
�
�
; (3.4c)

*3�
16�; (3.4d)

*4�10
�
3058673

1016064
�

5429

1008
��

617

144
�2

�
; (3.4e)

*5��

 
38645

756
�

38645

252
log

�
v
vlso

�

�
5

3
�


1�3log

�
v
vlso

��!
; (3.4f)

*6�

 
11583231236531

4694215680



640�2

3



6848�
21

!

��

 



15335597827

3048192
�

2255�2

12



1760�
3

�
12320,

9

!

�
76055

1728
�2


127825

1296
�3


6848

21
log�4v�; (3.4g)

*7��

 
77096675

254016
�

1014115

3024
�


36865

378
�2

!
: (3.4h)
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Among the coefficients above,*5 can be simplified further.
This interesting possibility arises because of the cancella-
tion of v5 of the 2.5PN term with that of the overall factor
in the denominator of Eq. (3.3). Consequently, all but the
lnv terms in *5 are constants and can be absorbed in a
redefinition of the phase.3 Indeed, we find that all our
estimations, except �$c, remain unchanged irrespective
of whether we choose *5 as above, or a simplified one
retaining only the lnv term.

In the 3PN phasing, until recently there were two un-
determined parameters, , and �, arising from the incom-
pleteness of the Hadamard self-field regularization at
3PN.4 By dimensional regularization , and � have been
now determined in Refs. [28–33] respectively, completing
the general relativistic compact inspiral phasing to 3.5PN
order: , � 
 1987

3080 ’ 
0:6451 and � � 
 11831
9240 ’ 
1:28. ,

has also been determined by alternative approach [34].
Following earlier works, we choose the set of indepen-

dent parameters � describing the GW signal to be

� � �lnA; f0tc; $c; lnM; ln��; (3.5)

where tc refers to the coalescence time, $c refers to the
phase at coalescence instant, f0 is a scaling frequency
related to the power spectral density (PSD) of the detectors
(see next subsection). Note that A is taken to be one of the
independent parameters. Computing the Fisher informa-
tion matrix �ab, whose elements are given by �hajhb�
(where a and b are indices which run over the parameters),
is the first step towards our goal. The upper cutoff in
computing the integrals in Eq. (2.8) and (2.11) is taken to
be the GW frequency at the last stable circular orbit (LSO)
given, for a test mass in a Schwarzschild spacetime of mass
M, to be

Fupper � Flso � �63=2�M�
1: (3.6)

We take the lower limit in the integrals to be the seismic
cutoff frequency fs of the detector.

B. Sensitivity and span of LIGO and VIRGO

We compute the covariance matrix for three noise curves
to understand the effect of detector characteristics on pa-
rameter estimation. The noise curves used are advanced
LIGO as in [2] and initial LIGO and VIRGO as in [35]. We
have fitted the following expression to the noise PSD of
advanced LIGO given in [2]

Sh�f� � S0



x
4:14 
 5x
2 �

111�1
 x2 � x4=2�

�1� x2=2�

�
;

f � fs (3.7a)

� 1; f < fs; (3.7b)
3We thank Luc Blanchet for pointing this out to us.
4The ambiguity parameter � occurring at 3PN should not be

confused with the set of parameters �a describing the GW.
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where x � f=f0; f0 � 215 Hz (a scaling frequency
chosen for convenience), fs � 20 Hz is the lower cutoff
frequency [defined such that for NS-NS binaries the gain in
SNR by reducing the lower limit of the integral in Eq. (2.8)
below fs is less than 1%], and S0 � 10
49 Hz
1: Note that
the above PSD is significantly different from the advanced
LIGO noise curve used in earlier studies. Indeed, authors
of Refs. [6,22,25,46] use the PSD of advanced LIGO to be
Sh�f� � S0�x


4 � 2� 2x2; f � fs; and Sh�f� �
1; f < fs; with x � f=f0; f0 � 70 Hz; fs � 10 Hz and
S0 � 6� 10
49 Hz
1; which has a significantly better
low-frequency sensitivity than what is currently believed
to be possible for the next generation of LIGO. Hence, we
FIG. 1 (color online). Amplitude spectrum (top panel) of ini-
tial LIGO, VIRGO and advanced LIGO together with the lumi-
nosity distance (bottom panel) at which RMS-oriented binaries
would produce a SNR of 5.
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have chosen to work with the more recent estimate given in
Eq. (3.7).

The initial LIGO noise curve from Ref. [35] is given by

Sh�f��S0��4:49x�

56�0:16x
4:52�0:52

�0:32x2; f�fs (3.8a)

�1; f<fs; (3.8b)

where again x � f=f0, with f0 � 150 Hz, fs � 40 Hz
and S0 � 9� 10
46 Hz
1. Finally, for the VIRGO detec-
tor the expected PSD is given by [35]:

Sh�f� � S0��6:23x�
5 � 2x
1 � 1� x2; f � fs (3.9a)

� 1; f < fs; (3.9b)

where f0 � 500 Hz, fs � 20 Hz and S0 � 3:24�
10
46 Hz
1. The amplitude spectra [i.e. the square root
of the power spectral densities given in Eqs. (3.7), (3.8),
and (3.9)] of the various detectors are plotted in the left-
hand panel of Fig. 1.

