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We discuss a Randall-Sundrum-type two D-braneworld model in which D-branes possess different
values of the tensions from those of the charges, and derive an effective gravitational equation on the
branes. As a consequence, the Einstein-Maxwell theory is realized together with the nonzero cosmological
constant. Here an interesting point is that the effective gravitational constant is proportional to the
cosmological constant. If the distance between two D-branes is appropriately tuned, the cosmological
constant can have a consistent value with the current observations. From this result we see that, in our
model, the presence of the cosmological constant is naturally explained by the presence of the effective
gravitational coupling of the Maxwell field on the D-brane.
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I. INTRODUCTION

Recent progress of the superstring theory provides us a
new picture of the universe. This is so called braneworld:
our universe is described as a thin domain wall in higher
dimensional spacetime (See Ref. [1] for recent reviews).
While the braneworld model is strongly motivated by the
superstring theory, most of the previously studied models
remain rather unrealistic in the context of D-brane in the
superstring theory, although some features of D-brane have
been taken into account in the studies of probe D-brane
cosmology like mirage cosmology [2] (See Refs. [3–5] for
other related issues.).

Recently, a more realistic inflation model has been
proposed in D �D system with a flux compactification [6].
In this model, the inflaton corresponds to the radion, which
represents the distance between the branes. Our universe
may be considered to a D3-brane separated from the D �D
system. Anyway, the description of our universe is slightly
rough because the effective gravitational equation on the
branes was not discussed carefully.

In such situation one of the authors tackled this issue
with his collaborators [7–9]. The purpose there was of
course the effective gravitational theory on the D-brane.
The bulk spacetime and brane were described by the
bosonic part of the ten-dimensional IIB supergravity the-
ory compactified on S5 and the Born-Infeld plus Chern-
Simons action, respectively. The brane tension was set
equal to the brane charge and Z2 symmetry was assumed.
This setup can be considered as a type IIB supergravity
extension of the Randall-Sundrum model [10,11].

Intuitively we expected that the effective gravitational
equation on the brane would be the Einstein-Maxwell
theory because the Born-Infeld action includes a U�1�
field. However, this was not the case. We obtained a
conclusion that the Maxwell field localized on the brane
does not contribute as a source for the gravity on the brane.
Then we suspected that the BPS condition (the brane
05=71(8)=083518(10)$23.00 083518
charge � brane tension) would be severe, and discussed
a non-BPS case with a single non-BPS D-brane [12]. As a
result, it turned out that the gauge field could be source for
the gravity on the brane. However, there was also an
anomalous term in the effective energy-momentum tensor,
that is, a trace term exists as g��F	
F	
 2 Teff��. Here we
should stress that this non-BPS case would be the only
possible one to realize a coupling of the Maxwell field to
the gravity. Indeed, we obtained essentially the negative
conclusion for a Z2 asymmetric case [13].

In this paper, we reexamine the non-BPS D-brane
model, not with a single brane but two branes. When one
uses the gradient expansion method [14] to solve the bulk
spacetime, the single brane case has an ambiguity which
corresponds to an ‘‘integration constant’’, which is actually
a function of the brane coordinates. Physically, this may be
regarded as a holographic dark radiation [14,15], although
this is an nontrivial issue. Anyway, there remains an un-
known term in the effective Einstein equation unless the
integration constant is fixed by another boundary condition
in the bulk spacetime. We guess that this is the reason why
the anomalous term appears in the energy-momentum
tensor of the effective theory for the single non-BPS D-
brane model [12]. In order to get a reliable effective theory,
we have to compute the integration constant carefully by
putting another D-brane and imposing a boundary condi-
tion there. Then the integration constant will be completely
determined and there remains no ambiguity. Hence we can
expect that we will be able to obtain a definite answer for
the gravitational theory on the brane.

