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Perturbation theory in covariant canonical quantization
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I investigate a new idea of perturbation theory in covariant canonical quantization. I present preliminary
results for a toy model of a harmonic oscillator with a quartic perturbation, and show that this method
reproduces the quantized spectrum of standard quantum theory. This result indicates that when the exact
solutions to classical equations are not known, covariant canonical quantization via perturbation theory
could be a viable approximation scheme for finding observables, and suggests a physically interesting way
of extending the scope of covariant canonical quantization in quantum gravity
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I. INTRODUCTION

There is a long-standing debate in quantum gravity on
the merits of covariant versus canonical approaches to
quantization. Canonical approaches require a split of
spacetime into space and time, contrary to the spirit of
general covariance. Covariant approaches based for in-
stance on path-integral formulation, is intrinsically pertur-
bative and require a classical background. There is one
approach, covariant canonical quantization, that avoids
both these weaknesses, and provides a resolution to the
covariant versus canonical debate, at least in principle. In
this approach one quantizes the space of solutions to the
classical equations. This solution space is isomorphic to
the space of initial data (provided the initial value problem
is well posed), and each initial datum is in turn a point on
the phase space. Covariant phase space [1,2] provides a
starting point based on observables of the theory, since
canonical data are themselves observables in a time repar-
ametrization invariant theory. In spite of this nice feature
the method remains relatively unexplored, mainly because
it relies on the knowledge of the full set of solutions to the
equations of motion. To address this difficulty, it has been
suggested [3] that it may be useful to extend the scope of
this idea through perturbation theory. In this paper, I at-
tempt such a construction. In particular I see if one can
quantize a harmonic oscillator with a quartic perturbation
by quantizing the space of solutions generated at each
order via a classical perturbation expansion.

General relativity differs from other classical field theo-
ries in many aspects. The classical theory is nonlinear and
its underlying symmetry, diffeomorphism invariance, im-
plies that observables of the theory are nonlocal, a local
definition of a field defined at a spacetime point x� is not
physically meaningful, since diffemorphism actively
moves one spacetime point to another. Diffeomorphism
invariance also implies that there is no preferred back-
ground time. This raises problems for canonical quantiza-
tion, which in its usual formulation requires a preferred
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splitting of spacetime into space and time. The absence of a
preferred time makes the description of observables and
dynamics one of the central challenges in quantum gravity
[3–9]. In the canonical formulation, one works on a fixed
time slice. Here we usually start with the canonical geo-
metrodynamic variables �qab; �ab� [10] or the Ashtekar
variables [11]. The challenge then is to describe the dy-
namics of spacetime in an invariant way, after having
chosen to work in the first place with an ‘‘artificial’’ split
of spacetime into space and time. In classical general
relativity the evolution from an initial time slice to a final
one is independent of the choice of time in the intervening
spacetime. But it is not clear if the same is true in the
quantum theory—Torre and Varadarajan [12] recently
showed that even in the absence of gravity, quantum evo-
lution of a scalar field can be slice-dependent.

In the covariant picture, we work within a path-integral
framework and employ a background field method that
closely follows the standard approach to quantum field
theories on a fixed background. Although the path-integral
formally yields quantities that are covariant under diffeo-
morphisms of the background metric, the metric variables
that we started are by themselves not diffeomorphism
invariant. In contrast to the usual field theory approach,
where correlators of locally defined fields make sense, in
this case the correlators are complicated nonlocal functions
of curvatures. If the perturbation h�	 is large enough, the
signature of the metric could change, and that will mean
that the Lorentzian path-integral could miss the space of
physical metrics. Further, Goroff and Sagnotti [13] have
shown that gravity is nonrenormalizable at two loops—a
result that effectively ended hopes of a conventional quan-
tum field theoretical approach to quantum gravity.
Conventional perturbative evaluation of the path-integral
thus seems untenable for quantum gravity. Hence, there is
motivation to formulate a new approach to perturbation
theory for quantum gravity.

In covariant canonical quantization, also known as co-
variant phase space quantization, the starting point is the
space of classical solutions. For a theory with a well-posed
initial value problem, the classical solutions are uniquely
-1  2005 The American Physical Society



1See Isham [22] for a review of algebraic quantization with the
symplectic structure as a fundamental building block.

