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Weak lensing in scalar-tensor theories of gravity
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This article investigates the signatures of various models of dark energy on weak gravitational lensing,
including the complementarity of the linear and nonlinear regimes. It investigates quintessence models
and their extension to scalar-tensor gravity. The various effects induced by this simplest extension of
general relativity are discussed. It is shown that, given the constraints in the Solar System, models such as
a quadratic nonminimal coupling do not leave any signatures that can be detected while other models,
such as a runaway dilaton, which include attraction toward general relativity, can let an imprint of about
10%.
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I. INTRODUCTION

The growing evidences for the acceleration of the uni-
verse have led to the formulation of numerous scenarios of
dark energy (see Ref. [1] for reviews). In this construction
various routes have been investigated [2]. They reduce
mainly to the introduction of new degrees of freedom in
the cosmological scenario, either as matter fields with
negative pressure or in the gravitational sector.

The simplest models accounting for this acceleration
rely on the introduction of a slow-rolling scalar field whose
expectation value varies during the history of the Universe.
These quintessence models [3] are characterized by their
potential and numerous choices have been discussed in the
literature [1]. Generically this scalar field may also couple
to matter fields [4]. As a consequence, the values of the
fundamental constants will depend on the value of this field
and may vary [5] and it will induce a fifth force that will be
long range if the scalar field is light, which is usually the
case if it is the source of the acceleration of the universe.

In the simplest extension of the quintessence models, the
quintessence field universally couples to the other fields. It
was realized that the properties of this quintessence field
were conserved in that situation [6–8]. This implies that
we are dealing with a scalar-tensor theory of gravity in
which the spin-0 partner of the graviton is also the quin-
tessence field. From a phenomenological point of view,
extended quintessence models are the simplest well de-
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fined theories in which there is a modification of gravity.
Various observational signatures on the background evo-
lution, the cosmic microwave background (CMB) anisot-
ropies [8–13], the big-bang nucleosynthesis have been
worked out [14] and the reconstruction problem was dis-
cussed in details [15]. In particular, it was shown that the
attraction mechanism toward general relativity [16] still
hold [17] in these extended quintessence models, a crucial
point since they have to satisfy sharp constraints in the
Solar System [18]. It was also pointed out that a runaway
dilaton [19,20] that does not couple universally, is an
appealing models with specific signature such as a varia-
tion of some fundamental constants and a violation of the
universality of free fall.

Scalar-tensor theories are the most natural alternative to
general relativity [18,21], preserving the universality of
free fall and constancy of all nongravitational constants.
Gravity is mediated not only by a massless spin-2 graviton,
corresponding to the spacetime metric, but also by a spin-0
scalar field. Many theoretical motivations to consider such
a scalar partner to the graviton have been put forward,
particularly in higher-dimensional theories. In string the-
ory, the supermultiplet of the graviton contains a dilaton
and moduli fields [22].

Scalar-tensor theories are well constrained in the Solar
system and one can try to extend these constraints to
astrophysical and cosmological scales. In the case of ex-
tended quintessence, the effect of the scalar field is impor-
tant particularly in the recent universe when it starts to
dominate. It was pointed out [23] that the modification of
the equation of state in the recent universe has striking
effects on the growth of density perturbation and on weak-
-1  2005 The American Physical Society
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lensing observables such as the convergence power
spectrum.

Weak gravitational lensing has now proven to be a
powerful tool to study large scale structures [24–26] and
to gather information on the nature of the dark energy
[27,28]. In particular, cross-correlation techniques seem a
very promising way to achieve this task (see e.g. [29]).
Weak lensing can be detected by the deformation of the
shape of background galaxies. It was recently observed by
various groups [30] and can probe the large scale structures
of the universe both in the linear and nonlinear regimes.
Recently, the weak lensing has been studied in the context
of generalized cosmologies [31], specializing to quadratic
nonminimally coupled models and focusing on the effects
on the CMB anisotropies, hence just looking after the
linear regime of structure formation. However, as was
shown on various examples [23,27,32], the most stringent
constraints on cosmological models, able to distinguish
dark energy models, arise from the comparison of the
linear and nonlinear regimes.

In this article, our main goal is to study in details the
lensing observable, focusing on 2-point functions to start
with, in the case of general relativity and scalar-tensor
theories of gravity. In particular, most of the previous
studies (e.g. Refs. [23,27,32]) treat the matter power spec-
trum independently of the CMB anisotropies. We choose to
normalize all our spectra on the CMB at low multipole and
deduce the lensing observables, both in the linear and
nonlinear regimes, with the same normalization.
Independent of any considerations on the law of gravity,
this tool will be of first importance to deal with combined
analysis of CMB and lensing data [33].

Our analysis will be applied to both quintessence and
extended quintessence models. We will show that the
modification of the equation of state of the Universe leaves
a detectable imprint on weak-lensing observables.
Concerning scalar-tensor theories we will show that, given
the constraints in the Solar System, many models will leave
very little signature. This is the case, for instance, of a
quadratic coupling. Interestingly other models such as a
runaway dilaton can have a 10% effect that is likely to be
constrained and/or detected (see Fig. 12). Note that both
conclusions are of interest since they will tell us for which
class of modifications we have to bother about this exten-
sion of the law of gravity.

The article is organized as follows. We first introduce
scalar-tensor theories of gravity in Sec. II. In particular, we
describe the Einstein and Jordan frames and argue that the
latter is the one in which observations take their standard
interpretations. We also recall (Secs. II B and II C) the
standard constraints on these models and discuss briefly
the properties of gravitational lensing (Sec. II D). In
Sec. III, we derive the distortion of a geodesic light bundle
due to large scale structures in a way that is valid for any
metric theory of gravity, namely it does not assume that
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gravity is described by general relativity and it is valid for
scalar-tensor theories. This allows us to define in Sec. IV
the weak-lensing observables such as the shear power
spectrum and the 2-point statistics of the shear field. We
then describe our numerical implementation (Sec. IV D) in
detail, as well as the mapping to the nonlinear regime. As a
first check, we investigate in Sec. V weak lensing in
general relativity both for a �CDM and quintessence
models. Section VI discusses the various effects and dif-
ferences that arise in scalar-tensor theories of gravity and
we then investigate in Sec. VII two families of models: a
nonminimally coupled scalar field and runaway dilatonlike
models that include attraction toward general relativity.
II. GENERAL RESULTS ON SCALAR-TENSOR
THEORIES

In this article, we focus on scalar-tensor theories of
gravity described by the action

S �
1

16�G�

Z
d4x

�������
�g

p
�F�’�R� g
�’;
’;� � 2U�’��

	 Sm�g
�; matter fields� (1)

where G� is the bare gravitational constant from which we
define �� � 8�G�. The coupling function F multiplying
the Ricci scalar R is dimensionless and needs to be positive
to ensure that the graviton carries positive energy. Sm is the
action of the matter fields that are minimally coupled to the
metric, hence ensuring the universality of free fall. The
metric has signature ��;	;	;	� and we work in units in
which c � 1.

A. Field equations

The variation of action (1) leads to the field equations

F�’�G
� � 8�G�T
� 	 @
’@�’�
1

2
g
��@�’�2

� g
�U�’� 	 r
@�F�’� � g
��F�’� (2)

�’ � U;’ �
1

2
F;’R (3)

r
T

� � 0: (4)

Here r
 is the covariant derivative associated to g
� and
the subscript ‘‘; ’’’ denotes the functional derivative with
respect to ’. The stress-energy tensor is defined as

T
� �
2�������
�g

p
�Sm
�g
�

:

Action (1) has been written in the so-called Jordan frame in
which matter is universally coupled to the metric. The
Jordan metric defines the length and time as measured by
laboratory apparatus. In the following, we will be inter-
ested, in particular, in the shape of background galaxies
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TABLE I. Notations in Jordan and Einstein frames.

Jordan frame Einstein frame

Coordinates �x; t) �x�; t��
Metric g
� g�
�
Scalar field ’ ’�

Potential U V
Coupling F A
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and all observations will have their standard interpretation
in this frame [21].