The rest of this paper is organized as follows. In Sec. II
we describe our toy model which is a simplification of the
type IIB supergravity theory and give the basic equations in
Sec. III. In Sec. IV, we solve the bulk spacetime with the
boundary conditions, which are given by the junction con-
ditions on the two branes. Then we derive an effective
gravitational equation on the branes. Finally we will give
the summary and discussions in Sec. V.
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II. MODEL

We consider a Randall-Sundrum type model inspired by
the type IIB supergravity compactified on S5. The brane is
described by the Born-Infeld and Chern-Simons actions.
So we begin with the following total action
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form fields, and DK1K2K3K4 is a 4-form field. � is a scalar
field. GMN is the metric of five dimensional spacetime.
A	MN
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cal constant.
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where g����� are the induced metric on the D�-brane and
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F�� is the U�1� gauge field on the brane. Here �; � �

0; 1; 2; 3 and 
��� are D�-brane tension.
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CS is the Chern-Simons action
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where ���� are the brane charges. Here the brane charges
are not equal to the brane tensions in general. Therefore,
our model can contain non-BPS state of D-branes and we
are interested in such branes.

In this paper we deal with the toy model above. The
difference from the original model based on the type IIB
supergravity theory [7] is the absence of the scalar fields
related to the dilaton and the S5 compactification. Instead,
we introduced the bulk cosmological constant� in order to
realize the similar features to the original model. Also it
should be noted that the scalar fields are not essential in
considering the coupling between the Maxwell field and
the gravity [7]. In the original model, the brane tension was
set equal to the brane charge and then a flat brane was
contained as a solution. To realize a flat brane under BPS
condition ���� � 
��� in our toy model, we assume the
following relation between the bulk cosmological constant
and the brane charge:

2� � �
5

6
4�2���: (5)
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III. BASIC EQUATIONS

In this section we write down the basic equations
and boundary conditions. Let us perform �1�
4�-decomposition

ds2 � GMNdxMdxN � dy2 � g���y; x�dx�dx�: (6)

where D�-brane and D�-brane are supposed to be located
at y � #��x� and y � #��x� [16].

The spacelike ‘‘evolutional’’ equations to the y-direction
are
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(11)

@y ~Gy	1	2	3	4 � K ~Gy	1	2	3	4 ; (12)

where Xy��: � Hy�� � � ~Fy�� and the energy-momentum
tensor is
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K�� is the extrinsic curvature, K�� �
1
2@yg��. ~K�� and

�4� ~R�� are the traceless parts of K�� and �4�R�� , respectively.
Here D� is the covariant derivative with respect to g��.

The constraints on y � const: hypersurfaces are

�
1

2
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3

4
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 � 2�5�Tyy; (14)
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~Gy	1	2	3� � 0; (16)
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Under Z2-symmetry, the junction conditions at the brane
located y � #��x� are
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In the above
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� � F ����	F ���

�	 �
1

4
$��F

���
	
F

���	
 (24)

and we discarded the higher order terms which will be
negligible under the assumption of Eq. (26).

From the junction condition for �, we can omit the
contribution of � to the gravitational equation on the brane
in the approximations which we will employ. Moreover,
we omit the quadratic term of the energy-momentum ten-
sor in Eq. (19).

For simplicity, we impose ~F��	 � 0 and H��	 � 0.
Also we assume the deviation from BPS state is small
(j�j � j�� 
j).
IV. GRADIENT EXPANSION AND EFFECTIVE
EQUATION

The derivation of the gravitational equation on D-branes
is our end here. The geometrical projection method devel-
oped in Ref. [17] is one of the powerful tools to see the
effective equation. This is because we can derive an effec-
tive equation without solving the full spacetime. The equa-
tion contains a contribution from the bulk spacetime in the
form of the projected five dimensional Weyl tensor. If the
cosmological constant is the only bulk matter, the contri-
bution will be negligible at low-energy scales. However,
we have a caution for the case with bulk fields. Indeed, we
cannot omit the contribution from the Weyl tensor even at
083518
low-enegy scales and then we must solve the bulk space-
time to evaluate the contribution from the Weyl tensor.