SAYANDEB BASU PHYSICAL REVIEW D 71, 084001 (2005)
determined once arbitrary initial data is specified. Each set
of initial data is also a point on phase space, and hence by
restricting the classical solutions to an arbitrary initial
value surface �0, one achieves an isomorphism between
the space of solutions S and the phase space T�Q (see
Sec. II for details). The challenging aspect here is to find
interesting physical observables—since the canonical data
�q; p� are time independent, the wave functions  �q� or
�p� in covariant canonical quantization are Heisenberg
picture wave functions, and nothing seems to evolve.
However, Rovelli [14–16] has shown that the observables
in this framework are ‘‘evolving constants’’— one pa-
rameter families of phase space functions with vanishing
total ‘‘time’’ derivatives. As we discuss in Sec. II, the
canonical data are themselves ‘‘evolving constants’’ in
the sense defined by Rovelli. Time evolution is now en-
coded as a mapping between data. As noted above, the
main obstacle in making progress with this idea (except in
a few cases such as Carlip (2� 1) [17,18] and Torre
[19](cylindrical waves)) is that in general relativity in
3� 1 dimensions we do not know the exact general solu-
tions, hence motivating a perturbative approach to extend
the scope of covariant canonical quantization.

The proposal of the present paper can be outlined in the
following way. I employ a classical perturbation expansion
around a known solution to construct the canonical data
of a different problem that cannot be solved exactly.
Formally, this amounts to solving the Hamilton-Jacobi
equations at each order, and then, in the spirit of the
covariant canonical approach, identify the solutions at
each order with canonical data of the full problem at that
order. We can then pass onto a quantum theory by repre-
senting the perturbed canonical data as self-adjoint opera-
tors on the Hilbert space of basis states of the exactly
soluble problem.

Constructing observables by such ‘‘systematic approxi-
mations’’ is not altogether a new idea. It was first proposed
in the context of general relativity by Bergmann et al [20].
Since then, the idea has been reiterated as an interesting
alternative approach to the problem of observables by
Carlip [3], Torre [9] and in a different guise by Gambini
and Pullin [21].

However, covariant canonical methods, to my knowl-
edge, have never been tested in perturbation theory. Given
the success of this approach for the classical theory on one
hand, and skepticism regarding its implications in quantum
theory on the other (see comments in Ashtekar et al. [1]),
testing this idea on a toy model as a preliminary inves-
tigation merits attention. As a first step, we construct the
quantum theory of the quartic oscillator via classical per-
turbation theory. Section III of this paper carries the details
of this construction. Further, as we shall discuss in the
concluding section, the quartic oscillator model may pro-
vide signposts on how the operational procedure can be
adapted to derive meaningful results for minisuperspace
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Bianchi models. Because of the high degree of symmetry
in these models, they are effectively quantum mechanical
problems, and provide the simplest nontrivial examples of
dynamical spacetimes. There is also a large body of litera-
ture devoted to reducing the Einstein equations to equiva-
lent Hamiltonian dynamical systems for these models. It
may be possible to exploit these results if we know the
steps in quantizing a Hamiltonian system via the proposed
approach.
II. QUANTUM MECHANICS WITH CLASSICAL
CANONICAL DATA

In the simplest route to canonical quantization one starts
with an underlying classical structure and proceeds to
define the Heisenberg algebra H of quantum observables
via a transition from the Poisson bracket or symplectic 2-
form1 � � dp ^ dq to the commutator �q̂; p̂�. As empha-
sized by Črnković et al. [2], this process is not tied down to
the seemingly noncovariant a priori choice of coordinates
and momenta. Rather, the fundamental geometric structure
on phase space, the symplectic 2-form, takes precedence.
This follows from the observation that the presymplectic 1-
form 	 � padq

a is a completely covariant structure that
can be read off from the boundary term in the variation of
the action when the variation is restricted to the classical
solutions to the equations of motion [23,24]. In other
words, when restricted to the classical solutions,

�Iboundary �
Z
dt
d
dt

�padq
a� � �	�

��������tf

ti

�: � d	:

(2.1)

When the initial value formulation is well posed, classical
solutions � �q�t�; �p�t�� are generated uniquely from initial
data �q; p� by a canonical transformation C