The SNR achieved by these detectors for binaries of
different masses not only depends on the distance D at
which the source is located but also on the orientation of
the orbital plane with respect to the line-of-sight. In order
not to be biased one can consider binaries of RMS orien-
tation and compute the SNR they would produce in a given
detector. One can turn around the question and ask the
distance at which sources of RMS orientation would pro-
duce a specified SNR. Indeed, the distance D at which a
binary of RMS orientation achieves a SNR �0 is given by
[37]

D�M;�� �
1

�0�2=3

�����������������
2�M5=3

15

s 
Z flso�M�

fs

f
7=3

Sh�f�
df
�
1=2
:

(3.10)

As is well known the SNR depends only on the chirp mass
M � �2=3M and not on the masses of the two bodies
separately. The SNR is maximum for equal mass binaries
(for which � � 1=4) and is smaller by a factor

������
4�

p
for

systems of the same total mass but consisting of stars of
unequal masses. The bottom panel of Fig. 1 plots the
luminosity distance at which binaries of RMS orientation
and consisting of stars of equal masses would produce a
SNR of �0 � 5: After computing the covariance matrix we
shall use this plot to study how parameter estimation varies
in different interferometers for sources at a fixed distance.

C. Parameter estimation using 3.5PN
phasing–Fixed SNR

In this section, we examine how the addition of higher
order terms in the phasing formula affects the parameter
estimation of the binary. We start from the 1PN phasing
formula and add terms in steps of half-a-PN order up to
3.5PN, which is the most accurate expression currently
available. We are interested in the case of nonspinning
084008
binaries (ignoring spin and orbital angular momentum)
and hence estimate only five parameters
�lnA; f0tc; $c; lnM; ln��. We calculate the elements of
�ab by explicitly computing the derivatives of the Fourier
domain waveform with respect to (w.r.t.) different parame-
ters and taking their noise-weighted inner products. The
derivatives and the Fisher matrices are too lengthy to be
displayed here. We note that �1a � �1a�2, which renders
the Fisher information matrix in block diagonal form.
Since lnA is now entirely uncorrelated with all other
parameters, we only consider the Fisher matrix calculated
from the partial derivatives of ~h�f� with respect to the four
parameters �f0tc; $c; lnM; ln��. �11 can be thought of as
an independent block, and further calculations involving
A become trivial. Finally, by inverting the Fisher infor-
mation matrix one constructs the covariance matrix.

First, we computed the covariance matrix using the
advanced LIGO noise PSD as defined in Ref. [22], which
facilitates a comparison of our results with those discussed
in the literature. Indeed, at 1.5PN order we found our
results in perfect agreement with the numbers given in
Table I of Ref. [22] and at 2PN order our calculation
reproduces the results in Table V of Ref. [26]. In both of
these papers, ln/, where / is the reduced mass, is chosen
to be the independent parameter instead of ln�. However,
the errors in these quantities are simply related by �/

/ �

2
5

��
� , so that the comparison is straightforward. In the rest

of this paper we study only the most recent advanced LIGO
noise PSD together with initial LIGO and VIRGO.

Next, let us consider the covariance matrix computed
using the noise PSDs of advanced and initial LIGO, and
VIRGO, as given in Eqs. (3.7), (3.8), and (3.9). The errors
in the measurement of the various parameters are tabulated
in Table I, for all the interferometers and for three proto-
typical binaries (NS-NS, NS-BH and BH-BH), assuming a
fixed SNR of 10 in each case. Although the SNR is fixed,
different detectors might accumulate the SNR over differ-
ent bandwidths, causing the errors to be greater or smaller
compared to one another. In agreement with what one
expects intuitively based on the bandwidth of the various
detectors (cf. Fig. 1, top panel), we find the errors in the
various parameters to be the smallest for VIRGO, followed
by a factor of roughly 10%–70% larger errors in advanced
LIGO compared to VIRGO, and a factor of 3 larger errors
in initial LIGO compared to advanced LIGO.

In going from lower to higher post-Newtonian order, we
find that there is an ‘‘oscillation’’ of the errors in the chirp
mass and reduced mass. However, the errors at 3.5PN are
always smaller than at 2PN. The opposite oscillation is
observed for the errors in tc: the error in tc at 3.5PN is
always higher than at 2PN. The fact that the reduced mass
and chirp mass show the same trend is due to the correla-
tion coefficient cM� (listed in Table II) all being close to 1.

The oscillation in the variances with PN order can be
partially understood by an examination of the correlation
-7



TABLE I. Convergence of measurement errors from 1PN to 3.5PN at a SNR of 10 for the three prototypical binary systems: NS-NS,
NS-BH and BH-BH using the phasing formula, in steps of 0.5PN. For each of the three detector noise curves the table presents �tc (in
msec), �$c (in radians), �M=M and ��=�.

NS-NS NS-BH BH-BH

PN Order �tc �$c �M=M ��=� �tc �$c �M=M ��=� �tc �$c �M=M ��=�

Advanced LIGO

1PN 0.3977 0.9256 0.0267% 4.656% 0.5959 1.261 0.1420% 7.059% 1.162 1.974 1.041% 59.88%
1.5PN 0.4668 1.474 0.0142% 1.638% 0.7394 2.091 0.0763% 2.316% 1.441 3.188 0.6115% 9.609%
2PN 0.4623 1.392 0.0143% 1.764% 0.7208 1.848 0.0773% 2.669% 1.404 2.850 0.6240% 10.79%
2.5PN 0.5090 1.354 0.0134% 1.334% 0.9000 1.213 0.0686% 1.515% 1.819 1.555 0.5300% 5.934%
3PN 0.4938 1.326 0.0135% 1.348% 0.8087 1.126 0.0698% 1.571% 1.544 1.559 0.5466% 6.347%
3.5PN 0.5198 1.273 0.0133% 1.319% 0.9980 0.9203 0.0679% 1.456% 2.086 1.137 0.5237% 5.730%

