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We study a simple model of a massive inflaton field ¢ coupled to another scalar filed y with interaction
term g?¢?x>. We use the theory developed by Kofman et al. [L. Kofman, A.D. Linde, and A.A.
Starobinsky, Phys. Rev. D 56, 3258 (1997).] for the first stage of preheating to give a full description of the
dynamics of the y field modes, including the behavior of the phase, in terms of the iteration of a simple
family of circle maps. The parameters of this family of maps are a function of time when expansion of the
Universe is taken into account. With this more detailed description, we obtain a systematic study of the
efficiency of particle production as a function of the inflaton field and coupling parameters, and we find
that for g < 3 X 10™* the broad resonance ceases during the first stage of preheating.
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L. INTRODUCTION

The success of the reheating stage after inflation is
crucial to most realizations of the inflationary paradigm.
The Universe needs to recover a temperature high enough
for primordial nucleosynthesis to take place in accordance
with the usual pattern of the standard cosmological model.
Excluding scenarios designed to avoid the extreme cooling
produced by inflation (such as the warm inflation scenario),
it is important that the necessary post-inflationary reheat-
ing be efficiently achieved.

The reheating mechanism was proposed as a period,
immediately after inflation, during which the inflaton field
¢ oscillates coherently about its ground state and swiftly
transfers its energy into ultrarelativistic matter and radia-
tion, here modeled by another scalar field y. This process
depends on the coupling between ¢ and y in the interac-
tion Lagrangian. The classical theory of reheating was
developed in [1-4]. The importance of broad resonance
and approximations to deal with nonperturbative effects
were introduced in [5—9]. The theory was put forward in
[10-12], where the analysis included the effects of expan-
sion of the Universe; see also [13,14]. This represented a
shift away from the simple picture of static Mathieu reso-
nant bands, due to large phase fluctuations, which behave
irregularly in the nonperturbative regime in an expanding
universe. Extensions in this setting include, among others,
the study of metric perturbations and the application to
string or supersymmetric theories [15-20].
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The present understanding (see [21]) distinguishes the
process in two parts. A preheating mechanism by which
fluctuations of the inflaton couple to one (or more [22])
scalar fields, inducing the resonant amplification of pertur-
bations in the latter. Depending on the coupling, efficient
energy transfer requires the amplitude of the inflaton os-
cillation to be rather large, away from the narrow reso-
nance regime where only perturbations with wave numbers
in small intervals are unstable. As the amplitude of the
perturbed field grows, backreaction effects may have to be
considered, since the frequency of the inflaton oscillations
is no longer given by its mass, but depends also on the total
number density of the perturbed field particles through the
coupling term. The first stage of preheating is the period
when these backreaction effects are negligible, and the
inflaton field dynamics is approximated by its uncoupled
equations. Preheating ends when resonant amplification
terminates, either because of the decreasing amplitude of
the inflaton field or due to the backreaction and rescattering
effects of the second stage. After the second stage of
preheating, the reheating period corresponds to the decay
of the perturbed fields as well as that of the inflaton field
that comes out of the preheating period, leaving the
Universe after thermalization with the temperature re-
quired by the subsequent processes, namely, nucleo-
synthesis.

We consider a basic model describing the inflaton field
¢ interacting with a scalar field y in a flat Friedman-
Robertson-Walker (FRW) universe,

1 o1 .
= 5¢,i¢’l + EX,iX” —V($) = Vil x). (D)

This is the simplest model that still contains the basic
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features for the understanding of particle creation in the
early Universe and one of the few models for which an
analytical study can be performed; see also [7,11,23]. With
this in mind we concentrate on the simplest chaotic model
with the potential V(¢) = 1/2mj$* and interaction po-
tential Vi, (¢, x) = g% @ x>. The evolution of the flat FRW
universe is given by

8 /1, 1
2 = (5424 V0) 58+ E0)
where H = R/R and R is the FRW scalar factor. The
equations of motion in a FRW universe for a homogeneous

scalar field ¢ coupled to the k mode of the y field are given
by

¢ +3H + (m} + g2x})¢p =0, 3)

X T 3Hy + oi(x =0, “)

where wi(1) = k*/R* + g>¢>.