C :�q; p� � �q�t�: � q�q; p; t�; �p�t�: � p�q; p; t�:

(2.2)

By restricting the solutions to an arbitrary initial value
surface �, this canonical transformation can then be in-
verted to represent data in terms of solutions, that is we can
find expressions, q � q� �q; �p; t�, p � p� �q; �p; t�. Hence, the
space of solutions of the equations of a motion is isomor-
phic to the space of initial data. However, each of the data
points is also a point on the phase space. Thus the sym-
plectic 2-form on phase space � can be pulled back to the
space of data S to define a symplectic 2-form ! � dq ^
dp � C�� on the latter. Once this is done, quantization
can be performed by a finding suitable self-adjoint opera-
tors q̂ and p̂, which generates the Heisenberg group H.
Wave functions  �q� or �p� are defined for all times and
are thus the wave functions of the Heisenberg picture of
-2
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quantum mechanics. In passing let us also observe that,
since data is independent of time, the total time derivative
vanishes, that is

_q � fq;HgPB �
@q
@t

� 0: (2.3)

An ‘‘evolving constant’’A, introduced by Rovelli [14] is a
one parameter family of functions, parametrized by time t
that satisfies _A � 0. Hence from (2.4) we see that canoni-
cal data satisfies this criterion and hence are themselves
evolving constants.

When the full classical solutions are not known, we can
reformulate the problem of finding solutions in a perturba-
tive sense outlined below. To be concrete we will confine
ourselves to a system with a Hamiltonian description. Let
us assume that we have a system described by a
Hamiltonian H0 for which the full classical solutions are
known.2 This, in particular, means that the observables of
the unperturbed problem �q0; p0� are known and that the
unperturbed symplectic structure !0 � dp0 ^ dq0 is
given. Assume then a small perturbation H1, so that the
full Hamiltonian is

H � H0 � �H1: (2.4)

The idea is to use the full Hamiltonian to ‘‘evolve’’ the
dynamical system, and, in particular, construct the observ-
ables of the problem described by H in terms of the
canonical data of the unperturbed problem. The canonical
variables of the full problem are then obtained as a pertur-
bation expansion defined as,

q � q0 � �q1 � �2q2 � . . .

p � p0 � �p1 � �2p2 � . . . :
(2.5)

From the Hamilton’s equations and the requirement that
the observables of the full theory satisfy fq; pgPB � 1 at
each order, we obtain solutions for �q1; q2� and �p1; p2�
and construct the solutions defined above at each order as
functions of �q0; p0�, and investigate the consequences of
the perturbation on the zeroth order symplectic structure.
The latter when promoted to a commutator algebra for the
corresponding operators, encode the ‘‘evolution’’ of the
unperturbed basis states that define the Hilbert space on
which the quantum theory is defined. We now turn to the
details of application of this scheme to the quantum theory
of the quartic oscillator.
2In the proposal put forward by Bergmann et al. [8], it is
assumed that the lowest order solution is the Minkowski metric,
and the expansion is ‘‘in terms of a deviation from this trivial
constant solution’’.
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III. QUANTUM THEORY OF QUARTIC
OSCILLATOR VIA CLASSICAL PERTURBATION

The complete Hamiltonian for the toy model is de-
scribed by

H �
p2

2
�
!2q2

2
�
�q4

4
: (3.1)

The basic canonical variables of the unperturbed harmonic
oscillator problem will be denoted by �q0; p0�. The classi-
cal solutions of the unperturbed Harmonic oscillator is
denoted as �q�t�: � q0 cos!t�

p0

! sin!t. In particular this
means that for t � 0; �q � q0 and �p � p0 represent oscil-
lator data. Time dependent solutions will be denoted with
an overbar through out the remainder of this text, while
their restriction to the t � 0 surface will be denoted with-
out it. The steps leading to the quantum theory can be
outlined as follows:
(1) H
-3
amilton’s equations, in conjunction with the per-
turbation expansion

�q�t� � �q0�t� � � �q1�t� � �2 �q2�t� � . . .