It is useful to define an Einstein frame action through a
conformal transformation of the metric

g�
� � F�’�g
�: (5)

In the following all quantities labeled by a star ( � ) will
refer to Einstein frame. Defining the field ’� and the two
functions A�’�� and V�’�� (see e.g. [15]) by�

d’�

d’

�
2
�

3

4

�
d lnF�’�

d’

�
2
	

1

2F�’�
(6)

A�’�� � F�1=2�’� (7)

2V�’�� � U�’�F�2�’�; (8)

the action (1) reads

S�
1

16�G�

Z
d4x

����������
�g�

p
�R��2g
�� @
’�@�’��4V�’���

	Sm�A
2�’��g

�

�;matter fields�: (9)

The kinetic terms have been diagonalized so that the spin-2
and spin-0 degrees of freedom of the theory are perturba-
tions of g�
� and ’�, respectively. In this frame, the field
equations take the form

G�

� � 8�G�T

�

�	 2@
’�@�’� �g�
��@�’��

2 � 2g�
�V;

(10)

��’� � V;’�
� 4�G���’��T

�

�g


�
� ; (11)

r
T

�
� � ��’��T�

��g
��
� @�’�; (12)

where we have defined the Einstein frame stress-energy
tensor

T
�� �
2����������
�g�

p
�Sm
�g�
�

;

related to the Jordan frame stress-energy tensor by T�

� �

A2T
�. The function

��’�� �
d lnA
d’�

(13)

characterizes the coupling of the scalar field to matter (we
recover general relativity with a scalar field when it van-
ishes). For completeness, we also define

��’�� �
d�
d’�

: (14)

Note that in Einstein frame the Einstein equations (10) are
the same as the ones obtained in general relativity with a
minimally coupled scalar field. Table I summarizes the
notations used in Jordan and Einstein frames.
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From these definitions, we can define an effective gravi-
tational constant as

Geff �
G�

F�’�
� G�A2�’�� (15)

but, as we shall see, this does not correspond to the Newton
constant that will be effectively measured in a Cavendish-
like experiment.

B. Local constraints

Deviations of the theory of gravity from general relativ-
ity are sharply constrained in the Solar System [18] as well
as by binary pulsars [34]. The constraints are usually set on
the post-Newtonian parameters [18]. In the particular case
of scalar-tensor theories, they reduce [15,21] to

�PPN � 1 �
F2
;’

F	 2F2
;’

(16)

� �2
�2

1 	 �2 (17)

�PPN � 1 �
1

2

�2

�1 	 �2�2
d�
d’�

(18)

�
1

4

FF;’
2F	 3F2

;’

d�PPN

d’
: (19)

Solar System experiments set sharp constraints on the
values of the PPN parameters ��PPN

0 ; �PPN
0 � today. The

observed value of the perihelion shift of Mercury implies
the bound [35]

j2�PPN
0 � �PPN

0 � 1j< 3  10�3: (20)

The Lunar laser ranging experiment [36] imposes

4�PPN
0 � �PPN

0 � 3 � ��0:7 � 1�  10�3 (21)

and the measurements of the light deflection by Very Long
Baseline Interferometry [37] improves the constraint on
�PPN

0 to

j�PPN
0 � 1j � 4  10�4: (22)

The recent analysis of the frequency shift of radio waves to
and from the Cassini spacecraft have set the even more
stringent bound [38]
-3
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�PPN
0 � 1 � �2:1 � 2:3�  10�5: (23)

The previous bounds to those obtained in Refs. [37,38]
were (see Ref. [18] for a review)

j�PPN
0 � 1j � 2  10�3; j�PPN

0 � 1j � 6  10�4:

(24)

These constraints can be transformed to constraints on the
set ��0; �0� (see Ref. [34] for a summary). In particular, we
can note that binary pulsars imply that �0 >�4:5. The
bound (23) implies that

�2
0 �

F02
0

F0
< 4  10�5: (25)

The local value of the gravitational constant is deduced
from a Cavendish-like experiment, i.e. from the measure-
ment of the Newton force between two masses m1 and m2,
as Gcav � Fr2=m1m2. It can be shown [21] that its theo-
retical expression is

Gcav �
G�

F

�
1 	

F2
;’

2F	 3F2
;’

�
(26)

� G�A
2�1 	 �2�: (27)

Note that today Eq. (25) implies that Gcav and Geff do not
differ by more than some 10�3 percent, which is anyhow
larger than the accuracy of the measurement of the gravi-
tational constant. At higher redshift this difference may be
larger.

Current constraints [39] (see also Ref. [5] for a review)
imply that ��������

_Gcav

Gcav

��������0
<6  10�12 yr�1: (28)

Using Eqs. (13) and (14), this implies that���������0 	
�0�0

�1 	 �2
0�

��������j _’�0j< 3  10�12 yr�1 (29)

All these constraints are local and we will consider in
this article only models that satisfy them.

C. Cosmological constraints

From a cosmological point of view, there are very few
constraints on scalar-tensor theories.

CMB observations may in principle give some con-
straints but they are often degenerate with other parame-
ters, such as e.g. the cosmological parameters (see e.g.
Refs. [8–12] for some studies on the CMB imprints of
scalar-tensor theories).

More stringent constraints arise from big bang nucleo-
synthesis (BBN). BBN results and, in particular, the
helium-4 abundance, are very sensitive to the weak inter-
action freeze-out. This temperature depends on the
strength of the gravitational interaction which dictates the
083512
expansion rates. BBN mainly requires that (i) the Universe
is dominated by radiation at the time of nucleosynthesis
and (ii) that the number of degrees of freedom of relativ-
istic particles does not vary by more than 20% with respect
to its expected value gr � 10:75. The Friedmann
equation (A6) for a flat universe reduces to

H 2 � �0
�2

90
a2gr

�
1 	

�gr

gr

�
T4 (30)

with �gr=gr � F0=F�znuc� � 1, if one neglects the contri-
bution of the scalar field to the energy density. Requiring
that �gr=gr be smaller than 0.2 implies [14] that

0:8 �

�������� F0

Fnuc

���������
��������A

2
nuc

A2
0

��������� 1:2: (31)

Let us emphasize that large value of jF0=Fnucj was shown
to be consistent with the BBN constraints [17] if � is large
enough so that the naive limit (31) can be much more
stringent than a detailed study may show.

D. A remark on gravitational lensing

Gravitational bending of light by a single mass M in
scalar-tensor theory can be derived easily in Einstein
frame. Since photons are coupled to the gravitational field
only, they are insensitive to the scalar field. One deduces
that they are deflected by an angle �# exactly in the same
way as in general relativity, that is

�# � 4G�A2�’��M=r0; (32)

where A2M is the deflecting mass in Einstein frame. G�

cannot be measured directly and what we know is only the
value of the gravitational constant (26) determined by a
Cavendish-like experiment today. Masses attract them-
selves due to the exchange of both a graviton and a scalar.
It follows that

Gcav � G�A
2
0�1 	 �2

0� � 2
G�A2

0

1 	 �0
(33)

so that the deflection angle turns out to be

�# � 2�1 	 �0�GcavM=r0: (34)

In conclusion, the deflected angle is different from the
prediction of general relativity, not because photons are
deflected differently but because there is a scalar interac-
tion between the test masses which contributes to the value
of the effective Newton constant [21].

This argument can be straightforwardly generalized to
the cosmological context. If the lens seats at a redshift z
and if we work in the thin lens approximation then the
deflection angle is given by

�# � 4G�A
2�zlens�Mlens=r0: (35)

Again, G� cannot be measured and we have access to
-4
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Gcav;0 � 2
G�A2

0

1 	 �0
; (36)

where the subscript ‘‘0’’ means that it is determined today.
It follows that

�# � 2�1 	 �0�Gcav;0
Mlens

r0

A2�z�

A2�0�
: (37)

The mass of the lensing galaxy Mlens cannot be measured
directly.

We mainly expect to have two major effects on lensing
observations: (i) an effect of the background dynamics
through the angular distances, (ii) a gravitational effect
due to the z dependence of the deflection angle.
Eventually, observations of lenses located at different red-
shift should enable us to give an information on A�z�=A�0�
as a function of the redshift.

Before we go into a detailed computation, we can give
an upper bound on the amplitude of this effect. From the
constraint (31), we deduce that the factor depending on A
in Eq. (37) has to lie in the range F0=F�znuc� ’ �0:8; 1:2� so
that effects larger than 20% are unlikely to happen, inde-
pendently of any model (see however Ref. [17]). Let us
stress that, as we shall see, the dominant effect will arise
from the growth of the density field and not from the two
effects we have just mentioned.