The rate of production of particles of a given momentum
k is determined by the evolution of the perturbed field
mode y;. The number density n, () of particles with mo-
mentum k can be evaluated as the energy of that mode
divided by the energy of each particle,

b
2w(t)

The exponential growth y,(z) o e# leads to exponential
growth of the occupation numbers n(f), and the total
number density of y particles is given by

1

> (&)

n(t) = (Ixel? + @2 xil®) —

n,(t) =

m fdkk2nk(t). (6)
The problem of determining the efficiency of particle
production for a given model is thus reduced to the evalu-
ation of u, as a function of the parameters of the model. In
general, this is not an easy task, and most estimates are
based on numerical integrations for typical parameter val-
ues [7].

However, the theory developed in [10] yields analytic
results in Minkowski space-time, which provide an ap-
proximate simplified model that works rather well in the
FRW scenario. The starting point of the theory is the fact
that, for the model (3) and (4), preheating requires the
amplitude of the inflaton field’s oscillations, ®(z), to verify
g®(t) > m,. This means preheating is dominated by broad
resonance, and the theory is based on the approximations
that hold when g®(r)/m, > 1. The conclusions hold
independently of the detailed form of the inflaton potential
away from its minimum.

In this paper we extend the formalism of [10] to give a
full description of the dynamics of the phase of the field
modes Yy, which in turn determines the evolution of the
growth factor p;. In Sec. II, we consider the case of a

PHYSICAL REVIEW D 71, 083515 (2005)

nonexpanding universe and show that the behavior of the
phase can be described in terms of the iteration of a simple
family of circle maps. The orbits of this family are of two
possible types, depending on the value of the perturbation
amplitude, and their asymptotic behavior, which deter-
mines the growth factor, is always independent of the
initial condition.

In Sec. III we show that the results that hold for
Minkowski space-time can be used to model the phase
and growth factor evolution in a FRW universe.
Expansion may be considered simply by taking the pa-
rameters of the Minkowski equations to be prescribed
functions of time. Using this model as an alternative to
numerical integration of the full equations, we check the
estimates given in the literature for the total number den-
sity of y particles created during preheating and for the
duration of the first stage of preheating as a function of the
interaction parameter g.

II. PHASE DYNAMICS IN MINKOWSKI
SPACE-TIME

The important differences between the narrow and broad
parametric resonance mechanisms in the context of cos-
mological models with post-inflationary reheating have
first been noticed in the analysis of the evolution of the
amplitudes of the y; modes in a static universe [6,8,24].
Although the equations in Minkowski space-time lack
some of the fundamental ingredients to understand the
overall efficiency of the reheating process, they can and
indeed they should be considered as a toy model that sheds
light on the mechanisms at play when the expansion of the
Universe and other effects, such as backreaction and re-
scattering, are taken into account.

This was the approach followed in Kofman et al. [10],
where an analytic theory of broad resonance in preheating
was established, relying on a detailed study of broad para-
metric resonance driven by the harmonic oscillations of an
inflaton field without expansion of the Universe. This study
is directed towards the computation of the k-mode growth
factors iy, and the phase dynamics of the y; modes is not
explicitly derived. However, Kofman et al. do mention the
basic features of this phase dynamics, and they use them to
explain the characteristics of mode amplification in an
expanding universe, which they dubbed ‘‘stochastic reso-
nance’’ in order to stress the difference with respect to the
usual resonant bands scenario of the Mathieu equation.

In this section we explicitly compute the phase evolution
equations in Minkowski space-time and show that phase
stochasticity is already present in this model, as one of the
two possible dynamical regimes, together with the fixed
phase behavior identified in [10]. In this random phase
regime, in the complement of the resonant bands, the
growth factor w, is effectively zero, but a typical orbit
undergoes random sequences of amplitude amplifications
and reductions, much like in the case of stochastic reso-

083515-2



PHASE DYNAMICS AND PARTICLE PRODUCTION IN ...

nance. This phenomenon is pointed out frequently in the
literature [25—27] and can be described analytically as one
of the consequences of the theory when we consider the
global phase dynamics of the y; modes [7,10].