Initial LIGO

1PN 0.3598 1.238 0.0771% 9.792% 0.9550 2.510 0.5217% 20.06% 2.406 5.038 4.750% 216.2%
1.5PN 0.4154 1.942 0.0419% 2.768% 1.182 4.135 0.2850% 5.410% 2.986 8.143 2.781% 28.81%
2PN 0.4109 1.816 0.0423% 3.007% 1.148 3.597 0.2903% 6.316% 2.900 7.179 2.851% 32.82%
2.5 0.4605 1.642 0.0384% 2.129% 1.467 1.964 0.2491% 3.305% 3.836 3.070 2.351% 16.48%
3PN 0.4402 1.610 0.0389% 2.170% 1.286 1.787 0.2554% 3.474% 3.159 3.069 2.446% 17.94%
3.5PN 0.4760 1.507 0.0383% 2.098% 1.668 1.311 0.2455% 3.148% 4.531 1.851 2.313% 15.75%

VIRGO

1PN 0.1363 0.5134 0.0183% 3.044% 0.4906 1.069 0.1134% 5.782% 1.621 1.854 0.8745% 52.12%
1.5PN 0.1578 0.7981 0.0098% 1.004% 0.6069 1.763 0.0603% 1.923% 1.430 2.972 0.5095% 8.586%
2PN 0.1562 0.7515 0.0098% 1.085% 0.5918 1.561 0.0611% 2.215% 1.395 2.667 0.5199% 9.625%
2.5PN 0.1743 0.7015 0.0091% 0.7957% 0.7384 1.035 0.0541% 1.263% 1.787 1.527 0.4417% 5.370%
3PN 0.1671 0.6890 0.0092% 0.8083% 0.6632 0.9625 0.0551% 1.309% 1.532 1.528 0.4552% 5.724%
3.5PN 0.1799 0.6527 0.0091% 0.7854% 0.8195 0.7914 0.0536% 1.214% 2.031 1.150 0.4366% 5.193%
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coefficients between tc, M and �. In Table II we have
listed the correlation coefficients together with the errors in
the estimation of parameters in the case of advanced LIGO
for a NS-BH system for all PN orders starting from
Newtonian but let us first discuss the trend at orders beyond
the 1PN correction. From this table we see that the esti-
mation of M and � improves (degrades) depending on
whether the correlation coefficients cM� decrease (respec-
tively, increase) with varying PN order. Similarly, the
estimation of tc improves (degrades) depending on whether
the correlation coefficients ctcM (or, equivalently, ctc�)
decrease (respectively, increase) with PN order. We have
TABLE II. PN variation in parameter estimation
the NS-BH system for the advanced LIGO noise

PN Order ctcM ctc� cM�

0PN 
0:6451 � � � � � �

1PN 0.8166 
0:8810 
0:9859

1.5PN 0.7983 0.9280 0.9444
2PN 0.7947 0.9239 0.9460
2.5PN 0.8145 0.9519 0.9309
3PN 0.8001 0.9405 0.9333
3.5PN 0.8275 0.9609 0.9294
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also checked that the estimation of $c becomes better
(worse) with PN order with reduction (respectively, en-
hancement) in the correlation coefficients c$cM (or c$c�).
The same trend is seen for other systems and detector
configurations, though we do not list those numbers to
avoid proliferation of details. The behavior of the errors
at 0PN and 1PN is not in agreement with this general trend
because at 0PN we have only three parameters—tc,$c and
M. As we go from 1PN to 1.5PN the ambiguity function
greatly changes its orientation because of the change in
sign in the PN series at 1.5PN [cf. Equation (3.4c) and
(3.4d)].
and the associated correlation coefficients for
curve.

�tc (ms) �M=M (%) ��=� (%)

0.2775 0.0255 � � �

0.5959 0.1420 7.059

0.7394 0.0763 2.316
0.7208 0.0773 2.669
0.9000 0.0686 1.515
0.8087 0.0698 1.571
0.9980 0.0679 1.456

-8



TABLE III. Percentage change of parameter estimation accuracy at SNR � � 10 for nonspinning compact binaries due to improved
phasing accuracy from 2PN to 3.5PN. Percentage change for the parameter �n is taken to be equal to 100� �1
 �3:5PN

n =�2PN
n �.

Negative values imply worsened parameter estimation in going from 2PN to 3.5PN.

NS-NS NS-BH BH-BH
Interferometer tc $c lnM ln� tc $c lnM ln� tc $c lnM ln�

Adv. LIGO 
12:44 8.549 6.993 25.23 
38:46 50.20 12.16 45.45 
48:58 60.11 16.07 46.90
Ini. LIGO 
15:84 17.02 9.456 30.23 
45:30 63.55 15.43 50.16 
56:24 74.22 18.87 52.01
VIRGO 
15:17 13.15 7.143 27.61 
38:48 49.30 12.28 45.19 
45:59 56.88 16.02 46.05
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Though the PN variation of parameter estimation accu-
racy seems to be dominantly explained by the variation of
the correlation coefficients, it should be borne in mind that
the variances in a particular parameter are a combination of
the covariances and the availability of a greater structure or
variety in the waveforms not fully assessed in this paper.
This will be the subject of a study we shall take up in the
near future; it is important to understand in more detail
why the errors in tc worsen at higher PN orders as it has
implications in the determination of the direction to the
source. Table III summarizes the results of this section. It
provides the percentage decrease in the errors due to the
greater accuracy (3.5PN as opposed to 2PN) in the phasing
of the waves: the reduction is the highest for a BH-BH
binary for which the improvement in the estimation of � is
52% and that of M is 18.9% at an SNR of 10 for the initial
LIGO noise curve.