�p�t� � �p0�t� � � �p1�t� � �2 �p2�t� � . . .
(3.2)

are used to construct the solutions as �q �
q�q0; p0; t�; �p � p�q0; p0; t�.
(2) W
e impose f �q�t�; �p�t�gPB � 1 to all orders in pertur-
bation theory, and use this condition to obtain an
expression for the Poisson bracket of the oscillator
variables. We find that the Poisson algebra is pre-
served under time evolution, hence we work with
physical quantities defined at t � 0. The perturba-
tion manifests itself as a deformation of the classical
Poisson algebra of �q0; p0�. The Hamiltonian (3.6) is
expanded to each order in perturbation theory with
the aid of the solutions. The equations of motion
ensure that it is an evolving constant in the sense of
Sec. II.
(3) W
e define a set of new canonical variables, ex-
pressed as functions of �q0; p0� at each order in
perturbation, which satisfies a classical canonical
algebra. The introduction of this canonical pair is
motivated by the adjustment of the deformation in
the classical Poisson algebra of the oscillator varia-
bles (see Sec. ) for an explanation on the meaning of
the term adjustment used here). This enables a
transition to a canonical pair of operators that gen-
erates a Heisenberg group H at each order of per-
turbation. This is needed to construct the Hilbert
space of states and to facilitate operator ordering of
the Hamiltonian.
(4) W
e promote the latter variables with the choice of
Weyl ordering to hermitian operators acting on the
Hilbert space H osc of the unperturbed oscillator
states, and construct a Hamiltonian operator Ĥ
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whose action on these states gives the quantized
spectra at each order of perturbation.
Proceeding in step 1, Hamilton’s equations lead to the
differential equations

_�p � �!2 �q� � �q3; _�q � �p

) ��q�!2 �q� � �q3 � 0:
(3.3)

These must be satisfied at each order in �, and, in particu-
lar, yield the equations of motion for �q1, �p1, �q2, �p2 re-
spectively as

��q 1 �!2 �q1 � � �q30�t� �p1 � _�q1

��q2 �!2 �q2 � �3 �q02 �q1�t� �p2 � _�q2
(3.4)

where �q0�t� � q0 cos!t�
p0

! sin!t. The solutions for �q1�t�
and �p1�t�, are then given by

�q1�t� �
�1tsin!t

2!
�
�2tcos!t

2!
�
�3 sin3!t

8!2 �
�4 cos3!t

8!2

�p1�t� �
�1
2!

�t!cos!t� sin!t��
�2
2!

��t! sin!t� cos!t�

�
3�3
8!

cos3!t�
3�4
8!

sin3!t (3.5)

where the set of coefficients �1, �2, �3, and �4 are given by

�1�q0; p0� � �
3

4

�
q30 �

q0p
2
0

4!2

�

�2�q0; p0� � �
3

4

�
p3
0 �

q20p0

!

�

�3�q0; p0� �
1

4

�
p3
0

!3 �
3q20p0

4!

�

�4�q0; p0� �
1

4

�
3q0p2

0

4!2 � q30

�
:

(3.6)

As a consequence of the equations of motion, dH
dt � 0.

Additionally, a tedious but straightforward exercise shows
that f �q�t�; �p�t�gPB � fq; pgPB. These observations imply
that time t which appears in the solutions (3.5) plays the
role of a parameter and that there is no physical signifi-
cance to a particular instant in t. This justifies working with
values of �q; p� at t � 0, without any loss of generality.
Thus we will work at 0���, with the solutions

�q 1�0� � q1 �
q30

32!2 �
3q0p2

0

32!4

�p1�0� � p1 �
9p3

0

32!4 �
21q20p0

32!2

(3.7)

and the corresponding ones at O��2�, which are given by

q2 � �
5q50

256!4 �
8q30p

2
0

256!6
�

17q0p4
0

256!8

p2 � �
56q20p

3
0

256!6
�

29q40p0

256!4 �
7p5

0

256!8 :

(3.8)
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We will proceed first with computations at the first order
in perturbation theory. For notational simplicity, we
introduce two parameters, � � 3

2!4 and � � �� �h!.