To finish this general discussion let us emphasize that we
could have added a coupling of the scalar field to the
electromagnetic tensor of the form

B�’�F
�F
� (38)

in the action (1). Such a term will induce a variation of the
fine structure constant (see e.g. Ref. [5] for a review), that
has to be smaller than 10�5 between z� 3 and today, and a
violation of the universality of free fall. Interestingly, such
a term will not affect the equation of propagation of
photons in the eikonal approximation at first order and
thus weak-lensing observables that are considered in this
article.
III. LIGHT PROPAGATION IN A PERTURBED
FLRW SPACETIME

This section is devoted to the general theory of gravita-
tional lensing. Our construction is based on the geodesic
deviation of a bundle of null geodesics and will then be
valid as soon as light travels on such null geodesics, which
is the case, in particular, in general relativity and scalar-
tensor theories of gravity. Sec. III A reviews the standard
derivation on the propagation of a light bundle and defines
the shear and convergence. In Secs. III B and III C, we
apply this formalism to a Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) spacetime and then to a perturbed space-
time in order to get the final expression of the shear.
083512
A. General derivation

Let us consider the evolution of a light bundle in a
spacetime with metric g
� following the original work of
Ref. [40] along the lines of Ref. [41]. The world line of
each geodesic can be decomposed as

x
�%� �  x
�%� 	 &
�%�; (39)

where  x
�%� is a fiducial null geodesic of the bundle and %
is an affine parameter along this geodesic. &
 is a displace-
ment vector that labels the other geodesics of the bundle.
The tangent vector k
 along the fiducial geodesic satisfies

k
k

 � 0; k�r�k


 � 0: (40)

We assume that the geodesic bundle is converging at the
observer’s position O. We assume % to vanish in O and to
increase toward the past. In O we also choose a quasior-
thonormal reference frame fk
; u
; n
1 ; n



2 g, where u
 is

the 4-velocity of the observer and satisfies

u
u
 � �1 (41)

and n
1 ; n


2 are two the spacelike vectors spanning the plan

orthogonal to the fiducial light ray, i.e. to the line of sight.
They satisfy

n
a nb
 � �ba; n
a k
 � n
a u
 � 0 (42)

with a; b � 1; 2. From this tetrad constructed in O, we
construct a basis at each point of the geodesic by parallel
transporting it along the fiducial geodesic.

As shown in Ref. [41], &
 can be decomposed as

&
 � &0k
 	
X
a�1;2

&an


a (43)

and one can always choose to set &0 � 0. The propagation
equation of &
 is obtained from the geodesic deviation
equation as

D2

d%2
&
 � R
���k

�k�&�; (44)

where R
��� is the Riemann tensor andD=d% � k
r
. In
terms of the decomposition (43), this equation reads

d2

d%2
� � R�; (45)

where Rb
a � R
���k

�k�na
n
�
b is known as the optical

tidal matrix. We have used the notation � � &a and R� �
Rb

a&b. Decomposing the Riemann tensor in terms of the
Ricci and the Weyl tensor, it can be rewritten as

R b
a � �

1

2
R
�k


k��ab 	 C
���k
�k�na
n

�
b : (46)

The linearity of the geodesic equation implies that � can
be related to the initial value of d�=d% through a linear
transformation
-5
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� �%� � D�%�
d�

d%
�0�: (47)

Using that ��0� � 0 (bundle converging in O) , Eq. (45)
gives an equation of evolution for Db

a as

d2

d%2
D � RD: (48)

The initial conditions in 0 for the matrix D are given by

D �0� � 0 and D0�0� � I ; (49)

with I being the 2  2 identity matrix. The matrix D
describes the deformation of the light bundle induced by
the spacetime geometry.

The direction of observation �I and the angular position
of the source �S are related to the displacement field by

� I �
d�

d%
�0�; �S �

��%S�
DA�%S�

; (50)

where %S is the value of the affine parameter at the source
and DA is, by definition, the angular distance of the source.
It follows that Eq. (47) takes the form

� S �
D�%S�
DA�%S�

�I: (51)

The deformation of the shape of background galaxies is
thus characterized by the amplification matrix

A �
d�S
d�I

�
D�%S�
DA�%S�

: (52)

It can always be decomposed as

A �
1 � �� �1 �2

�2 1 � �	 �1

� �
; (53)

in terms of the convergence � and of the shear � �
��1; �2�. They can be extracted from the amplification
matrix as

� � 1 �
1

2
TrA; � �

1

2
A22 �A11

2A12

� �
: (54)

As was emphasized by many authors [24–26] and demon-
strated experimentally by various observations [30], the
shear can be obtained from the measurement of the shape
of galaxies.

All the definitions and derivations of this section do not
depend on the specific form of the metric and are thus
completely general as long as photons follow null geodesic
and the geodesic deviation equation holds.

B. Background spacetime

We now apply these general results to the case of a
background cosmological spacetime with line element

d s2 � g
�dx

dx� � a2�0�  g
�dx


dx�; (55)
083512
where 0 is the conformal time and a the scale factor. We
decompose the metric as

 g 
�dx
dx� � �d02 	 �ijdxidxj; (56)

where �ij is the metric of the constant time hypersurfaces.
Since they are hypersurfaces of constant curvature

�ijdxidxj � d32 	 S2
K�3�d"2; (57)

where 3 is the comoving radial coordinate and d"2 the
infinitesimal solid angle. The function SK is defined by

SK�3� �
sin�

����
K

p
3�����

K
p ; 3;

sinh�
��������
�K

p
3���������

�K
p ; (58)

respectively, for K > 0; K � 0; K < 0.
From Eq. (57), it is clear that SK is the comoving angular

distance so that the angular distance will be given by

DA � a�0�SK�3� � a0
SK�3�
1 	 z

; (59)

where a0 refers to the value of the scale factor today and
z � a0=a� 1 is the redshift. The expression of 3�z� is
given by

3�z� �
1

H0a0

Z z

0

dz
E�z�

; (60)

where H0 is the value of the Hubble constant today and
E�z� is defined by

E�z� � H�z�=H0 � �1 	 z�H =H 0: (61)

The expression for E�z� depends on the matter content of
the universe and on the theory of gravity. It is given in
Appendix B.

To solve Eq. (48), we will use the fact that null geodesics
are left unchanged by a conformal transformation since
two conformal spaces have the same causal structure (see
e.g. Ref. [42]). For the metric  g
�, Eq. (48) takes the form

d2

d%2
D � �KD: (62)

The solution of this equation is trivially given by

D �0��%� � SK�%�I ; (63)

where SK is given by Eq. (58), so that

A �0� � I ; (64)

where the superscript ‘‘(0)’’ refers to the solutions in the
background spacetime.

C. Perturbed spacetime

1. Amplification matrix

Let us now turn to the perturbed cosmological spacetime
with a metric
-6
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ds2 � a2�0��  g
� 	 h
��dx
dx�: (65)

Again, we work in the static conformal spacetime with
metric  g
� 	 h
�. As usual, we develop the tidal matrix as

D � D�0� 	D�1� 	O�h2�; (66)

where D�n� involves terms of nth order in the metric
perturbation, and consistently we solve Eq. (48) order by
order. Plugging the zeroth order solution (64), Eq. (48)
reduces to

d

d%
D�1� � R �1��%�SK�%�; (67)

the solution of which is explicitly given by

D �1��%� �
Z %

0
SK�%

0�SK�%� %0�R �1��%0�d%0; (68)

so that the amplification matrix is

A �1��%� �
Z %

0

SK�%
0�SK�%� %0�
SK�%�

R �1��%0�d%0: (69)

This expression is again very general and just assumes that
photons are propagating along null geodesics. Now we just
need to express R �1� in terms of the perturbations of the
metric and go back to the original (nonstatic) spacetime to
get the final result.

2. Deflecting potential

To go further, we assume that the perturbations can be
decomposed as

1

2
h
�dx


dx� � �9d02 	 Bid0dxi

	 �� �ij 	  Eij�dx
idxj; (70)

where 9 and  are the two gravitational potentials in
Newtonian gauge, Bi and  Eij describe the vector and tensor
perturbations and satisfy

 E i
i � Di

 Eij � DiBi � 0; (71)

where Di is the covariant derivative associated to the
spatial metric �ij. Using that 2R
��� � h��;
� 	

h
�;�� � h�
;�� � h��;�
, we obtain that

R �1�
ab �

1

2
h
�;��k


k�n�an
�
b �

1

2

d

d%
�%���  g�
k

�n
a n
�
b�;

(72)

where %��� are the Christoffel symbols. If we focus on
scalar perturbations then the second term vanishes and
we end up with

R �1�
ab � �@ab&; (73)

where the deflecting potential is defined as
083512
& � �
1

2
h
�k
k�: (74)

In the case of a perturbed cosmological spacetime, it
reduces to

& � 9	  � Bi#i �  Eij#i#j; (75)

where #i is the direction of observation. This potential
includes the effect of rotation and of gravity waves. Note
that in the case of pure scalar perturbation in general
relativity and in the absence of anisotropic stress 9 �  
we recover the standard result & � 29.