D. Parameter estimation using 3.5PN
phasing–Fixed source

The focus of this section is to understand the effect
of detector sensitivity (as opposed to bandwidth) on pa-
rameter estimation. The results of the previous section,
wherein the errors are quoted at a fixed SNR, cannot be
used to gauge the performance of different detectors: a
more sensitive detector has a larger SNR for a given source
and therefore a better estimation of parameters. Hence,
we translate the results for the errors in parameter estima-
tion for different detectors but normalized to a fixed dis-
tance instead of a fixed SNR. Since the errors associated
with the parameter estimation are inversely related to SNR
(� / 1=�), given the error �0 corresponding to a known
SNR �0 (results for �0 � 10 are quoted in Table I), one can
calculate the error � at another SNR � (corresponding to a
fixed distance, say, 300 Mpc) by a simple rescaling of the
results listed earlier. Indeed, � � �0�0=�; which can be
recast in terms of the distance to the source, using
Eq. (3.10), as

��DL� � �0�0�
2=3DL



2�M5=3

15

Z flso�M�

fs

f
7=3

Sh�f�
df
�

1=2

:

(3.11)

Figure 2 summarizes the results shown in Table I (3.5PN
entries) over the entire parameter space of interest for
084008
sources with a fixed SNR of 10 (left panels) and also the
consequent results from the scaling in Eq. (3.11) for
sources at a fixed distance of 300 Mpc (right panels).
The advantage of having a greater bandwidth is revealed
by looking at panels on the left which shows the errors in
VIRGO to be the smallest, followed by advanced and
initial LIGO instruments. Although the signal-to-noise
ratios in the case of VIRGO are similar to those of initial
LIGO (cf. Figure 1, right panel), Fig. 2 reveals that VIRGO
measures the parameters more accurately. Indeed, the er-
rors in VIRGO are smaller than in initial LIGO by a factor
of 2 to 4 and this is entirely as a result of VIRGO’s larger
bandwidth. Unlike the case of fixed SNR, detector per-
formance is explicit in the plots for sources at a fixed
distance. It is evident that the errors reduce by about 30–
60 times in advanced LIGO as compared to initial LIGO.
Advanced LIGO gains a factor of 10–15 in SNR relative to
initial LIGO and this accounts for most of the improvement
in its parameter estimation. However, it also gains another
factor of 3 to 4 because of its greater bandwidth. From the
foregoing discussion we conclude that as far as parameter
estimation is concerned VIRGO performs better than ini-
tial LIGO and that advanced LIGO can measure the pa-
rameters significantly better than what one might conclude
based on the improvement over VIRGO in its visibility of
the signals.

A final comment: The plots on the right-hand panel of
Fig. 2 are somewhat flattened as compared to those on the
left-hand panel due to the fact that errors for sources at a
fixed distance are (anti) correlated with the variation of
SNR with mass. In other words, there are two competing
effects on parameter estimation as the mass of the binary is
increased. On the one hand, estimation becomes worse
since the signal spends smaller amount of time in the
detector band and the number of cycles available to dis-
criminate different signals goes down. On the other hand,
as we increase the mass of the binary the SNR increases
thereby aiding in discriminating between different sys-
tems. These competing trends cause the error in the esti-
mation of the time-of-coalescence and symmetric mass
ratio to show a minimum for a binary of total mass M�
10M�: No such minimum is seen, however, in the case of
the chirp mass. This is because the error in the chirp mass
rises more steeply with mass than the SNR can cause it to
dip.
-9
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FIG. 2 (color online). Comparison of errors in the estimation of tc, M and � for sources with a fixed SNR of 10 (left panels) with
those for systems at a fixed distance of 300 Mpc (right panels).
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E. Parameter estimation and number of useful cycles

To investigate further the correlation of parameter esti-
mation performance with detector characteristics we con-
sider the total number of cycles in the detector bandwidth
and more importantly the number of useful cycles for a
particular detector for the three systems under considera-
tion. The total number of cycles Ntotal, is defined as

Ntotal �
Z Fend

Fbegin

dF
�
1

2�
d$
dF

�
; (3.12)

where$ is the phase of the GW, Fbegin and Fend correspond
to the upper and lower cutoff frequencies for the astro-
physical system under consideration. Since the phasing of
the waves is a post-Newtonian expansion in the parameter
v the total number of cycles depends on the post-
Newtonian order. At the dominant Newtonian order, as-
suming that the lower-frequency cutoff of the detector is
much smaller compared to the last stable orbit frequency of
the system, the total number of cycles for a binary of total
mass M and mass ratio � is given by

Ntotal �
��Mfs�
5=3

32��
: (3.13)

The total number of cycles goes inversely as the mass ratio
being the smallest (for a given total mass) for equal mass
binaries and is quite a sharp function of the total mass. It
has an artificiality to it in that it depends on the chosen
lower-frequency cutoff, increasing quite rapidly as the
084008
cutoff is lowered. Moreover, Ntotal has no information
about detector characteristics. Motivated by these facts
Ref. [37] proposed that the detector performance can be
better understood using the idea of the number of useful
cycles Nuseful defined as

Nuseful �


Z Fmax

Fmin

df
f
w�f�N�f�

�
Z Fmax

Fmin

df
f
w�f�

�

1

(3.14)

where N�F� is the instantaneous number of cycles (i.e., the
number of cycles spent at the instantaneous frequency F)
and w�f� is the weighting function that depends on the
effective noise of the interferometer and the amplitude of
the source defined as