To obtain the effective theory on the brane, therefore, we
first solve the bulk spacetime. We will use the long wave
approximation [14]. The small parameter is the ratio of the
bulk curvature scale ‘ to the brane intrinsic curvature scale
L due to the ordinary matter origin:

� �
‘2

L2
� 1: (25)

In addition we assume the following ordering

j�j � j�� 
j> j
T���
�� j> j
�D#�2j; j
‘D2#j: (26)

The bulk metric is written as

ds2 � dy2 � g���y; x�dx
�dx�; (27)

In this coordinate, the brane is supposed to be located at
y � #��x�. Therefore the induced metric g����� becomes

g����� � g���#�; x� � @�#��x�@�#��x�: (28)

In the gradient expansion, the metric and the extrinsic
curvature are expanded as

g���y; x� � a2�y�	h���x� � g
�1�

���y; x� � � � �
 (29)

and

K�� � K�v
�0�

� K�v
�1�

� � � � ; (30)

where we set g��
�1�

�#�; x� � 0.
The strategy for obtaining the effective gravitational

equation on the brane is as follows. We first solve
the bulk spacetime using gradient expansion and
compute the extrinsic curvatures. We can expect
K���y; x� �

�4� R�� � � � � . Applying the junction condi-
tion (K���y�; x� � T��) at the branes, we can obtain the
effective equation on the branes. Intuitively, we expect that
the four dimensional Einstein equation can be realized in
the first order. However, this is not the case of our model.
Therefore we need to compute the second order perturba-
tions to see if the conventional gravitational theory is
reproduced.

A. Background

For the background spacetime, the evolutional equations
are
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the Hamiltonian constraint and the evolutional equation
become
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Noting Eq. (42), we obtain the background solution as

ds2 � dy2 � a�y�2���dx�dx� (46)

where

a�y� � e�y=‘ (47)
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and

1

‘
�
1

6
2����: (48)

Without loss of generality we can set y��� � 0 and y��� �

y0. The extrinsic curvature is given by

K�v
�0�

� �
1

‘
$�� : (49)

B. First order

In this subsection, we compute various quantities which
are needed to derive the effective equation on the branes.
For simplicity, we assume

#� � y�
‘

� 1: (50)

First, we will obtain the solutions for form fields ~F3 and
H3. We can solve the equations including higher order
because of the assumption, ~F��	 � 0 and H��	 � 0.
The equations which we will solve are
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The junction condition implies the relation
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That is,
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and


���x� � �2e�6=‘�y��
��� � �����F
���
�� (60)

Since the solution for 	���x� and 
���x� have two differ-
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ent forms as above, we have the following relation
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Since the form fields can contribute to the effective
equation in the quadratic term, the lowest order solution
will be half order and then

Hy��
�1=2�

� 2����a�6F ��

���

(65)

and

~Fy��
�1=2�

�
1

2
2����a

�6���
	
F 	


���

: (66)

From Eq. (61)
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and then
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hold. Here a0 � e�y0=‘.
Now we are ready to solve the extrinsic curvature. We

first solve the traceless part which follows the evolutional
equation
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where ���
�1�

�x� is the constant of integration.

In this order the junction condition for ~K��
�1�

�y; x� on the
branes is given by
083518
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On D� brane, therefore, we obtain�
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where D� is the covariant derivative with respect to h��.
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�1�
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Let us compute the trace part of the extrinsic curvature.
From the Hamiltonian constraint
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noting that Tyy vanishes at the first order, we obtain
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From the above two equations, we can construct the fol-
lowing equation
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(80)
From Eqs. (74) and (80) we obtain the first-order effective Einstein equation with respect to the metric h�� as
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This is not the end of this section because h�� is not induced metric g����� � a2�#��h�� � @�#�@�#� on D� brane.
Then we must rewrite the above effective equation with respect to the induced metric g�����
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where d�x� � #��x� �#��x� is the proper distance be-

tween the two branes and D�
���

is a covariant derivative on
D� brane. The equation for the radion can be derived from
Eqs. (78) and (79) as

a20

�
�D2

���

d�
1

‘
�D
���

d�2
�
�
2

3
2�
��� � �����

�
2

3
2a20�
��� � ����� � 0: (83)

As expected, the Maxwell field cannot be a source for
the gravity on the branes at this order. This result is con-
sistent with one obtained in the previous studies [7,8]
because the background spacetime satisfies BPS condition.
To see the nonzero gravitational coupling, the next order
corrections will be important.