We shall start by recalling the method of Kofman et al.
to approximate in the broad resonance regime the solution
of Eq. (4) in Minkowski space-time,

¥t o), =0, @)

where w?#(f) = a; + bsin’(¢) and the time variable is now
t — mgt. The parameters a; and b are given by a; =
k*/m% and b = g>A*/m7, where A is the constant ampli-
tude of the field ¢. Typical values of the parameters are
g2 =10"% m=10"%m,;, A= am,, where 0 < a <1,
and thus » < a2 X 10° [10,21,28]. In broad resonance,

Vb > 1.

Let the y, () be of the form

Xi(t) =

ap . fw Bi
NG exP( lﬁ k(s)ds> " e

X exp(i ﬁ: wk(s)ds>, (8)

where «, and B, are constants. Introducing (8) into (7) we
obtain

. 2 1 ~1 d 2
X + a)k(t)[l + Z(wk " lnwk>
1 d d

+— L1l —0.

oy a1 ) Ju =0 ©

So (8) approximates the solution of (7) provided that

d
‘ a)k_l E lna)k < 1, (10)

<1 (11)

‘ w;! E w;! E Inw

k dt( ko dr ")
hold. These are the adiabatic conditions identified in [29].
In the present case, v/b > 1 and the adiabatic conditions
are fulfilled except in the neighborhood of 7; = jm, j =
0,1,..., when ¢(¢;) = 0, that is, every time the inflaton
field crosses zero. Hence, the breakdown of the approxi-
mation given by (8) occurs periodically, and an approxi-
mate global solution of (7) can be constructed from a
sequence of adiabatic solutions

G expf i [ wg(s)ds) +
X - w\s)as
NG p( ﬁ ¢ ) NG

X exp<i ft wk(s)ds>, (12)
0

Xt ap, Br) =

where the parameters (ai, ,Bi) for consecutive j will be
determined by the behavior of he solution of (7) for ¢ close
to f;. In a small neighborhood of tp=jm, j= 01,...
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Eq. (7) can be approximated by
Yrt+ (ap + bt —1)*)x, = 0. (13)

Equation (13) has an exact solution in the form of parabolic
cylinder functions [30]. The asymptotic behavior for large ¢
of this solution is of the form (8), and this provides the
relation between the coefficients (a, 8;) of this adiabatic
approximation on either side of 7;. Following Kofman et al.
[10], this relation can be written as

i+1 _—ig/ 1 R i —ig!
I I I | IS (14)
:8j+ leiﬁi L Bj ei&i ’

k D, D k

where 0{; =/ g w(s)ds. The complex numbers R, and D,

are given by 1/D, = /1 + pZexp(i¢,) and R,/D, =
—ip, with p, = exp(—m«2/2), k2 = a;//b, and

1 +ik? K2 2
O = arg(F( 5 )) + 7(1 + IHF>' (15)

The parameter k = k/,/Agmy € [0, 1] is the normalized
wave vector of the mode, and /Agm, the cutoff wave
vector introduced in [10]. Since the number density of y;
particles with momentum  is equal to n, = | 8|*, one can
use (14) and (15) to calculate the number density of
particles n{:rl = | B£+1|2 after ¢; in terms of n{; = | B{;lz.

The growth index u, defined by n{cﬂ = nj exp(2mwui), is
given by [10]

; 1
Wk = o ln<1 +2p2 —2p/l + p2

X sin(— ¢, + argﬁi — argai + 26-,’;)), (16)
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FIG. 1. For b=10° and a;, = 1 (hence «? = 107%/2) the
analytical curve for the growth factor as a function of the phase
given by Eq. (17) (solid line), and the numerical curve obtained
from the integration of the equations of motion along half a
period of the inflaton field (dashed line).
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or, in terms of the phase v{; = a.rg,B{; + 0{; of the field y;

when t = t,

o .
Wh = P ln<1 +2p%2 — 2p,/1 + pisin(—¢, + 21/{())
(17)

In Fig. 1 we show, for b = 10° and a; = 1, the analytic
curve for the growth factor u L as a function of the phase v
given by (17) and the numerical curve u, = u,(v) ob-
tained from the numerical integration of the full equation
(7) along half a period of the inflaton field. We see that, as v
varies in [0, 77], u takes positive and negative values. The
phase interval for which u is negative depends slightly on
the value of «.