N�F� �
F2

dF=dt
; w�f� �

a2�f�

h2n�f�
; (3.15)

with a�f� being the ‘‘bare amplitude’’ appearing in the
Fourier domain waveform within the SPA, j~h�f�j ’
a�f�=

����
_F

p
and h2n � fSh�f�: Unlike the total number of

cycles, the number of useful cycles contains information
about both the detector and the source: it is weighted by the
noise PSD of the instrument and amplitude of the source.
Moreover, while the total number of cycles depends criti-
cally on the choice of the lower cutoff, the number of
useful cycles is a robust estimator and it is pretty much
independent of the cutoffs chosen as long as the frequency
range covers the sensitivity bandwidth of the instrument.
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TABLE IV. Number of useful cycles (and total number of
cycles in brackets) for different systems and different detectors
computed using 3.5PN phasing. To compute the total number of
cycles the lower cutoff is chosen to be the seismic cutoff
frequency of each detector and the upper cutoff is the frequency
corresponding to the LSO.

Detector NS-NS NS-BH BH-BH

Adv. LIGO 284 (5136) 60 (1111) 14 (184)
Ini. LIGO 251 (1615) 59 (330) 12 (52)
VIRGO 140 (5136) 64 (1111) 18 (184)
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FIG. 3 (color online). Left-hand panel is the plot of the derivative dNuseful=d�lnf� against the frequency (in arbitrary normalization)
for the three detectors. Similarly, right panel gives the number of useful cycles as a function of the total mass of the binary for the three
detectors.
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At Newtonian order, the instantaneous number of cycles
is given by N�f� � 5��Mf�
5=3=�96��; which clearly ex-
hibits the well-known fact that irrespective of the mass of
the system it is best to design a detector with a good
sensitivity at as low a frequency as possible. The instanta-
neous number of cycles decreases rapidly with frequency,
but most of the contribution to the integral in Eq. (3.14)
comes from the region of the band where weighting func-
tion w�f� � a2�f�=h2s�f� � f1=3=Sh�f�; has a minimum.
As shown in Fig. 3 (right-hand panel) for binaries whose
total mass is larger than 11M� the number of useful cycles
is larger in VIRGO than the other two instruments, while
just the opposite is true for systems whose mass is smaller
than 11M�: The reason for this behavior can be seen by
inspecting the left-hand panel of Fig. 3 where we have
plotted the integrand dNuseful=d logf of the number of
useful cycles [cf. Equation (3.14)]. A binary of total
mass 100M� has its last stable orbit at Flso ’
43�M=100 M��


1 Hz; and increases in inverse proportion
to the mass for systems with lower masses. Since the
integral in Eq. (3.14) is terminated at Flso, from Fig. 3 we
see that as the upper limit of the integral increases (equiv-
alently, the mass of the binary decreases) at first the num-
ber of useful cycles for VIRGO begins to increase. This
feature explains why VIRGO has more number of cycles
than the LIGO instruments for binaries with greater
masses. However, owing to their relatively narrower band-
width (as compared to VIRGO) both the LIGO instruments
quickly catch up and for Flso * 300 Hz, (equivalently, a
total mass of M & 14 M�), they have greater number of
useful cycles than VIRGO. Thus, the relatively broader
bandwidth of VIRGO is responsible for the smaller number
of useful cycles at lower masses.

In general, one can correlate the larger errors associated
with the estimation of parameters of massive systems with
the smaller number of useful cycles for these systems (see
Table IV). It may be recalled that Ref. [37] showed that the
number of useful cycles is a good quantifier of detector
084008
performance with regard to detection issues such as effec-
tualness. However, the efficiency in parameter estimation
is a combination of bandwidth and the number of useful
cycles and not the latter alone. Thus, though VIRGO has a
smaller number of useful cycles than the two LIGO detec-
tors for the NS-NS system, its parameter estimation at a
fixed SNR is far better because of its broader bandwidth.

Following Ref. [25], where the effects induced in pa-
rameter estimation due to the inclusion of the 2PN term
was understood in terms of the additional total number of
GW cycles accumulated at that order, we also use a very
similar idea to understand the PN variations in parameter
estimation of Table I. But unlike [25], we use the number
of useful cycles instead of the total number of cycles. From
Table V, wherein we have given the errors in chirp mass
and symmetric mass ratio together with the contributions
to the useful GW cycles from each PN order term in
phasing, it is obvious that, in general, when the number
of cycles increases in going from one order to another,
errors decrease (and vice versa) suggesting a possible
correlation. Further, following [25], we tested this argu-
ment by artificially flipping the sign of each PN order term
in the phasing (keeping all lower order terms with the
correct sign) and comparing the errors. If such a correlation
exists, one would expect the trend to be reversed, as the
additional number of useful cycles accumulated reverses
-11



TABLE V. Correlation of parameter estimation and number of
useful cycles with PN order (n) for NS-NS and BH-BH binaries
for initial LIGO noise curve. Case A corresponds to the standard
PN coefficients in the phasing formula (2a � 1, a � n). Case B
refers to the results corresponding to a flip in sign of the a �
nPN term keeping all other lower orders with correct sign (2a �

1 for a � n and 1 for a < n). Errors listed are all in percent-
ages. The values for the Newtonian order are obtained using a set
of four parameters, flnA; tc; $c; lnMg, excluding ln�.