C. Second order

Let us consider the second order perturbations. The
order of the form fields which can contribute to the second
order corrections to the effective theory is �
��� �

�����F ��. Indeed, the solution of the form fields at this
order are obtain as

Hy��
�3=2�

�
1

2
2�
��� � ������a

�6 � a6�F��

���

(84)

and

~Fy��
�3=2�

�
1

4
2�
��� � ������a

�6 � a6����
	
F 	


���

: (85)

The evolutional equation for the traceless part of the
extrinsic curvature is
083518
@y ~K
�
�

�2�

� 	 ~R�� 
�2� � K
�1�
~K��
�1�

�K
�0�
~K��
�2�

� 2
�
�5�T�� �

1

4
$�� �5�T		

�
: (86)

To compute the right-hand side we need the first-order
deviation from the seed metric in the bulk

g�� � a2�h�� � g��
�1�

�: (87)

Since we know the solution to the extrinsic curvature at the

first order, we have the equation for g��
�1�

g��
�1�

�
‘2

2
�1� a�2�

�
�4�R�� �

1

6
h���4�R

�

�
‘2

4
�a�4 � 1��4� ~R�� �

3

8
�1� a�16�T���

�� � � � �

�
2

6
‘�1� a�2�

1� $a40
1� a20

�
��� � �����h��

�
3

8
�1� a�16�T���

�� � � � � ; (88)

where

$ �

��� � ����


��� � ����

: (89)

In the above we used the effective Einstein equation at the
first order. Then we can compute the second order part of
the Ricci tensor �4�R
	�4�R�� 
�2� �
1

6

�
1� $a40
1� a20

�
2
�a�4 � a�2�4����� � 
����

2$�� �
3

8

1� $a20
1� a20

�a�18 � a�2�
2

‘
�
��� � �����T

����
�

�
3

16
�a�18 � a�2��D	D�T

����
	 �D	D�T���

�	 �D2T����
� �: (90)
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Using this and the solutions of Hy��
�3=2�

, ~Fy��
�3=2�

, we see

�2	�5�T�� 

�2�
traceless � �

1

2a4
	�g�


�1�

H
y	
�1=2�

H�y	
�1=2�

�g	�
�1�

H
y	
�1=2�

H�y�
�1=2�

h�
 �H�
y	

�1=2�

H�y	
�3=2�

�H�y	
�3=2�

H�y	
�1=2�

��H ! ~F�
traceless

� 4��������� � 
����

�
2
1� $a40
1� a20

a�18 �
�
2
1� $a40
1� a20

� 1
�
a�16

�
T����
� : (91)

Then the evolutional equation in the second order becomes

@y ~K
�
�

�2�

�
4

‘
~K��
�2�

� 4��������� � 
����

�
109

48

1� $a40
1� a20

a�18 �
�
2
1� $a40
1� a20

� 1
�
a�16 �

1

16

1� $a40
1� a20

a�2
�
T����
� �h�

�
3

16
�a�18 � a�2��D	D�T

����
	 �D	D�T���

�	 �D2T����
� �: (92)

Now the solution is given by

~K��
�2�

� �
3‘
16

�
1

14
a�18 �

1

2
a�2

�
�D	D�T

����
	 �D	D�T���

�	 �D2T����
� � � 4‘��������� � 
����

�

�
109

48 � 14

1� $a40
1� a20

a�18 �
1

12

�
2
1� $a40
1� a20

� 1
�
a�16 �

1

32

1� $a40
1� a20

a�2
�
T����
� �

���
�2�

�x�

a4
: (93)