As hinted by Kofman et al. [10], Egs. (14) and (15) can
be used to obtain the dynamics for the phase »4. In the
remaining part of this section we explicitly compute the
map "' = P, (v]) and show that it can be approximated
by a simple family of circle maps. From (14) one gets

vt =0(b, k) + arg<\l 1+ pleiewell — iPKe_i%)’
(13)

where 6(b, k) = [§ w(s)ds. An approximate expression
for the phase map up to terms of order « is given by

N J
\/Esmvk cosvy,

7 cinyd
V2cosv) —sinv),

V{jl = Pb’K(V{;) =2+/b + arctan

b
+ 2 /2<10g\/—2— +4log2 + 1)
K

Jj2 J qingd 002
B K2<clcosvk + cycosyy sinyy + c3sinyy,
3 —4+/2cosvsinv)

where c; = 2.074 — log2/ k>, ¢, = —1.363 +
1.41410g2/k?, and ¢; = —0.147 — log2/k>.

The maps (18) and (19) for b = 10° and «k = 0.5 are
shown in Fig. 2, together with the phase map obtained from
the numerical integration of the full equation (7) for the
same values of the parameters over half a period of the
inflaton field.

The properties of the family (18) and its approximation
(19) are best understood by looking at the behavior of the
family Py, (v) parametrized by /b,

), (19)

V2 siny — cosy
V2 cosv — siny

This family of circle maps is periodic with period 7 in
the parameter b, and its bifurcation diagram for Jb €
[0, 7] is shown in Fig. 3. We see that the map has two
different regimes. For tan2+/b € [—1, 1], the map has a
strongly attractive fixed point, and the phase converges
rapidly to this fixed point (typically in a couple of itera-
tions). For the remaining parameter values, the phase orbit

Pyo(v) = 2/b + arctan (20)
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— Analytical

e Numerical
-- Series

FIG. 2. For b = 103 and « = 0.5 the maps (18) (solid line) and
(19) (dashed line). Also shown is the phase map obtained from
the numerical integration of the full equation (7) (full circle) for
the same values of the parameters.

has random oscillations around the mean value that varies
between 7/8 and /2 — 7/8, or between 7/8 + 7 and
37/2 — /8. The fixed point equation

cos2v

— T — tan2Vb 21
\/5 — sin2v an @h

is satisfied for two values of » for each +/b €
[—#/8, 7/8]U[7/2 — /8, w/2 + /8], one of which
corresponds to an unstable fixed point and the other to
the stable fixed point shown in the bifurcation diagram of
Fig. 3. The derivative of P, at the stable fixed point is

1
=1 (22)

P (P)=——=
b‘o() 3 — 2/2sin2%

where the stable fixed pointis # € [—7/2 — 7/8, w/8]U

00 05 10 15 20 25 30
bl/Z

FIG. 3. Bifurcation diagram of the family of circle maps (20)
for /b € [0, 7).
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FIG. 4. The asymptotic value of u, as a function of b for
Vb € [107, 117r] computed analytically from Egs. (17) and (20)
(full line) and numerically from the integration of the full
equation (7) (dotted line). We have taken j,, = 200, and the
two lines almost overlap. Also shown (in gray) are all the values
of uj, j =100,101,..., 200.

[7/2 — m/8, m + 7/8]. The equality P ,(#) =1 is ob-
tained at the boundaries of the random phase region, but
the derivative decreases rather sharply into the stable fixed
point region, where P}, ,(7) < 0.5 for most values.