3. Final form

The last step requires to go back to the original (non-
static) metric to get

A ab� Iab�
Z 3

0

SK�30�SK�3�30�

SK�3�
@ab&�SK�3

0��;30�d30:

(76)

It follows that the convergence is given by the trace of this
matrix

���; 3� �
1

2

Z 3

0

SK�3
0�SK�3� 30�

SK�3�
�2&d30; (77)

with �2 � @a@a. The deflecting potential is evaluated
along the line of sight as & � &�SK�30��; 30�.

In this derivation, the source has been assumed to be at a
given redshift, it generalizes easily to a more general
redshift distribution, p3�3�d3, as

���� �
Z
p3�3����; 3�d3: (78)

In conclusion, the convergence takes the form

���� �
1

2

Z 3H

0
g�3�SK�3��2&�SK�3��; 3�d3; (79)

where g is defined as

g�3� �
Z 3H

3
p�30�

SK�30 � 3�
SK�30�

d30: (80)
D. Comments

Again, let us stress that this construction does not as-
sume the validity of general relativity. It is based only on
the validity of the geodesic deviation equation. This is the
case, in particular, for all metric theory of gravity such as
scalar-tensor theories.

We also emphasize that using a conformal transforma-
tion to solve the problem in a static spacetime has greatly
simplified the derivation.

In the late universe, when we are interested by gravita-
tional lensing effects, the matter content is mainly domi-
nated by pressureless matter and dark energy. It follows
-7
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that we can define an effective density field �eff by the
relation

�& � 3H2
0"m;0

�eff

�a=a0�
; (81)

where "m;0 is the value of the matter density parameter
today. The subscript ‘‘m’’ refers to the matter fields, in-
cluding at least two components, dark matter (cdm) and
baryonic matter (b). If we express the 3-dimensional
Laplacian as �2 	 @2

z , where @z is the derivative along
the line of sight, then the convergence (79) can be ex-
pressed in terms of the effective density contrast as

���� �
3

2
H2

0"m;0

Z 3H

0
g�3�SK�3�

�eff�SK�3��; 3�
�a=a0�

d3:

(82)
IV. WEAK-LENSING OBSERVABLES

In the former section, we have derived the expression of
the convergence in terms of the deflecting potential. In
cosmology, we are interested in the statistical properties
of the convergence.

This section is devoted to the observable quantities to be
compared with weak-lensing data. Sec. IV B describes the
computation of the power spectrum and Sec. IV C is de-
voted to the computation of various 2-point statistics, such
as the shear variance and the aperture mass variance. This
requires us to smooth the shear field. We then describe our
numerical implementation in Sec. IV D.

A. Power spectra

The convergence is a function on the 2-sphere and it can
be expanded in a 2-dimensional Fourier transform as

���� �
Z
�̂�l�eil��

d2l

2�
: (83)

From the coefficients �̂�l�, one can define the power spec-
trum of the shear as

h�̂�l��̂��l 0�i � P��‘���2��l � l 0�; (84)

where ��n��x� is the n-dimensional Dirac delta function
evaluated in x. The shear components can be decomposed
alike. It is convenient to use a complex notation for the
shear, � � �1 	 i�2. Since the shear and the convergence
derive from the same potential, they are not independent
and it can be shown that the convergence can be obtained
from the shear as

�̂�l� � K̂��l��̂�l�=� (85)

for all l � �‘1; ‘2� � 0. The kernel function K̂� is defined
as

K̂ � ��‘2
1 � ‘2

2 	 2i‘1‘2�=‘2: (86)
083512
Interestingly, this implies j�̂j2 � �̂�̂� so that the shear and
convergence have same power spectrum

P��‘� � P��‘�: (87)

Note that the shear can then be obtained as

���� � �0 	
1

�

Z
K��� � �0����0�d2�0: (88)

The integration constant �0 is related to any constant
uniform mass distribution that will contribute to the con-
vergence but not to the shear.

Analogously, all 3-dimensional fields can be developed
in Fourier modes as

9�r; 0� �
Z
9̂�k; 0�eik�r

d3r

�2��3=2
(89)

and are associated to a power spectrum

h9̂�k; 0�9̂�k0; 0�i � P9�k; 0���3��k� k0�: (90)
B. Shear power spectrum

As Eqs. (79) and (80) show, the shear is obtained as a
weighted projection of the deflecting potential and takes
the general form

� �
Z
q�3��eff�SK�3��; 3�d3: (91)

This implies that if �eff is a homogeneous and isotropic
Gaussian random field, then � will be as well. Its angular
correlation function, &� � h��’	 ����’�i, can be ex-
pressed as

&��#� �
Z

d3d30q�3�q�30�h�eff�SK�3�’; 3�

 �eff�SK�3��’	 ��; 3�i: (92)

The correlation function that appears in this integral can be
computed if �eff is expanded in Fourier modes (89) to give

Z
e�ik?�’SK�3�e�ik33e�ik

0
?
��’	��SK�30�

 e�ik
0
33

0

h�eff�k; 3��eff�k
0; 30�i

d3kd3k0

�2��3
: (93)

On small angular scales (#� 1), k2
? � k2

3 and the power
is mostly carried by k?. We thus approximate

h�eff�k; 3��eff�k
0; 30�i

’ h�eff�k?; 3��eff�k
0
?; 3

0�i��1��k3 	 k03�:

The integration over k3 gives a factor 2���1��3� 30� so
that after integration on 30 we end up with the expression

&��#� �
Z

d3q2�3�
d2k?
�2��2

Peff�k?; 3�eiSK�3�k?�� (94)
-8
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We conclude that the 2-dimensional power spectrum of the
convergence is related to the 3-dimensional power spec-
trum of �eff by

P��‘� �
9H4

0

4
"2
m;0

Z �
g�3�
a�3�

�
2
Peff

�
‘

SK�3�
; 3

�
d3: (95)

If we filter the convergence field by a window function,
U�#0; #� of angular radius # as

��#� �
Z

d2�0���0�U�#0; #�; (96)

then the variance of the filtered convergence is given by

h�2i � 2�
Z 1

0
d‘‘P��‘�

�Z
#0U�#0; #�J0�‘#�d#

�
2
; (97)

where J0 is the nth order Bessel function.

C. 2-point statistics of the shear field

The shear field � has two components that can be
decomposed in various ways. From a reference point,
such as the center of the filter, one can define a radial
and tangential shear as

�r � Re�’���; �t � Im�’���; (98)

where ’ represents the unit vector pointing from the
reference point to the point where � is defined. From these
components we can define the correlation functions

&r�#� � h�r�ri; &t � h�t�ti (99)

and by symmetry the correlation h�t�ri strictly vanishes.
We can also combine these functions as

&��#� � &t � &r: (100)

Developing the shear in Fourier modes, one gets

&	�#� �
Z 1

0

d‘
2�

‘P��‘�J0�‘#�; (101)

&��#� �
Z 1

0

d‘
2�

‘P��‘�J4�‘#�: (102)

Since the shear and convergence have the same power
spectra, we also deduce that

h�� � �i�#� �
Z 1

0

d‘
2�

‘P��‘�
�
2J1�‘#�
‘#

�
2
: (103)

An interesting statistic arises when one uses a compen-
sated filter, that is

Z
#0U�#0; #�d#0 � 0: (104)

With such a filter, any constant mass density related to the
integration constant �0 in Eq. (88) will not bias the statis-
tics. It is usual to define the aperture mass as
083512
Map �
Z

d2�0U�#0; #����0�: (105)

Interestingly, it can be expressed in terms of the tangential
shear as

Map �
Z

d2�0Q�#0; #��t��
0� (106)

with the filter Q defined as

Q�#0; #� �
2

#2

Z
d#0#0U�#0; #� �U�#0; #�: (107)

A widely used family of filters that satisfies the condition
(104) is

U�#0; #� �
3

�#2

�
1 �

�
#0

#

�
2
��

1 � 3
�
#0

#

�
2
�

(108)

for which the aperture mass has a variance given by

hM2
api�#� �

288

�

Z 1

0
d‘‘P��‘�

�
J4�‘#�

‘2#2

�
2
: (109)

All these 2-point statistics derive from the same power
spectrum and are thus not independent.