Henceforth, H0 �
p2
0

2 �
!2q20
2 . Now using fq; pgPB � 1 and

the solutions (3.7) we obtain for the Poisson bracket of the
original variables

fq0; p0gPB � �1� ��H0�: (3.9)

Thus the perturbation leads to a deformation of the Poisson
algebra of the unperturbed observables �q0; p0�. This, in
particular, implies that the Poisson bracket of arbitrary
phase space functions f�q0; p0� and g�q0; p0� is given by

ff; ggPB � �1� ��H0�ff; gg
�0�
PB (3.10)

where the superscript on the Poisson bracket implies zeroth
order. With the help of the solutions the Hamiltonian at first
order can be written as

H�q0; p0� �
�p0 � �p1�

2

2
�
!2�q0 � �q1�

2

2
�
�q40
4

� H0 �
3��
4
H2

0 (3.11)

and at second order from (3.7) and (3.8)

H�q0; p0� � H0 �
3��
4
H2

0 �
25�2�2

576
H3

0 : (3.12)

We now turn to the quantum theory of this system.

A. Symplectic structure, quantization and spectrum

In order to obtain the spectrum of energies for the
Hamiltonian (3.11) and (3.12), we need to promote the
variables �q0; p0� and the Hamiltonian H to hermitian
operators on the Hilbert space H osc of the harmonic
oscillator. The key to this quantization is the deformation
of the classical Poisson bracket algebra (3.9), which when
promoted to a commutator via the correspondence, �; � !
i �hf; g yields

�q̂0; p̂0� � i �h�1� ��Ĥ0�: (3.13)

Observe that—

(1) T
-4
he usual Heisenberg group H in quantum mechan-
ics is generated by the algebra �q̂; p̂� � i �h. Owing to
the deformation of the classical Poisson algebra, q̂0
and p̂0 do not have this property. This renders the
algebraic problem of operator ordering, such as
Weyl ordering, for example, unusually complex.
(2) T
he spirit of the present proposal is to use the
Hilbert space of states defined by the unperturbed
harmonic oscillator to construct the quantum theory
of the perturbed problem at each order. Note, how-
ever, that covariant canonical quantization is the
Heisenberg picture of quantum theory. It is well
known that basis states of the Heisenberg picture
evolve, and in this case, this evolution is imprinted
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as a deformation of the algebra. Hence, we need to
define a canonical pair generating a Heisenberg
group at each order and to construct basis states
jgosc> 2 H osc, on which we can write the action
of the Hamiltonian operator.
These observations motivate the transformation to a very
simple canonical pair �~q; ~p� that can be used to quantize the
system at each order in perturbation theory. This trans-
formation is what we referred to as an ‘‘adjustment’’ at the
beginning of Sec. III. The new variables will be referred to
throughout the remainder of this paper as a tilded-
representation. The choice of this canonical pair is natu-
rally motivated by the structure of the deformation of the
classical Poisson algebra of the unperturbed oscillator
variables. At 0��� the new variables are

~q�q0; p0�: � q0

�
1�

��
4
H0

�

~p�q0; p0�: � p0

�
1�

��
4
H0

�
:

(3.14)

This pair satisfies

f~q; ~pgPB � 1: (3.15)

The classical Hamiltonian (3.16) now becomes

H�~q; ~p�: � ~H0 �
��
4

~H2
0 (3.16)

where

~H 0 �
~p2

2
�
!2~q2

2
� H0 �

��
2
H2

0 �O��2�: (3.17)

We define a quantum algebra by Weyl ordering the pair
(3.14),

~q � �~q�W � ~̂q �

�
q̂0 �

��
8

�q̂0; Ĥ0��

�

~p � �~p�W � ~̂p �

�
p̂0 �

��
8

�p̂0; Ĥ0��

�
:

(3.18)

To O���, therefore, we have a canonically conjugate pair
which are functions of the oscillator data and which gen-
erates a Heisenberg group,

�~̂q; ~̂p� � i �h: (3.19)

A word in passing as to the meaning of Weyl ordering
used in the above definition would be appropriate. Owing
to the deformation in the commutator algebra Eq. (3.9), we
would expect a O��� modification of the standard Weyl
ordering [25]. However, this does not contribute at O��� to
the definitions (3.18), which incorporates the zeroth Weyl-
ordered expression. Once these tilded-variables are de-
fined, operator ordering to obtain 0��2� expressions for
operators corresponding to polynomial functions of
�q0; p0� does not pose a problem, since such functions
can be re-expressed in the tilded-representation by invert-
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ing the relations (3.14), using Eq. (3.16) where appropriate.
By construction the operator of the tilded-representation
generate a Heisenberg group, and hence usual Weyl order-
ing applies to functions of the form f�~qm ~pr�.