The asymptotic value of growth factor u, for the k = 0
mode as a function of b can then be computed from
Eq. (17) evaluated at the fixed point or averaged over the
random orbits, for values of /b € [— /8, 7/8]U[7/2 —
/8, w/2 + /8] or in the complement of this interval,
respectively. In Fig. 4 we show a plot of the asymptotic
value of w as a function of b computed analytically from
Egs. (17) and (20), as described, and numerically from the
integration of the full equation (7). We see that the stability
regions identified in [10] correspond to the random wan-
dering of the phase v of the field y at consecutive ¢; = jm
around its average values. The random phase regimes

304.0
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1”2
b

01 "

ook
300.0
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FIG. 6. The approximate phase map (solid line) and the phase
map computed numerically from Eq. (7) (dotted line) for b = 10
and k = 1/2.

correspond to different probability measures in the phase
interval, for all of which the average value of u is zero.

For other values of «, the global dynamics shares the
qualitative properties of the family P, . In Fig. 5 we show
the same information of Figs. 3 and 4 obtained for P, .
with 300 = /b = 304 and x = 1/2.

Equation (18) provides a good approximation to the
exact phase dynamics even for moderate values of b. In
Fig. 6 we show the approximate phase map (18) and the
phase map computed numerically from the full equation
(7) for b = 10 and « = 1/2. This, together with the rapid
relaxation rates of the phase dynamics in the fixed point
regime, is the reason why Eqs. (17) and (18) are still useful
to obtain estimates for the growth number in FRW space-
time. The existence of two simple regimes for the phase
dynamics, one of them characterized by rapid relaxation to
a fixed point and the other by random wandering of the
phase with a well-defined probability density, shows that
the system keeps no record of the initial phase and, in this

(b)

02F

01F

00 5 ; ‘;

I i B
301.0 303.0 304.0

FIG. 5. (a) Bifurcation diagram for the map P, , with /b € [300, 304] and k = 1/2. (b) The asymptotic value of x as a function of
Vb for the same values of the parameters computed analytically from Eqs. (17) and (18) (full line), and numerically from the
integration of the full equation (7) (dotted line). We have taken j,,,x = 200, and the two lines almost overlap. Also shown (in gray) are

all the values of uk, j = 100, 101, ..., 200.
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sense, has no memory. This explains why the evolution of
the occupation number is independent of the initial phase,
while the growth factor per period ,u,{< depends strongly on
the phase V{{ We shall come back to this point later.

ITI. DYNAMICS IN AN EXPANDING UNIVERSE

In this section we will show that Egs. (17) and (18) can
be used to compute the growth factor of the y field modes
during the first stage of the preheating period in a flat FRW.

It is well known [10] that the coherence of the oscilla-
tions of the ¢ field is not disturbed until the energy density
of the y field significantly contributes to (2) and (3) and
backreaction and rescattering effects start to change the
mechanism of the growth of the occupation number of the
produced particles. More precisely, Kofman et al. show in
[10] that these effects are negligible during the first pre-
heating stage that ends when the total number density n, of
X particles satisfies

2P
n ) = "2, 23)
8

where ®(z) is the varying amplitude of the inflaton field ¢.
In the first stage of preheating, Eqgs. (2) and (3) decouple

from (4), and the evolution of the inflaton field and of the

scale factor R(¢) is given in good approximation by [10]

mpl

& (1) = ®(1)sing, e

R(@) = <%)2/3.

Equation (4) can be reduced to the form (7) through the
change of variable X, = R3/2y,, yielding

D(r) =
(24)

where @’ = (k/mjR(1)) + (&2 (1)*/m%) + (1/m3)8,
and the last term is very small after inflation and will be
disregarded.

We see that the y; modes are still governed by an
equation of the form (7) like the one we considered in
Minkowski space-time, but now the parameters a; and b
change with time. By definition, the preheating period ends
when g®(1)/m = 1, and so, during preheating, the rate of
variation of those parameters and the oscillations of the
inflaton field are much slower than the oscillations of the
X modes. As pointed out in [10], the basic assumptions for
the approximation developed for Minkowski space-time
are thus still valid in preheating, and the changes in occu-
pation numbers n; will occur at ¢+ = j7r with an exponential
growth rate given by (17), provided that the decreasing
amplitude of the perturbations and the redshift of the wave
numbers are taken into account. Hence, Kofman et al.
model particle production in the first stage of preheating
through

PHYSICAL REVIEW D 71, 083515 (2005)

T .
W, =2—ln<1 +2p% —2p 4/l + pk sin(—e, + 2V{<)>,
rs J J J J

(26)

where k; = k/(R(t;),/gm4P(t))).