D. Numerical integration

The computation of the shear power spectrum as well as
the 2-point statistics have been implemented in a numerical
code that can be used both with general relativity and
scalar-tensor theories. It is based on the Boltzmann code
described in Ref. [9], implemented to study the evolution
of the background and of the linear perturbations for a
general scalar-tensor theory specified either in Jordan or
Einstein frame (see Appendix B). In particular, this code
allows the study of the magnitude-redshift relation and of
the CMB angular power spectrum. It integrates the
Einstein and fluid perturbation equations forward in time
(toward the future) and sets the initial conditions on the
scalar field by a shooting method in order for the dark
energy-density parameter and the Newton constant to
agree with their value today (see Ref. [9] for details).

The CMB code gives access to the value of the pertur-
bation variables, among which the two gravitational poten-
tials 9 and  and the density perturbation, as a function of
the wave numbers k and the redshift z. Therefore we do not
need, as is usually done in the Newtonian regime, to
decompose the density perturbation in an initial random
field and a growth factor. In such a case, the lensing
observables depend on the normalization and shape of
the transfer function [43], that is on �8 and %. In our
approach, all observables are CMB-normalized at ‘ �
111, according to Ref. [44], and we need not introduce
these parameters. The CMB code also gives the value of
3�z�, from which we can derive the angular distances. This
implies that the lensing plug-in code (see Fig. 1) we
developed does not need to solve any evolution equations.
-9



CMB code:
input: Ωr,0, m ,0 , ϕ ,0, h, etc.; Pin (κ)

Background: χ(z )
Perturbations: δm (k , z ), ϕ(k , z ), φ(k , z ), ψ(k , z )

Linear to nonlinear mapping: {kN L , PN L}

procedure:   Smith et al. 2003
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FIG. 1 (color online). General description of the computation of the lensing observables. The input are generated by a CMB code
that deals with scalar-tensor theories and extended quintessence [9]. Once the linear to nonlinear mapping has been applied, we can
compute the shear power spectrum and then all the lensing observables with the same normalization as used for the CMB observables.
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It only integrates the deflecting potential along the lines of
sight accounting for the source distribution, according to
the two-dimensional projection described in Sec. IVA and
deal with the linear to nonlinear mapping (see Sec. VI B 2).

We are interested in angular scales ranging from 1 arc-
min to 2 degrees and we considers multipoles in the range
[‘min � 2,‘max � 21 600]. We thus have to consider co-
moving wave numbers in the range [kmin; kmax] with

kmin � ‘min=3�zmax� � 10�3 hMpc�1 (110)

and we set the cutoff kmax � ‘max=3�zmin� to 10 hMpc�1.
Since some of the scales are in the nonlinear regime, we
carry out the linear to nonlinear mapping applying the
procedure of Ref. [45]. It has to be stressed that these
mappings have been calibrated on numerical simulations
assuming that gravity was described by general relativity
and �CDM cosmological models. The validity of this
hypothesis will call for further checking, but it is to be
expected that the scalar field does not affect too much the
clustering of the matter during the nonlinear phase and that
083512
its main effect is through its contribution to the expansion
of the Universe, as we will discuss later.

We assume a redshift sources distribution parametrized
as

p�z� � %�1

�
1 	 �
�

�
�
zs

�
z
zs

�
�

exp���z=zs�
��

with �zs; �; �� � �0:8; 2; 1:5� consistently with a limited
magnitude IAB � 24:5 (for details concerning this choice,
see Ref. [46]).

E. Nonlinear power spectrum

The computation of weak-lensing observables requires
us to determine the power spectrum in the nonlinear
regime.

For �CDM models, various mappings have been pro-
posed in the literature. Assuming stable clustering, it was
argued [47,48] that the effects of nonlinear evolution can
be described by a mapping between the linear and non-
linear power spectra involving a universal function fnl.
-10
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Introducing � as

�2�k� � 4�k3P�k�; (111)

the nonlinear power spectrum is obtained by

�2
nl�knl� � fnl��

2�k�� (112)

where the wave number knl is related to the linear wave
number k by

k3 � �1 	 �2
nl�knl��

�1k3
nl: (113)

The function fnl is determined by N-body simulations and
it depends on the value of the cosmological parameters. It
has also been shown [48] that at large values of its argu-
ment this function behaves as

fnl�x� �
�
D
a

�
�3
x3=2; (114)

D being the linear growth factor [see Eq. (118)]. Because
of this simpler asymptotic analytic form, we will use the
relations (111)–(113) for general analytic arguments.
Numerically, we have however implemented the more
realistic mapping described in Ref. [45]. Figure 2 depicts
the linear and nonlinear power spectra of the density
perturbation computed for the fiducial �CDM model.

As we have already stressed, all the mappings have to be
calibrated on N-body simulations. No full N-body simula-
tions for quintessence models and have been performed so
far (see however Ref. [49] where N-body simulations with
a modified expansion rate to take into account quintessence
have been investigated). However, as it has been shown in
Ref. [50], the shape of the linear power spectrum for sub-
Hubble modes, but not its absolute amplitude, of quintes-
sence models is very similar to the one of a pure �CDM.
Hence we assume that these mapping also apply to quin-
tessence models. In particular, it was argued [51] that the
mapping (111)–(113) was reasonably accurate for effec-
tive quintessence models, at least at low redshift. In par-
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FIG. 2 (color online). Matter power spectrum Pm�k� for a flat
fiducial �CDM model defined by "� � 0:7, "bh

2 � 0:019,
h � 0:72. Linear (solid line) and nonlinear (dashed line) regimes
are presented.
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ticular, we assume that the nonlinear regime always
reaches a stable clustering regime. Notice that various
mappings lead to results that agree only at a 5%–10% level
(see e.g. Ref. [27]).

As far as scalar-tensor theories are concerned, as for
quintessence, there are no N-body simulations to calibrate
the mapping. We have to assume that the mapping [45]
calibrated on pure �CDM still hold. It can be argued that
we do not expect the change of the theory of gravity to
drastically affect this mapping as long as strong field
effects, such as spontaneous scalarization [21], appear.
Even though, we emphasize that the mapping procedure
has to be adapted in the case of scalar-tensor theories, as it
will be discussed in see Sec. VI B 2.
V. WEAK LENSING IN GENERAL RELATIVITY

A. Generalities

When gravity is described by general relativity, then at
late time matter dominates and the anisotropic stresses are
negligible so that the two gravitational potentials are equal

9 �  ; (115)

consequently the deflecting potential is simply given by

& � 29: (116)

On sub-Hubble scales, the gravitational potential is related
to the matter density perturbation by the Poisson equation
which implies that

�eff � �m; (117)

where �m � ��m=�m is the matter density contrast. Let us
stress that on large scales, one must take into account the
radiation anisotropic stress which will induce a departure
from this equality (see Fig. 13). Starting from an initial
time ai, where the modes of interest are sub-Hubble, one
can decompose the density field as

�m�k; a� � D�a���k; ai� � D�a��i; (118)

whereD�a� is the growth factor. It follows that Peff�k; a� �
D2�a�P��k�. Its equation of evolution, in the Newtonian
regime, is given by

/D	H _D� 4�G�ma2D � 0: (119)

It can be rewritten by using the redshift as variable as

D00 	

�
H0

H
�

1

1 	 z

�
D0 �

3

2
"m;0�1 	 z�D � 0; (120)

setting a0 � 1 and where a prime refers to a derivative with
respect to z. This equation has two solutions, a decaying
mode D / H and a growing mode

D�a� �
5

2

H�a�
H0

"m;0

Z a

aeq

d~a

�~aE�~a��3
; (121)

where aeq settles the matter-radiation equivalence. The
-11
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convergence power spectrum takes the simplified form

P��‘��
9H4

0

4
"2
m;0

Z �
g�3�
a�3�

�
2
P�

�
‘

SK�3�

�
D2�3�d3: (122)
B. �CDM

The power spectrum (122) depends on the cosmological
parameters through the growth function and the angular
distances and on the normalization of the power spectrum.
As emphasized above, we do not perform such a splitting
and use the complete expression (95) so that our results
depend on the cosmological parameters and the primordial
spectrum are CMB-normalized.

As a reference model, we choose a flat �CDM with

"�;0 � 0:7; "m;0 � 0:3;

"b;0 � 0:037; h � 0:72:
(123)

Figure 3 depicts the convergence power spectrum, the
aperture mass variance, and shear variance for this �CDM
model. We will try to quantify the deviation from its
prediction on various models.

C. Quintessence: Effect of the potential

As a first generalization to the previous �CDM model
we consider a class of quintessence models (QCDM) with
runaway potentials of the form
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we consider three QCDM models with potential (124) with m � 6;
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V�’� � M4’�m: (124)

In the slow-roll regime, the quintessence field acts as a
repulsive matter component that replaces the cosmological
constant. Gravity is still described by general relativity and
the main effects on the lensing observables arise from the
modification of the Friedman equations, and thus of the
angular distances and of the growth factor of the density
field.