We now define a basis in terms of the operators

~̂a ! �

������
!
2 �h

r �
~̂q�

i
!

~̂p
�

~̂ay! �

������
!
2 �h

r �
~̂q�

i
!

~̂p
�

~̂N � ~̂ay! ~̂a! �
~̂H0

�h!
�

1

2

(3.20)

where ~̂H0 �
~̂p2

2 � !2 ~̂q2

2 . Owing to Eq. (3.19), �~̂a!; ~̂a
y
!� � 1

and hence ~̂a! and ~̂ay! satisfy the algebra of the usual
creation-annihilation operators. As a consequence we can

define states j~n> that satisfy ~̂Nj~n> � ~nj~n> with ~n 2 Z�.
A straightforward calculation shows that the Hamiltonian
(3.11) can be recast in terms of the Heisenberg pair (3.18),
which upon yields the quantum Hamiltonian at O���,

Ĥ: � ~̂H0 �
��
4

~̂H
2
0 �

� �h!
16

Î: (3.21)

Given the definitions of Eq. (3.20), the spectrum of Ĥ is
given by (reinstating � and �)

Ĥ
��������~n

�
�

	�
~n�

1

2

�
�h!�

3� �h2

8!2

�
~n2 � ~n�

1

2

�

j~n
�
:

(3.22)

The energy eigenvalues are in exact agreement with the
results of Rayleigh-Schrödinger perturbation theory [26],
implying thereby that our method reproduces the known
result for the spectrum of the quartic oscillator in pertur-
bation theory at this order.

Computations to second order are straightforward,
although algebraically more complex owing to the fact
that the effect of the first order perturbation have to be
taken into account at this order. First, the solutions (3.7),
(3.8), and (3.10) imply the following deformation of the
Poisson bracket of the unperturbed variables at second
order:

fq0; p0gPB �

�
1� ��H0 �

81�2�2

64
H2

0

�
: (3.23)

We observe already at this order that there is a emergent
pattern in the way the perturbation appears as a deforma-
tion of the classical canonical algebra, the deformation
being proportional to the unperturbed Hamiltonian raised
to the power of the order of the perturbation. Given
Eq. (3.23) we can now define the tilded- pair at second
order in analogy with (3.14) as

~q: � q0

�
1�

��
4
H0 �

29�2�2

384
H2

0

�

~p: � p0

�
1�

��
4
H0 �

29�2�2

384
H2

0

�
:

(3.24)
-5
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We proceed with steps similar to those at first order. First,
Eq. (3.12) gives the full classical Hamiltonian at O��2�,
which when transformed to the tilded-representation be-
comes

H � ~H0 �
��
4

~H2
0 �

17�2�2

144
~H3
0: (3.25)

Weyl ordering leads to the corresponding quantum
Hamiltonian to O��2�,

Ĥ:� ~̂H0 �

	
��
4

~̂H
2
0 �

��h!
16

Î



�

	
17�2�2

144
~̂H
3
0 �

67�2

576
~̂H0



(3.26)

which satisfies the eigenvalue equation,

Ĥ
��������~n

�
�

	�
~n�

1

2

�
�h!�

3� �h2

8!2

�
~n2 � ~n�

1

2

�

�
�2 �h3

128!5
�2~n� 1��17~n2 � 17~n� 21�


��������~n
�
(3.27)

giving the quantized spectrum to second order that is once
again in agreement with the standard quantum theory
result.

Having thus carried out computations to second order in
perturbation theory, we are now in a position to suggest an
algorithmic procedure for constructing a quantum theory to
higher orders.