We may also think of the phase dynamics as being
essentially governed by the iteration of Eq. (18), but now
the parameter b decreases in time, crossing the strips
associated with the random phase and fixed point regimes,
and giving rise to nontrivial phase dynamics. Kofman et al.
describe the effects of the variation of the inflaton ampli-
tude as implying random phase dynamics, and build their
estimates for the total number density evolution 7, () from
(26), treating the phase v as a random variable.

We shall extend the approach of [10] to study the phase
dynamics in an expanding universe, taking the phase itera-
tion map to be given by

V{:rl = 0(b;, k;) + arg(,/l + pi/_e_i‘PKei”i - iije_i”i>,

27)

where \/b; = g®(t;)/my.

Equations (26) and (27) provide an alternative to nu-
merical integrations of the full equations that compute the
occupation number of a given mode as a function of time.
The phase, growth factor, and occupation number for a
typical orbit (we have taken b, = 5 X 103 and k, = 0.1)
as obtained from the iteration of Egs. (26) and (27) are
shown in Fig. 7, where the values given by numerical
integration of Eq. (25) for the same initial conditions and
parameter values are also plotted. Iteration and integration

were carried out until preheating ends with , /b(;) = 1. We

see ‘“‘reminiscences’” of the phase dynamics of the
Minkowski model. In particular, the fixed point regime
interval is clearly visible after the first few ¢ oscillations.
Also shown are the values of these same quantities aver-
aged over the initial phase »9. We see that, due to the
characteristics of the phase dynamics, the efficiency of
particle production is insensitive to the initial phase of
the field mode Yy, in spite of the strong dependence of
the growth factor per period on the phase v;.

We shall now use Eqgs. (26) and (27) above to look at the
total number density 7, (¢) and check the estimates given in
[10]. We consider the contributions to n,(¢) of every mode

such that k € [0, k.(0) = ,/g®P(0)my] at t = 0, and com-

pute for each j the leading mode’s growth factor, ,u{ , given
by

. 1 A A
,LL; = maXKZE[O’l]{Z— Z /«LLJ(P(b]/)K/(VO))}r (28)
0 €[0,277]
with b; =5 X 103(P(t;)/ P(0))%, K? = kK2®(0)/
(®(t;))R*(1;)), and P%{Kj the jth iteration of the map (27),
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FIG. 7. For by = 5 X 103 and «, = 0.1, the phase (a), growth
factor (b), and occupation number (c) with initial conditions
corresponding to n{ = 1/2 and »? = 0. The values obtained
from the iteration of Egs. (26) and (27) are plotted as full circles,
and the values given by numerical integration of Eq. (25) for the

same initial conditions and parameter values are plotted as open
circles. Iteration and integration were carried out until the end of

preheating when ,/b(¢;) = 1. Also shown are the values of these

same quantities averaged over the initial phase 1/2 [full triangles
for the iterated maps (26) and (27) and open triangles for the
numerical values].
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where the parameters « and » must be updated at each
iteration. Then, whereas the estimate in [10] is

®(0))*/2
() = 64Ef2r2(§(t)(\/2))1377t exp(2 X 0.130) @)
we have
D(0))* Lo
" (1) = (gmy (0) . <27TZ M)’ (30)
i=1

642 R (1|72 S| i
or
(gm s (0))*/2
6472 R3 (1)1 72 {:l,ui

exp<277 i ,ui), 31

i=1

if instead of actually determining the leading mode we
assume that it corresponds to k../2. The curves correspond-
ing to Eqgs. (29)—(31) are shown in Fig. 8. We can still
improve on the estimates given by (30) and (31). Since

1)) 3/2
- % 01 Cn(Dde,  (32)

n, (1)
we may use (26) and (27) to compute this integral numeri-
cally from ny(t;) = 1/2exp2m Y ]_, i ). The result is
also shown in Fig. 8, and we see that for this value of g
the estimates of [10] are very accurate.