To estimate the amplitude of the effects, let us follow
Ref. [23] and assume that the sources are located at a
redshift zs so that the source distribution is simply given
by p�3����3�3s� and thus g�3��SK�3s�3�=SK�3s�.
The function

W �3;3s� �
SK�3�SK�3s � 3�
SK�3s�a�3�

(125)

is peaked around 3s=2 so that it can be approximated by

W 2 ’ W 2
1=2��3� 31=2� (126)

with 31=2 ’ 3s=2 and

W 2
1=2 �

Z 3s

0
W 2�3; 3s�d3: (127)

Plugging this approximation into Eq. (95) allows us to
estimate the shear power spectrum as
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a, as a function of the scale factor a, normalized at high redshift;
ance, 3�z�, and (right) on the geometrical factor, q�z�. In all plots,
8; 11 from top to bottom.
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FIG. 5 (color online). Ratio of the three dimensional matter
power spectrum Pm�k� for two quintessence models for m � 6
and m � 11 to the matter power spectrum for the reference
�CDM model (123).

TABLE II. Quintessence models (QCDM): background ef-
fects. (Upper table) Maximum relative deviation on the comov-
ing radial distance 3�z�, geometrical factor q�z�, and linear
growth factor D�z�, from the fiducial �CDM model for three
models with inverse power law potential, Eq. (124). (Lower
table) Quantities used to estimate the amplitude of the effects
on the weak-lensing observable, according to Eq. (131). The
amplitude of the matter power spectrum P0 is evaluated at k �
1 hMpc�1. For the �CDM model z1=2 ’ 0:51, for all the quin-
tessence models z1=2 ’ 0:48.

m �3�z��%� �q�z��%� �D�z��%�a

6 �17 at �z � 3:4� �20 at �z � 1:4� �42
8 �19 at �z � 3:9� �23 at �z � 1:6� �51
11 �21 at �z � 4:7� �26 at �z � 1:7� �61

m 31=2=3
�
1=2 W 2

1=2=�W
2
1=2�

� �D1=2=D0�=�. . .�
� P0=P

�
0

6 0.853 0.611 1.052 0.275
8 0.844 0.580 1.056 0.189
11 0.835 0.549 1.060 0.113

aEvaluated at z � 0.
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P��‘� �
9

4
H4

0"
2
m;0

�
W 1=2

SK�31=2�

�
2
P
�

‘
SK�31=2�

; 31=2

�
: (128)

Assuming that the initial power spectrum takes the form

P��k� � Akn; (129)

we get that in the linear regime Plin � D2Akn and Pnl �

a3Ak3�3	n�=2 so that Eqs. (111)–(113) imply that

k� �k2
nl=Aa

2�1=�5	n�: (130)

As long as we are considering modes in the linear regime,
the effect of the quintessence field is mainly encoded in the
growth function. We get

PQ�
P�
�

jlin�

0
@W Q

1=2

W �
1=2

1
A2

0
@S�

K�3
�
1=2�

SQK�3
Q
1=2�

�
2	n

0
@DQ

1=2=D
Q
0

D�
1=2=D

�
0

1
A2
PQ0
P�

0

;

(131)

where D1=2 and D0 are the values of the growth factor at
3 � 31=2 and 30 respectively and P0 is the value of the
matter power spectrum today, evaluated at k � 1 hMpc�1.

In the nonlinear regime, the matter power spectra are not
distorted in the same way because the same value of knl

does not correspond to the same k. It follows that

PQ�
P�
�

jnl �

0
@W Q

1=2

W �
1=2

1
A2

0
@S�

K�3
�
1=2�

SQK�3
Q
1=2�

1
A2

0
@z�1=2
zQ1=2

1
A3

0
@PQ0
P�

0

1
A3=�5	n�

(132)

if the spectral index is the same in both models. The
relations (131) and (132) show that on small scales the
shape of the matter power spectrum is modified in quin-
tessence models.

As can be seen on Fig. 4, matter perturbations grow
more slowly than in a �CDM model. The CMB normal-
ization implies that at lower redshift the amplitude of
density perturbations are smaller in quintessence models.
Thus, a given scale enters the nonlinear regime later than in
a �CDM. This time delay accounts for the sharp modifi-
cation of the spectrum at small wave numbers, see Fig. 5.
Table II gives the order of magnitude of the expected
 10  100
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 1  10  100

〈γ
2 (θ

)〉
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the multipole ‘ and the 2-point statistics of the shear field, as a
t) the shear variance for the reference �CDM model (123) (solid/
ed/dotted line; m � 11, long-dashed-dotted/short-dashed-dotted
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TABLE III. Quintessence models (QCDM): absolute values of the convergence power spectrum P��‘�, aperture mass variance
hM2

ap�#�i, and shear variance h�2�#�i at two angular scales in the linear and nonlinear regimes. For the small scales we give both the
value in the linear and nonlinear regime (values within parenthesis). Each model is labeled by QCDMm, where m defines the inverse
power law potential, Eq. (124).

Model P��‘� hM2
ap�#�i h�2�#�i

‘ � 180a ‘ � 7200a # � 2� # � 30 # � 2� # � 30

�CDM 7  10�9 2  10�12�4  10�11� 3  10�6 4  10�6�5  10�5� 8  10�6 1  10�4�3  10�4�

QCDM6 1  10�9 4  10�13�6  10�12� 7  10�7 6  10�7�6  10�6� 2  10�6 2  10�5�4  10�5�

QCDM8 9  10�10 2  10�13�3  10�12� 5  10�7 4  10�7�3  10�6� 1  10�6 1  10�5�2  10�5�

QCDM11 4  10�10 1  10�13�1  10�12� 3  10�7 2  10�7�1  10�6� 7  10�7 9  10�6�1  10�5�

aThe multipoles ‘ � 180; 7200 correspond to the angle # � 2�; 30, respectively.
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effects on the background quantities, and the ratios useful
to evaluate the order of magnitude of the effects on the
weak lensing observables, according to Eqs. (131) and
(132). Figure 6 illustrates the results obtained using the
CMB-lensing code, whereas Table III depicts them at two
distinct angular scales. For instance, let us concentrate of a
quintessence model with m � 6. Table III shows that the
convergence power spectrum is 80% to 85% smaller in
quintessence than in �CDM. Now, assume we normalize
the power spectra on linear scales at z � 0, it will have
implied to multiply the linear power spectrum by �7 and
the nonlinear one by �

���
7

p
. Thus, we would have found that

the nonlinear regime will differ roughly by 50% from the
�CDM. These conclusions are similar to the ones of
Ref. [23] and show that the change of spectrum between
the linear and nonlinear part of the spectrum sets strong
constraints on the time evolution of the dark energy.

VI. WEAK LENSING IN SCALAR-TENSOR
THEORIES

We now turn to the case where gravity is not described
by general relativity but by a scalar-tensor theory.

A. Newtonian regime

Before we discuss explicit models, we can try to evaluate
and discuss the expected effects on lensing observables.
For that purpose, let us first look at the perturbation equa-
tions in the Newtonian regime. We consider modes with
wavelengths smaller than the Hubble length and also as-
sume that the scalar field is light.

In the matter era and on sub-Hubble scales, the Eq. (B6)
of Appendix B reduces to

 �9 �
F;’
F
�’; (133)

so that nonminimal coupling induces an extra-contribution
to the anisotropic stress, while Eq. (B8) reduces to a
generalized Poisson equation

F�9 � 4�G��a
2�m �

F’
2

��’: (134)
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The evolution equation (B4) of the matter field takes the
form

_�m � ��V 	 3 _ (135)

and the Euler equation (B5) to

_V 	HV � �9: (136)

This set has to be completed by the Klein-Gordon equation
for the scalar field evolution

�� �U;’’a2��’ � F;’��9� 2 �: (137)

B. Effects and amplitudes

Various effects are expected. As in the case of quintes-
sence, the Friedmann equation is modified so that the
comoving radial distance 3, the geometrical function q,
and the growth of density fluctuations are modified.