Up to the second order the traceless part of the extrinsic curvature becomes

~K �
� � ~K��

�1�

� ~K��
�2�

� �
‘

2a2
�4� ~R�� �h� �

1

2
2����a�16T

����
� �h� �

3‘
16

�
1

14
a�18 �

1

2
a�2

�
�D	D�T

����
	 �D	D�T���

�	 �D2T����
� �

� 4‘��������� � 
����

�
109

48 � 14

1� $a40
1� a20

a�18 �
1

12

�
2
1� $a40
1� a20

� 1
�
a�16 �

1

32

1� $a40
1� a20

a�2
�
T����
� �

��� �x�

a4

(94)

where ��� �x� � ���
�1�

�x� � ���
�2�

�x�. Then the junction conditions give us

�D�D�#� �
1

‘
D�#�D�#��traceless � �

‘
2
�4�R�h� � 2

�
109

112
� 1�

3

16

�
����� � 
����

1� $a40
1� a20

T����
� �h�

�
3

28
‘�D	D�T

����
	 �D	D�T���

�	 �D2T����
� � � ��� �x� (95)

and

a�20

�
D�D�#��

1

‘
D�#�D�#�

�
traceless

��
‘

2a20
�4�R�h��

1

2
2������
����a

�16
0 T����

� �h��2������
����

�

�
109

112

1�$a40
1�a20

a�180 �
1

2

�
2
1�$a40
1�a20

�1�$
�
a�160 �

3

16

1�$a40
1�a20

a�20

�
T����
�

�
3

16
‘
�
1

14
a�180 �

1

2
a�20

�
�D	D�T

����
	 �D	D�T���

�	 �D2T����
� ����� a�40 :

(96)

Using Eqs. (95) and (96), we can eliminate ��� as�
D�D�#� �

1

‘
D�#�D�#�

�
traceless

� a20

�
D�D�#� �

1

‘
D�#�D�#�

�
traceless

� �
‘
2
�1� a20�

�4� ~R�� �h� � 2����� � 
����

�
109

112

1� $a40
1� a20
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3

16
�1� $a40� �

1

2
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3
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1
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1

2
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�
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�	 �D2T����
� �: (97)
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This is the traceless part of the effective gravitational
equation on D� brane.

From the second order Hamiltonian equation

�
1

2
��4�R��2� �

3

4
K
�0�

K
�2�

�
3

8
K2
�1�

� 2�Tyy�
�2�; (98)

where we neglected the contribution from the first-order
traceless extrinsic curvatures because of Eq. (26), we ob-
tain
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‘
18
4����� � 
����
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1� $a40
1� a20

�
2
��a�4 � 2a�2�

�
1

2
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��� � �����F ��

���

F��
���

�h�a�4 (99)

Together with the result at the first order
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� K
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4
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F ��
���

�h�a�4: (100)

Then the junction conditions imply
083518
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and
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1
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‘

6a20
�4�R�h��

‘
18
4������
����

2
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1�$a40
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2
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2
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���
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(102)
From these we see
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��� � ����� � a40
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3
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2
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(103)

holds. Using Eqs. (97) and (103) we finally obtain the
effective Einstein equation with respect to the metric h��
�1� a20�G���h� � �
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3
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3
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1
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1
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�1� a20�

�
�D	D�T
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	 �D	D�T���

�	 �D2T����
� �: (104)

Then the effective gravitational equation with respect to the induced metric on the D�-brane is given as

�1� a20�
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���

d
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3

8
�1� $a40� � �1� $�a�120
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3

8
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T����
� �: (105)

Now we can see that the gauge field can be a source for the gravity on the brane. This low-energy effective theory is the four
dimensional Einstein-Maxwell theory with the cosmological constant and radion. Further, surprisingly, the effective
-8
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gravitational constant and the cosmological constant are
proportional to the same factor, 
��� � ����. Noting that

��� � ���� vanishes when 
��� � ���� vanishes (see
Eqs. (59) and (60)), this means that if there is no net
cosmological constant on the brane, the coupling between
the Maxwell field and the gravity also vanishes.