NS-NS BH-BH
PN Order (n) �M=M��=� Nuseful �M=M��=� Nuseful

Case A
0PN 0.0126 247.8 0.4833 14.98
1PN 0.0771 9.792 27.13 4.750 216.2 7.283
1.5PN 0.0419 2.768 
22:98 2.781 28.81 
9:148
2PN 0.0423 3.007 
1:197 2.851 32.82 
0:496
2.5PN 0.0384 2.129 2.406 2.351 16.48 1.850
3PN 0.0389 2.170 
1:735 2.446 17.94 
1:971
3.5PN 0.0383 2.098 
0:151 2.313 15.75 
0:236

Case B
1PN 0.0771 8.858 
21:65 4.750 158.2 
3:579
1.5PN 0.0547 1.842 80.65 3.237 28.04 21.56
2PN 0.0415 2.564 
53:64 2.727 25.63 
19:30
2.5PN 0.0515 5.085 
4:700 14.96 473.7 
2:395
3PN 0.0380 2.089 6.563 2.271 15.26 6.461
3.5PN 0.0395 2.248 
3:453 2.625 20.89 
4:978
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its sign. Indeed Case B of the table does show the opposite
trend confirming this correlation. There is an important
exception to this correlation while going from Newtonian
to 1PN, where though the number of useful cycles increase,
the parameter estimation worsens. A little thought reveals
that another more dominant aspect comes into play at this
order due to the inclusion of the new parameter � which
could increase the errors associated with the original set of
parameters. This is confirmed by looking at the parameter
estimation of the Newtonian and 1PN orders using a
smaller set of four parameters i.e. flnA; tc; $c; lnMg,
excluding ln�. We find that the percentage error in chirp
mass decreases from 0.0126 to 0.0120 for NS-NS case and
0.4833 to 0.4183 in the BH-BH case in step with the
increase in number of useful cycles. However, the reason
behind the anomalous behavior in going from 1 to 1.5PN
and 3 to 3.5PN—where despite the decrease in the number
of useful cycles, the parameter estimation improves— is
not clear from the present analysis. Thus the previous
considerations are not sufficient to completely understand
the variation of parameter estimation with the PN order.

Based on the understanding obtained in the previous
paragraph, we conclude the section with the following
comment: At present we do not have a detailed under-
standing of the reason underlying the variation in parame-
ter estimation with PN orders since the inclusion of higher
PN terms could lead to one or more of the following:
(a) introduction of a new parameter (e.g. � in going from
0PN to 1PN) leading to an increase in the variance of the
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existing parameters, (b) increase in the ‘‘variety’’ of wave-
forms leading to a reduction in the variance, and (c) change
in the covariance among the various parameters. Though
by a critical examination of the results summarized in
Tables I and II some of these effects can be seen in action,
it is not easy to disentangle these individual effects and
present a consistent quantitative picture. This, we leave to a
future study.
IV. BEYOND THE RESTRICTED WAVEFORM:
AMPLITUDE CORRECTIONS DUE TO

FREQUENCY-SWEEP AND ITS IMPLICATIONS

In the foregoing sections we worked with the restricted
PN approximation. In this approximation the GW phase is
taken to as high a PN accuracy as available while the
amplitude is assumed to be Newtonian. Indeed, all har-
monics, except the dominant one at twice the orbital fre-
quency, are neglected. From Eq. (3.1), one can see that the
Fourier-domain amplitude is determined by the product of
the time-domain amplitude A�F� / F2=3 and the factor
�dF=dt�
1=2, where dF=dt is the ‘‘frequency-sweep’’ or
‘‘chirp rate’’ of the signal. The frequency-sweep provides a
way of (partially) computing the dependence of the wave
amplitude on different PN orders. This correction, in addi-
tion to being calculable, should be of some relevance when
we compared in Sec. II B parameter estimation accuracy at
different PN orders where, following Ref. [25], we as-
sumed the SNR to be the same at all PN orders. Our
assumption was justified since in the restricted PN approxi-
mation there is no change in the amplitude of the signal as
we go from one PN order to the next. However, the
frequency-sweep causes the Fourier amplitude to change
across the PN orders and leads to variations in the SNR
with the PN orders. Since the errors depend on the SNR,
one should rescale the errors by the ratio of SNRs to
compare fairly the PN trends in parameter estimation of
the chirp signal. In what follows, we will set up the
necessary formulas to normalize the errors to the same
SNR. However, it is immediately obvious that a more
consistent calculation should begin with the full amplitude
corrections arising from the GW polarizations computed in
Refs. [11,12], in lieu of the restricted approximation used
here, and by including the subdominant harmonics.
Inclusion of these terms is beyond the scope of this paper
and will be addressed elsewhere.

To estimate the amplitude corrections due to the
frequency-sweep _F, we start from the Fourier domain
waveform in the stationary phase approximation which
can be written as

~h�f� �
Z 1


1
h�t�e
2�iftdt

�



2�

M
d
Q�angles�

�
v2����������
_F�v�

p ei �f�; (4.1)
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where v � ��Mf�1=3. Using the expression for _F at the
Newtonian order, it can easily be shown that Eq. (4.1)
reduces to Eq. (3.2). From Eq. (4.1) it is clear that the PN
corrections in the frequency-sweep _F [see Eq. (4.8) below]
introduces a related PN correction in the amplitude as
discussed earlier in the section. To proceed further we
note that the formula for _F can be normalized w.r.t. its
Newtonian value _FN and written as the product of the
Newtonian value and PN corrections _FC:

_F � _FN
_FC: (4.2)

Schematically _FC can be written as

_FC � �1� _F1PN
C � _F1:5PN

C � _F2PN
C � _F2:5PN

C

� _F3PN
C � _F3:5PN

C � � � �: (4.3)