Besides, there are two specific effects which do not
appear in pure quintessence models due to the modification
of Einstein equations:
(1) T
-14
he Poisson equation does not take its standard
Newtonian form so that

�eff � �m: (138)
(2) T
he two gravitational potentials are not equal any-
more so that

& � 29: (139)

By extension to the post-Newtonian formalism, we
can define the parameter �PPN in the cosmological
context by

 � �PPN9 (140)

so that & � �1 	 �PPN�z��9.
1. Linear regime

The two equations of evolution (135) and (136) can be
combined to get the evolution of the density field
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/�m 	 2H�m � �9 � 3a2� _ a�2�:: (141)

When U;’’ is much smaller than the wavelength of the
modes we consider then we can combine Eq. (133) and
(137) to get the fluctuation of the scalar field as

�’ ’ �
FF;’

F	 2F2
;’
9: (142)

In particular, this implies that

�PPN�z� � 1 �
F2
;’

F	 2F2
;’
; (143)

similarly, as obtained in Sec. II B in a noncosmological
context. Inserting Eq. (142) in the generalized Poisson
equation (134), one gets

�9 ’ 4�Gcav�a
2�m; (144)

where Gcav is defined by Eq. (26) and is indeed time
dependent. Using the Eq. (81), this equation implies that

�eff ’
1

2

Gcav�z�
Geff�0�

�1 	 �PPN�z���m ’
F0

F
�1 	 0�’���m;

(145)

where 0�’� � 2F2
;’=�2F	 3F2

;’�. Today 0�’0� is ex-
pected to be smaller than a few 10�3.

The density evolution follows an equation that is similar
to the pure Newtonian case but where the gravitational
constant has to be replaced by its time dependent value

/�m 	H _�m � 4�Gcav�a
2�m � 0: (146)

If we decompose the density field as in Eq. (118), we
obtain that the effective growth factor is

Deff ’
F0

F
�1 	 0�2D�a�; (147)

whereD is the solution of Eq. (146). Written in terms of the
redshift, it takes the form

D00 	

�
H0

H
�

1

1 	 z

�
D0 �

3

2
"m;0�1 	 z�

Gcav�z�
Geff�0�

D � 0:

(148)

It follows that the shear power spectrum takes the form

P��‘� �
9H4

0

4
"2
m;0

Z �
g�3�
a�3�

�
2



�
F0

F

�
2
�1 	 0�2D2�3�P�

�
‘

SK�3�

�
d3: (149)

It follows from this expression that we can estimate P�
by solving the background equations solely. In particular,
because of the form (144) of the Poisson equation, we do
not expect effects as the ones described in Ref. [41] on
small scales (see however Fig. 13).
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2. Remark on the linear to nonlinear mapping

The linear to nonlinear mapping procedure has to be
extended when working in scalar-tensor theory, since we
will have to deal with the scalar field perturbations. As
Eq. (95) shows, we must determine Pnl

eff . For that purpose,
we use the definition (81) to define �eff and we decompose
it as

�eff � �m 	 �X; (150)

where �X contains the contribution of the scalar field
perturbation and its derivative.

Assuming that the scalar field does not cluster, as it is the
case in quintessence, �X will not enter the nonlinear regime
so that we can assume that

�nl
X � �lin

X : (151)

In the Newtonian linear regime, Eq. (81) implies that

�lin
eff �

a=a0

3H2
0"m;0

�&lin: (152)

The output of our CMB code gives access to &lin and �lin
m

from which we can deduce �lin
eff and thus �lin

X . With this
ansatz, we get the effective perturbation in the nonlinear
regime

�nl
eff � �nl

m 	 �lin
X : (153)

It follows that

Pnl
eff�k; z� � Pnl

m�k; z� 	 Plin
X �k; z� 	 2

����������������������������������
Pnl
m�k; z�Plin

X �k; z�
q

:

(154)

When we are deeply in the Newtonian regime, but still in
the linear regime, Eq. (145) implies that �X ! �F0=F�
1��m so that

Plin
eff�k; z� ���!

�
F0

F

�
2
Plin
m �k; z�;

neglecting the contribution in 0. In fact, notice that the
ratio Plin

eff=P
lin
m evaluated today is always greater than one,

because of the nonvanishing anisotropic stress of the ra-
diation and nonminimally coupled scalar fields. In the
nonlinear regime,

Pnl
eff�k; z� ���!

� �����������������
Pnl
m�k; z�

q
	

�
F0

F
� 1

� ������������������
Plin
m �k; z�

q �
2

so that at z � 0, Pnl
eff�k� ! Pnl

m�k�, as expected from our
assumption that the scalar field does not cluster.

Hence, our ansatz amounts for an interpolation between
the super-Hubble regime where the contribution of the
scalar field perturbation cannot be neglected and the
Newtonian regime where the effective Poisson Eq. (144)
holds. Note that it assumes that the scalar field does not
enter the nonlinear regime. In fact the mapping procedure
of Ref. [45] uses a halo model and it was shown [52] that in
-15
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a spherical collapse, the scalar field does indeed not cluster
(see also Refs. [53,54]). So, we can hope this interpolation
to be justified but, for the time being, we have no possi-
bility to check it.

3. Effect on the shear power spectrum

Following the approximation of Sec. V C, we can com-
pare two models which differ only by the theory of gravity
(i.e. same quintessence potential or �CDM models).

In the linear regime, we get

PST�
PGR�

jlin �

�W ST
1=2

W GR
1=2

�
2
�S�

K�3
GR
1=2�

SSTK �3ST1=2�

�
2	n

�
F0

F�z1=2�

�
2



�DST
1=2=D

ST
0

DGR
1=2=D

GR
0

�
2 PST0
PGR0

(155)

while in the nonlinear regime we obtain

PST�
PGR�

jnl �

�W ST
1=2

W GR
1=2

�
2
�SGRK �3GR1=2�

SSTK �3ST1=2�

�
2
�

F0

F�z1=2�

�
2
�zGR1=2

zST1=2

�
3



�
PST0
PGR0

�
3=�5	n�

: (156)

The main contribution to the modification of the shear
power spectrum, and consequently on the 2-points statis-
tics, is expected to arise from the evolution of the matter
power spectrum. Because of the normalization to the CMB,
i.e. at high redshift, its amplitude evaluated today accounts
for integrated effect over a wide redshift range. Therefore it
leaves trace on the shear power spectrum, even if the
computation of the shear power spectrum involves an
10-6
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FIG. 7. Deviation from general relativity parametrized by
�PPN�z� � 1 for several nonminimally coupled models with
Ratra-Peebles potential, Eq. (124), as a function of redshift z.
Solid line (long dashed line): nonminimal coupling, & � 	0:001
and m � 6�m � 11� [potential defined in Jordan frame]. Short
dashed line (dotted line): ‘‘runaway dilaton,’’ with � � 4; B �
0:5, and m � 6 �m � 11� [potential defined in Einstein frame].
Horizontal lines: level of the upper bounds measured by gravi-
tational experiment on Solar System scales (z� 0).
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integration just up to the source redshift zs. Instead, as
for quantities depending on the redshift range �0; zs�, even-
tually evaluated at z1=2, their contribution can become
relevant only if z1=2 is sufficiently high. In particular, for
z1=2 ’ 0:5 the deviation from general relativity described
by F0=F1=2 is negligible (see Fig. 7), hence the peculiar
effects of scalar-tensor theories are ultimately encoded in
the amplitude of the matter power spectrum evaluated
today. However, notice that, accounting for sources at
higher redshift, where the deviations from general relativ-
ity could become significant, and looking at lenses at low
redshift, one should detect deviation of order 10% on
weak-lensing observables, peculiar of a scalar-tensor
theory.
VII. INVESTIGATION OF TWO EXPLICIT
MODELS

We consider two test models to discuss in more detail the
amplitude of scalar-tensor theories on lensing observa-
tions. Indeed, scalar-tensor theories have two free func-
tions that need to be specified, which open a parameter
space much larger than a standard �CDM. Any quintes-
sence model is specified by its potential U�’�. To embed it
in scalar-tensor theories, one has two possibilities: (1) as-
sume that the potential in Jordan frame U�’� is the quin-
tessence potential and choose a coupling function F�’� or
(2) assume that the potential in Einstein frame V�’�� is the
quintessence potential and choose a coupling function
��’��. The second possibility is probably more secure
from a theoretical point of view since it amounts to specify
the property of the true spin-0 degree of freedom of the
theory.

We will however investigate the two possibilities. We
first consider in Sec. VII A the case of a nonminimally
coupled scalar field and in Sec. VII B the case of scalar-
tensor models that incorporate attraction toward general
relativity.