The equation for the radion becomes

a20

�
�D2

���

d�
1

‘
�D
���

d�2
�
�
2

3
2�
��� � �����

�
2

3
2a20�
��� � ����� �

‘
18
4����� � 
����

2

�

�
1� $a40
1� a20

�
2
�a�20 � 1�

� �
2

2
�
��� � ������1� a�20 �F ��

���

F ��
���

�h�:

(106)

They are main results in our paper.
V. SUMMARY AND DISCUSSION

In this paper we considered a Randall-Sundrum type I
model [10] based on the IIB supergravity. In our model the
bulk spacetime and brane are described by a mimic of the
IIB supergravity compactified on S5 and the Born-Infeld
plus Chern-Simons action. The brane charge is not set
equal to the brane tension (non-BPS condition). Then we
derived an effective gravitational equation on the branes
using the gradient expansion method (long wave approxi-
mation). By virtue of non-BPS condition, the gauge field
localized on the brane can be a source for the gravity on the
brane and the cosmological constant is induced at the same
time. An interesting point here is that the cosmological
constant is proportional to the effective gravitational cou-
pling to the gauge field. Then the effective theory is the
four dimensional Einstein-Maxwell theory with a cosmo-
logical constant and radion field. In this sense we could
obtain an acceptable model for the real universe, although
the contribution from radion might be phenomenologically
dangerous but would vanish if the radion could be
stabilized.

According to our result and assuming a0 � 1, the ef-
fective gravitational coupling Geff��� and the net cosmologi-
cal constant ���� are approximately given by

Geff
���

�
2

‘


��� � ����


���

a�140 (107)
083518
and

���� �
2

‘
�
��� � �����; (108)

respectively. Using ����, Geff���
can be written as Geff

���
�

a�140 ����
�1
���

. Assuming ���� �H20 � �10�42 GeV�2,

‘� �2
����
�1 � 0:1 mm [18] and M5: � �2=3 � TeV,

we obtain

a�10 � 108:5
�
0:1 mm
‘

�
1=14

�
H20
����

�
1=14

�
M5

TeV

�
3=14

(109)

or y0=‘�19:5. H0 is the present Hubble constant. Hence,
we could have appropriate values for Geff��� and ���� if
y0=‘�19:5. Here we must have a fine tuning between the
brane tension and charge as 
��������


���
�10�60�‘=0:1mm�2,

which may correspond to the cosmological constant prob-
lem. This indicates the relation of the presence of the
cosmological constant and the gravitational coupling. In
this model, the effective gravitational coupling is turned off
if we are living on the BPS D-brane, that is, the presence of
the gravitational coupling indicate the presence of the
cosmological constant. In classical level the cosmological
constant appears as a result of breaking BPS condition for
the brane configuration. What we have to explain is the
appropriate radion stabilization mechanism so that y0=‘�
19:5.

In this paper, we considered only the bosonic part for
simplicity. If we want a phenomenologically acceptable
model where the matter sector reduces to the grand unified
theory at low energy, we need to think of, for example, D3-
D7 system [19]. To investigate this kind of systems we
must treat the brane with higher codimensions containing
the fermionic parts as well as bosonic parts. This issue is
left for future study.

ACKNOWLEDGMENTS

We thank Kei-ichi Maeda for his comment. Y. I. and S. F.
thank Shinya Tomizawa and Akihito Shirata for their dis-
cussions. The work of T. S. was supported by Grant-in-Aid
for Scientific Research from Ministry of Education,
Science, Sports and Culture of Japan (No. 13135208,
No. 14740155 and No. 14102004). The work of K. T.
was supported by JSPS.
[1] G. Gabadadze, hep-ph/0308112; R. Maartens, Living Rev.
Rel. 7, 7 (2004); P. Brax, C. van de Bruck, and A. Davis,
Rep. Prog. Phys. 67, 2183 (2004); C. Csaki, hep-ph/
0404096.
-9



IWASHITA, SHIROMIZU, TAKAHASHI, AND FUJII PHYSICAL REVIEW D 71, 083518 (2005)
[2] A. Kehagias and E. Kiritsis, J. High Energy Phys. 11
(1999) 022.