To do so, observe that at first order the perturbation
manifests as the deformation of the Poisson algebra of
unperturbed variables �q0; p0� given by Eq. (3.9), which
leads to the definition of the new variables given by
Eq. (3.14) which satisfy a canonical algebra at this order.
Next, owing to Eq. (3.10) and (3.23), if one now calculates
the Poisson bracket of these new variables of first order, to
include all terms of 0��2�, one finds

f~q; ~pgPB � 1�
29�2�2

64
H2

0 : (3.28)

This deformation in the Poisson algebra of the new varia-
bles of first order leads to the definitions Eq. (3.24) of the
new variables at second order, where with a slight abuse of
notation we rename variables that generate the Heisenberg
group at each order to be �~q; ~p�. This suggests that for this
model, we can iteratively define new variables that can be
used to construct a quantum theory at each order in per-
turbation theory in the following way:

If at any given order of perturbation n, we have a
deformation of the commutative Poisson algebra,
fQ;PgPB � �1� (1$� of generic conjugate pairs Q �
Q�q0; p0� and P � P�q0; p0�, such that $�q0; p0� is a
homogeneous function of degree n, and (1 �O��n� is a
constant— then, ‘‘new variables’’,
084001
~q � Q
�
1�

(1

n� 2
$
�

~p � P
�
1�

(1

n� 2
$
�

(3.29)

satisfy a canonical algebra at that order. The corresponding
ordered pair �~̂q; ~̂p� generate a Heisenberg group. To see this
note that—

f~q; ~pgPB �

�
Q
�
1�

(1

n� 2
$
�
; P

�
1�

(1

n� 2
$
��

Pb

� fQ;PgPB �
(1

n� 2
f$Q;Pg�0�PB �

(1

n� 2
fQ;$Pg�0�PB

� �1� (1$� �
(1

n� 2
�n� 2�$

� 1 (3.30)

where we have use the fact that at zeroth order Q � q0 and
P � p0 and have exploited Euler’s theorem on homoge-
neous functions, which, in particular, means that q0

@$
@q0

�

p0
@$
@p0

� n$.
The conclusion is that at each order, with the help of the

perturbative solutions a corresponding quantum theory can
be constructed and that with a choice of ordering (in this
case Weyl ordering) we can pass at each level of perturba-
tion theory from the classical evolving constants to their
corresponding quantum counterparts.

We now turn to a discussion of the relevance of the
results for quantum gravity.
IV. CONCLUSION AND FUTURE OUTLOOK

The results of the quartic oscillator model demonstrates
through an explicit example that it is possible to extend
covariant canonical quantization to include perturbation
theory. Thus, I have demonstrated that where we do not a
priori know the full classical solution, we can resort to a
two-step procedure to find the corresponding quantum
observables, namely
(1) C
-6
onstruct classical solutions via Hamilton’s equa-
tions to perturbatively generate the solution space S
at each order.
(2) Q
uantize the solution space thus generated using as
the Hilbert space the time evolved basis states of the
unperturbed problem.
The result also addresses an issue raised in the past by
Hajicek [27] regarding computability of ‘‘evolving con-
stants’’, while at the same time providing a concrete ex-
ample of how to implement of Bergmann’s proposal for a
covariant approximation scheme in quantum theory. An
immediate application may be the quantum theory of
minisuperspace models in general relativity which by vir-
tue of their small number of degrees of freedom are quite
tractable, yet physically relevant [28]. Recently such mod-
els have attracted a lot of attention as test beds of quanti-
zation techniques [29–32] . For instance, a problem of
great physical interest is the study of the BKL behavior
near cosmological singularities in quantum theory.
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Furthermore, dynamical system approaches where the
Einstein equations can be reduced to a set of autonomous
differential equations exist for such models [33,34]. This
opens up immediate possibilities of exploiting Hamil-
tonian techniques [35,36] to study the quantum theory of
such systems. If this bears fruit, then the next step would be
to apply covariant canonical quantization to midisuperspa-
ces, such as those of Gowdy models, whose classical data
have recently been studied by several authors [37–41].
These questions are currently being investigated and will
be reported in future publications.
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[2] Č. Crnković and E. Witten, in 300 years of gravitation,
edited by S. W. Hawking and W. Israel (Cambridge Univ.
Press, Cambridge, England, 1987).

[3] S. Carlip, Rep. Prog. Phys. 168, 885 (2001).
[4] C. J. Isham, Lecture Notes in Physics, edited by J. Ehlers

and H. Friedrich (Springer, New York, 1994) Vol. 434.
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