Using FN � 96
5�M2 ��MF�11=3 and v � ��MF�1=3 and

some simple algebra, one can write,

~h C�f��BNBCei �f�; BN �Af
7=6; BC�
1�������
_FC

q
(4.4)

where BN ; as in Eq. (2.8), is the Newtonian functional
dependence. Using Eq. (4.4), the expression for SNR can
be rewritten as

�2 � 4
Z 1

0
dfBC

2
B2

N

Sh�f�
(4.5)
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From the definition of SNR, Eq. (2.8), it is clear that the
SNR varies with the PN order of _FC. Similarly, one can
write down the components of the Fisher matrix �ab as

�ab � 2
Z �1

0
df

BN
2

Sh�f�



@BC

@�a

@BC

@�b
�BC

2 @ 
@�a

@ 
@�b

�
(4.6)
where �a and �b are the parameters in the GW signal. (BC

is a PN series in v and its � dependence arises solely from
the mass dependence of v). In Sec. III, BC was effectively
taken to be unity. Here we relax that assumption by taking
into account the PN corrections involved.

The frequency-sweep appearing in Eq. (4.1) above can
be straightforwardly calculated from the expressions for
the flux function F and the energy function E, determining
the GW phasing in the adiabatic approximation. It is given
by [35]

_F�v� � 

3v2

�M2

F �v�
E0�v�

; (4.7)
where v � ��Mf�1=3 and E0 � dE
dv . Using the 3.5PN accu-

rate expression for E and F available in [10], the expres-
sion for _F up to 3.5PN is given by
�
dF
dt

�
3:5PN

�
96

5�M2 ��MF�11=3


1


�
743

336
�

11

4
�
�
��MF�2=3 � �4����MF� �

�
34 103

18 144
�

13 661

2016
��

59

18
�2

�

� ��MF�4=3 �
�



4159�
672



173�
8

�
�
��MF�5=3

�



16 447 322 263

139 708 800
�

16�2

3



1712

105
��

�



273 811 877

1 088 640
�

451�2

48



88

3
��

616

9
,
�
��

541

896
�2



5605

2592
�3 


856

105
log�16x�

�
��MF�2 �

�



4415

4032
�

661 775

12 096
��

149 789

3024
�2

�
���MF�7=3

�
: (4.8)
TABLE VI. Variation in SNR with the PN order due to the
amplitude corrections arising from the frequency-sweep dF=dt
in the stationary phase approximation. We assume initial LIGO
noise spectral density and place the source such that at 0PN order
we have a SNR of 10.

PN Order NS-NS NS-BH BH-BH

0PN 10.00 10.00 10.00
1PN 10.53 11.26 12.19
1.5PN 10.08 9.560 9.357
2PN 10.06 9.483 9.178
2.5PN 10.11 9.729 9.828
3PN 10.07 9.350 9.133
3.5PN 10.07 9.337 9.047
In the above expression � is the Euler’s constant (� �
0:577 � � � ) and the coefficients , � 
 1987

3080 ’ 
0:6451,
� � 
 11 831

9240 ’ 
1:28.
In Table VI, we summarize how the SNR varies with the

PN order for different sources assuming that the SNR
corresponding to the Newtonian order is 10. The conver-
gence of the SNR’s with PN orders is pretty obvious,
although it should be recalled that the complete waveform
includes PN corrections from other harmonics that are
comparable to the higher order terms in the frequency-
sweep [11,12]. It would be interesting to see how the
results change when these are included. We also note that
the variation of the SNR is greater for systems with larger
masses. Using a 3.5PN frequency-sweep, instead of the
-13



TABLE VII. Parameter estimation with amplitude corrections from the frequency-sweep incorporated for the initial LIGO noise
curve and SNR � � 10. nPN refers to the choice of nth PN order both in the amplitude and phase of the frequency-domain waveform.

NS-NS NS-BH BH-BH
PN order �tc �$c �M=M ��=� �tc �$c �M=M ��=� �tc �$c �M=M ��=�

1PN 0.3208 1.157 0.0752% 9.431% 0.9077 2.449 0.5241% 19.94% 1.717 3.544 3.400% 152.6%
1.5PN 0.4417 2.018 0.0426% 2.851% 1.234 4.232 0.2840% 5.484% 2.929 7.883 2.647% 27.71%
2PN 0.4427 1.903 0.0432% 3.115% 1.206 3.695 0.2892% 6.408% 2.830 6.897 2.680% 31.24%
2.5PN 0.4705 1.667 0.0387% 2.152% 1.497 1.999 0.2480% 3.327% 3.805 3.047 2.315% 16.29%
3PN 0.4777 1.703 0.0398% 2.263% 1.387 1.908 0.2556% 3.583% 3.110 3.019 2.308% 17.22%
3.5PN 0.5198 1.606 0.0393% 2.199% 1.790 1.422 0.2459% 3.259% 4.493 1.880 2.201% 15.30%
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Newtonian one, increases the SNR by 0.7% for a NS-NS
binary, while the SNR decreases by 9.5% for a BH-BH
binary. Though these amplitude corrections may not be
important for NS-NS binaries, they might be relevant for
the BH-BH case.

Using the results in Table VI one can implement a
simple procedure to obtain better error estimates. One
can scale the results of Sec. III, obtained within the re-
stricted waveform approximation, by the factor �n=�0,
where �n and �0 are the SNRs at nPN and 0PN orders,
respectively. In this simple estimate one is effectively
neglecting the contributions to the Fisher matrix from the
variation of the _F terms in the amplitude w.r.t the signal
parameters � (see Eq. (4.6). We incorporate this contribu-
tion in a more general and rigorous way in what follows.