[3] C. P. Burgess, P. Martineau, F. Quevedo, and R. Rabadan,
J. High Energy Phys. 06 (2003) 037; C. P. Burgess, N. E.
Grandi, F. Quevedo, and R. Rabadan, J. High Energy Phys.
01 (2004) 067; K. Takahashi and K. Ichikawa, Phys. Rev.
D 69, 103506 (2004).

[4] T. Shiromizu, T. Torii, and T. Uesugi, Phys. Rev. D 67,
123517 (2003); M. Sami, N. Dadhich, and T. Shiromizu,
Phys. Lett. B 568, 118 (2003); E. Elizalde, J. E. Lidsey, S.
Nojiri, and S. D. Odintsov, Phys. Lett. B 574, 1 (2003); T.
Uesugi, T. Shiromizu, T. Torii, and K. Takahashi, Phys.
Rev. D 69, 043511 (2004).

[5] S. B. Giddings, S. Kachru, and J. Polchinski, Phys. Rev. D
66, 106006 (2002); O. DeWolfe and S. B. Giddings, Phys.
Rev. D 67, 066008 (2003).

[6] S. Kachru, R. Kallosh, A. Linde, J. Maldacena, L.
McAllister, and S. P. Trivedi, J. Cosmol. Astropart. Phys.
10 (2003) 013.

[7] T. Shiromizu, K. Koyama, S. Onda, and T. Torii, Phys.
Rev. D 68, 063506 (2003).

[8] S. Onda, T. Shiromizu, K. Koyama, and S. Hayakawa,
Phys. Rev. D 69, 123503 (2004).

[9] T. Shiromizu, Y. Himemoto, and K. Takahashi, Phys. Rev.
D 70, 107303 (2004); T. Shiromizu, K. Takahashi, Y.
Himemoto, and S. Yamamoto, Phys. Rev. D 70, 123524
(2004).

[10] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370
(1999).
083518
[11] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690
(1999).

[12] T. Shiromizu, K. Koyama, and T. Torii, Phys. Rev. D 68,
103513 (2003).

[13] K. Takahashi and T. Shiromizu, Phys. Rev. D 70, 103507
(2004).

[14] T. Wiseman, Class. Quant. Grav. 19, 3083 (2002); S.
Kanno and J. Soda, Phys. Rev. D 66, 043526 (2002); 66,
083506, (2002); T. Shiromizu and K. Koyama, Phys. Rev.
D67, 084022 (2003); S. Kanno and J. Soda, Gen. Rel.
Grav. 36, 689 (2004).

[15] T. Shiromizu and D. Ida, Phys. Rev. D 64, 044015 (2001).
[16] J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok,

Phys. Rev. D 64, 123522 (2001); J. Garriga, O. Pujolas,
and T. Tanaka, Nucl. Phys. B655, 127 (2003); P. Brax, C.
van de Bruck, A. C. Davis, and C. S. Rhodes, Phys. Rev. D
67, 023512 (2003); G. A. Palma and A. C. Davis, Phys.
Rev. D 70, 106003 (2004); S. L. Webster and A. C. Davis,
hep-th/0410042;S. Kanno and J. Soda, Phys. Rev. D 71,
044031 (2005).

[17] T. Shiromizu, K. Maeda, and M. Sasaki, Phys. Rev. D 62,
024012 (2000).

[18] C. D. Hoyle, D. J. Kapner, B. R. Heckel, E. G. Adelberger,
J. H. Gundlach, U. Schimidt, and H. E. Swanson, Phys.
Rev. D 65, 044023 (2002).

[19] Y. Imamura, T. Watari, and T. Yanagida, Phys. Rev. D 64,
065023 (2001); T. Watari and T. Yanagida, Phys. Rev. D
70, 036009 (2004).
-10