Finally, we have used again (26) and (27) together with
(32) to obtain a systematic study both of the behavior of
n, () as a function of the parameter g, and of the duration
of the first stage of preheating as defined by (23), as a
function of g. The results for g in the range 10™% = g <
10~! are shown in Fig. 9, where we have also plotted the
result of the estimates of [10] for these quantities. We see
that the duration of the first stage of preheating depends

0 T T T T T T T T T T

_3'_ — Eq. 29 -
I - Eq. 30

P - Eq.31 ]
i -- Eq. 32

FIG. 8.

For by = 5 X 10° (hence g = 0.3 X 1073) the curves
corresponding to Eq. (29) (full line), (30) (dotted line), (31)
(slash-and-dot line), and (32) (slashed line). The evolution was
computed until the end of preheating when /b3y = 1.
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FIG. 9. Duration of the first stage of preheating j; as a function
of g for 107* =< g = 107! (dots). Also shown are the linear least
square approximation (slashed line), the estimate given in [10]
(full line), and the cutoff curve defined by b; = 1 (dotted line).
The values of j, that lie above the cutoff curve b; = 1 were not
considered in the least square approximation.

rather irregularly on the parameter g, and that the estimates
of [10] (full line in the figure) provide a good lower bound
for most values of g. The least squares linear fit (slashed
line) yields a slightly larger value for the typical duration
of the first stage. On the other hand, the value of g below
which preheating always ceases during the first stage was
found to be g = 3 X 1074, as predicted in [10].

IV. CONCLUSION

In the simplest preheating scenario, where the coherent
oscillations of the uncoupled inflaton field drive the am-
plification of the mode amplitudes of a field y, we consider
first the broad resonance regime in Minkowski space-time
and use the theory of scattering in parabolic potentials
developed in [10] to obtain the map whose iteration gov-
erns the phase dynamics of the modes y;. It is well known
that the phase dynamics, the consecutive values of the
phase of the y; fields at the times 7; when the inflaton
amplitude goes through zero, determine the growth rates of
the modes. In this work we show that the features of this

PHYSICAL REVIEW D 71, 083515 (2005)

phase dynamics are given by the properties of a simple
family of circle maps. The orbits of this family of maps are
of two types, rapid convergence to fixed point solutions,
and random oscillations around an average value. Hence,
the “stochastic resonance’ identified in [10] in the dynam-
ics of an expanding universe is also present in the absence
of expansion. The fixed phase and stochastic regimes occur
in consecutive intervals of the value of the forcing ampli-
tude. In the first case, the fixed point is always associated
with a positive value of the growth factor u; = 1/(27) X
log(n/*1/n/) that controls the growth of the number of
particles n/ in each mode for t = ¢ ;- Thus, in this case, the
average growth of the occupation numbers of the modes is
exponential. In the second case, we show that the phase
sampling is always such that the average growth factor is
zZero.

We then consider the case of an expanding universe,
with the assumptions that hold in the first stage of preheat-
ing, and show that the equations for the phase dynamics
and the growth number derived for Minkowski space-time
still provide a good approximation of the true solutions,
once the decay of the inflaton amplitude is taken into
account. Moreover, the qualitative behavior of the phase
and growth number evolution is reminiscent of the behav-
ior found in the case without expansion, in the sense that it
can be interpreted as a random phase regime followed by a
slowly varying phase regime where occupation number
growth is approximately exponential. These two regimes
occur as the inflaton decay slows down and the perturba-
tion amplitude crosses more and more slowly the intervals
that give rise to fixed phase behavior.

We use this approximation to obtain a systematic study
of the behavior of the total number density of created
particles over time, and of the end of the first stage of
preheating as a function of the ¢ — y coupling parameter
g. Comparison with the estimates presented in [10] show
an overall good agreement.
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