Our more general procedure is based on Eqs. (4.5) and
(4.6) which accounts for the SNR and the Fisher matrix,
respectively, with the full _F dependence in amplitude. The
steps leading to the final results listed in Table VII are as
follows: (i) compute the amplitude A such that the SNR at
0PN is 10; (ii) compute the Fisher matrix taking into
account the amplitude corrections from the frequency-
sweep using Eq. (4.6); (iii) scale the final results by
�n=�0: The covariance matrix obtained from such a pro-
cedure can then be compared with that obtained in Sec. III.
The procedure above is obviously equivalent to choosing a
‘‘running’’ amplitude An; with �0 � 10:

In Table VII, the variation of errors with different PN
orders is shown for the initial LIGO noise curve.5 The
oscillation of errors with PN orders remains after the
inclusion of the frequency-sweep and one infers that
changes due to these amplitude terms are not very signifi-
cant. At a SNR of 10 the difference is at most 10%.
V. CONCLUSION

A. Summary and discussion of results

We have carried out a detailed study to understand the
implication of 3.5PN phasing formula on parameter esti-
5The numbers listed in Tables VI and VII are those obtained by
numerically integrating Eqs. (4.5) and (4.6) without any further
reexpansion of BC in Eq. (4.4).
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mation of nonspinning binaries using the covariance ma-
trix. We also compare parameter estimation using three
different noise curves, advanced LIGO, initial LIGO, and
VIRGO. The results of our study can be summarized as
follows:
(1) T
-14
he parameter estimation of nonspinning binaries
improves significantly, as expected, by employing
the 3.5PN phasing formula instead of the 2PN one. It
is no surprise that the same trend is observed for all
the three detectors. Improvements are larger for NS-
BH and BH-BH systems and least for NS-NS binary.
For initial LIGO, at a SNR of 10, the improvement
in the estimation of parameters M and � for BH-
BH binaries is as large as 19% and 52%, respec-
tively, whereas for NS-BH binaries it is 15% and
50%. Improvements in the case of VIRGO are
slightly less compared to LIGO (cf. Table III).
(2) I
n proceeding from 1PN to 3.5PN, one sees an
oscillation of variances with each half PN order.
However, the errors in the mass parameters at
3.5PN are always smaller than at 1PN and one can
see a convergence within this limited sequence. The
oscillation of errors is a characteristic feature of the
PN approximation. In Ref. [47], a similar oscillatory
behavior is seen in the context of the detection
problem. The variation in parameter estimation ac-
curacies with PN orders seem to be dominantly
determined by the covariances between the parame-
ters tc, $c, M and �.
(3) F
or sources at a fixed distance the errors in the
estimation of parameters are least for advanced
LIGO and the highest for initial LIGO, the perform-
ance of VIRGO being in between. Although initial
LIGO and VIRGO obtain similar SNRs for sources
with the total mass in the range �1; 50M�; the errors
in VIRGO are smaller than in initial LIGO by a
factor 2–4 due entirely to its greater bandwidth of
observation.
(4) T
he number of useful cycles is greater in VIRGO
than LIGO for higher mass binaries (M ’ 10M�)
but the opposite is true for lower mass binaries.
(5) P
arameter estimation is better if the number of
useful cycles is higher but the performance also
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depends on the sensitivity bandwidth of the instru-
ment. The notion of number of useful cycles to-
gether with bandwidth can be used to gauge
detector performance with regard to parameter
estimation.
(6) T
he variation of the Fourier amplitude of the gravi-
tational waveform across different PN orders arising
from its dependence on the frequency-sweep dF=dt,
and its implication on parameter estimation is ex-
amined. We present a table showing how the SNR
varies across the PN orders for the initial LIGO
noise curve. This correction affects the errors asso-
ciated with parameter estimation by less than 10%
and motivates an analysis using the complete wave-
form including all other harmonic contributions to
the GW amplitude from the ‘‘plus’’ and ‘‘cross’’
polarizations which are now available up to 2.5PN
in the comparable mass case [12].
B. Limitations, caveats and future directions

We conclude by pointing out the regime of validity of
our analysis of error bounds, its limitations and possible
future directions.
(1) O
ur estimates are based on the Cramer-Rao bound
which is valid only in the regime of high SNR.
Though at a SNR of 10 our calculations may be
reasonably secure, in general they are less rigorous
and provide only an upper bound on the errors
involved. A full-fledged Monte Carlo simulation
would provide tighter bounds, though that would
be computationally quite expensive.
(2) I
n Sec. IV we addressed the effect of inclusion of
amplitude corrections arising from the frequency-
sweep. This treatment is not fully consistent as one
neglects the amplitude corrections from the other
harmonics of the orbital frequency; a future study
should address this issue more consistently.
(3) B
ased on the recent runs of the GW detectors LIGO
and VIRGO more ‘‘realistic’’ noise curves are now
available. The parameter estimation using these
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realistic noise curves should be eventually
addressed.
(4) A
 similar study in the case of spinning binaries is not
possible until the terms corresponding to the effect
of spins in the phasing formula are available beyond
the present 2PN accuracy.
(5) A
 more detailed study is needed for completely
understanding the reasons for PN variations of the
errors. We leave this for future study.
(6) T
he higher order phasing terms could play a major
role also in the estimation of distance of the binary
for a network of detectors. We will address this
problem in a future work.
While finalizing this paper we learnt that E. Berti and A.
Buonanno have also looked at the estimation of parameters
using the 3.5PN phasing formula [48].
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Rev. D 69, 124007 (2004).

[30] L. Blanchet, T. Damour, G. Esposito-Farèse, and B. R.
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