A. Nonminimally coupled case

We consider the simplest model we can think of for
which the coupling of the scalar field to gravity is de-
scribed by the function

F�’� � 1 	 &’2: (157)

The constraint (25) implies that

j&’0j< 0:55  10�3: (158)

Generically [9], ’0 �O�1� today so that this constraints
implies that

j&j & 0:5  10�3: (159)

In this class of models, all deviations from general relativ-
ity will scale like & so that we expect �P�=P� �O�&�, that
is very small effects.
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1. &�CDM: Effect of the coupling

To quantify the effect of this coupling, we first assume
that ’ has no potential and that there exists a cosmological
constant.

At this point, we should stress that there is no unique
way of defining a cosmological constant in scalar-tensor
theories. Either one adds this constant in Jordan frame, in
which case the associated energy density is constant. But,
from Eq. (8), this induces a potential for the true spin-0
degrees of freedom of the theory. On the other hand, one
could argue that imposing a constant potential in Einstein
frame lets the scalar field massless hence generalizing a
constant potential. But it will not correspond to a constant
energy density in the physical (Jordan) frame. Let us also
mention that adding a cosmological constant in Jordan
frame modifies the potential as U ! U	 �, correspond-
ing to the change V ! V 	 �A4=2. It follows that the
spin-0 degrees of freedom can remain massless only if

V 00�’�� 	 2�A4�’���4�2 	 �� � 0:

We have considered various models withU�’� � � and
with the constraint "� � 0:7 for various values of &,
typically ranging from �0:005 to 0.1. None of them ex-
hibits any departure from the standard �CDM reference
model (123), as expected from our general arguments.

2. Extended quintessence

We now take into account both effects of a nonminimal
coupling and of a runaway potential in Jordan frame. We
consider models with m � 6; 11 and & �
10�2; 10�3; 10�4;�5  10�3. We will refer to these mod-
els by the label EQm� &n, where m stands for the ex-
ponent of the runaway potential and n for the value of the
TABLE IV. Extended quintessence models: back
ing minimally coupled (QCDM) models (accordi
EQm� &=DNn, the number m defining the inv
standing for the (quadratic) nonminimal coupli
Damour-Nordvedt type coupling in Einstein fra
namely, the couplings parameters (see text). For
z1=2 ’ 0:49 and z1=2 ’ 0:47, respectively; otherwi

Model 31=2=3
Q
1=2 W 2

1=2=�W
2
1=2�

Q

EQ6 � &1 1.021 1.031
EQ6 � &2 1.000 0.994
EQ6 � &3 1.000 0.999
EQ6 � &4 1.031 0.011
EQ6 � DN4 1.005 1.055
EQ6 � DN5 1.000 1.002
EQ11 � &1 1.005 1.066
EQ11 � &2 1.000 0.989
EQ11 � &3 1.000 0.999
EQ11 � &4 1.029 1.116
EQ11 � DN4 1.000 1.003
EQ11 � DN5 1.000 1.000
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coupling (n � 1; . . . ; 4 for & � 10�2 . . . � 5  10�3,
respectively).

As expected, the main contribution to the deviation on
the shear power spectrum and consequently on the 2-points
statistics come from the amplitude of the matter power
spectrum evaluated today. The relative differences occur-
ring in the (comoving) angular distance, in the window
function and in the growth factor at z � z1=2 ’ 0:5 are
negligible. Notably, the evolution of the coupling function
F�’� is negligible. The scaling in & is obvious (see
Tables IV and V).

As can be shown on Fig. 8 we obtain an effect of order
20% for & � 0:01, a value excluded by Solar System
constraints, see Fig. 7. For & � 10�3, our results agree
with those of Ref. [31]. They argue that, taking into ac-
count the different normalization of the scalar field com-
pared to our work,

�P�=P� ��16&’2
0;

hence leading to a �2% effect on the shear power spectrum
once the constraints (158) and (159) are taken into account.
In general, since the effect scales like &, we can conclude
that for values compatible with Solar System constraints,
the amplitude of the effects will be smaller than a percent.
Such a low value makes these models, in practice, indis-
tinguishable from their corresponding quintessence
models.

B. Attraction toward general relativity

1. Mechanism

Another interesting class of models is the one in which
the scalar-tensor theory is attracted toward general relativ-
ity today. This feature is better described in Einstein frame.
ground effects with respect to the correspond-
ng to Sec. VI B 3). The models are labeled by
erse power law potential, Eq. (124), &=DN
ng in Jordan frame or for the exponential
me, and n singling out the specific model,
the models EQ6 � &4 and EQ11 � &1 it is

se it is z1=2 ’ 0:48.

�D1=2=D0�=�� � ��
Q P0=P

Q
0 F0=F1=2

1.006 1.114 1.0387
1.000 1.008 1.0032
1.000 1.005 1.0003
0.989 0.9982 0.0985
1.020 2.101 1.0081
1.004 1.135 1.0015
1.044 1.211 1.0807
1.002 1.006 1.0060
1.000 1.000 1.0006
0.980 0.994 0.0975
1.027 1.727 1.0026
1.005 1.099 1.0004
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FIG. 8 (color online). Comparison between an extended quintessence model with & � 10�2 and m � 6 and a quintessence model
with same potential. (left) convergence power spectrum ��P��EQ�&=�P��QCDM � 1�, (middle) aperture mass variance and (right) and
shear variance. Solid (long dashed): linear (nonlinear) regime for Ratra-Peebles potential with m � 6. Short dashed (dotted): linear
(nonlinear) regime for Ratra-Peebles potential with m � 11.

CARLO SCHIMD, JEAN-PHILIPPE UZAN, AND ALAIN RIAZUELO PHYSICAL REVIEW D 71, 083512 (2005)
The Klein-Gordon equation [cf. Equation (A9)] can be
rewritten in terms of the new variable

p � lna� (160)

as

2�1 	 v�’���

3 � ’02
�

’00
� 	 �1 � w	 2v�’���’0

�

� ���’���1 � 3w� � v�’��
d lnV
d’�

; (161)

where a prime temporarily refers to a derivative with
respect to p, w refers to the equation of state of all matter
fields but ’�, and where we have introduced the reduced
potential

v�’�� �
V�’��

4�G���

: (162)
TABLE V. Extended quintessence models: deviation on the co
�hM2

ap�#�i, and shear variance �h�2�#�i, from the corresponding min
is evaluated at two angular scales and the effects of the linear and non
second and third columns, deviation from general relativity parame
Table IV.

Model ��PPN � 1�  10�3 �P��‘��%�

z � 0a z � 1 ‘ � 180b ‘ �

EQ6 � &1 140 105 20 27
EQ6 � &2 1.6 1.0 1.8 2.2
EQ6 � &3 1:5  10�2 0 0.7 0.7
EQ6 � &4 31 20 4 8
EQ6 � DN4 5.3 125 107 133
EQ6 � DN5 0.27 0.61 14 &

EQ11 � &1 312 293 27 32
EQ11 � &2 4.4 3.3 1.8 3.2
EQ11 � &3 4:2  10�2 0 0.1 0.3
EQ11 � &4 67 51 4(18) 11
EQ11 � DN4 0.32 0.83 59 77
EQ11 � DN5 1:6  10�2 4:9  10�2 9 11

aThe old Solar System bound is j�PPN � 1j & 2  10�3. The new C
b‘ � 180 7200 correspond to the angle # � 2�; 30 respectively.
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The coupling function A�’�� is decomposed as

A�’�� � ea�’�� (163)

so that � � da=d’�.
The mechanism of attraction is then well-illustrated by

the original model [16] in which the scalar field potential is
flat and where a�’�� is quadratic. Setting a�’�� � �’2

�=2,
the Klein-Gordon equation takes the form of the equation
of motion of a particle with velocity-dependent inertial
mass, m�’�� � 2=�3 � ’02

� �, subject to a damping force
��1 � w�’0

� in a potential, �1 � 3w�a�’��,

2

3 � ’02
�

’00
� 	 �1 � w�’0

� � ���1 � 3w�’�: (164)

The positivity of the energy implies that m�’��> 0.
During the radiation era w � 1=3 and the field is de-
coupled from the potential and will tend to a constant value
nvergence power spectrum �P��‘�, aperture mass variance
imally coupled models (QCDM). Every weak-lensing observable
linear regime (values within parenthesis) are accounted for. In the
trized by �PPN�z� � 1, Eq. (17), is quoted. Model labeled as in

�hM2
ap�#�i�%� �h�2�#�i�%�

7200b # � 2� # � 30 # � 2� # � 30

(16) 18 27 (18) 12 19 (21)
(0.8) & 2 �2�1� 1 & 2�& 1�
(0.7) 0.6 & 0:7�& 0:7� <0:6 & 0:7�0:8�
(2) 4 & 8�& 2� 4�2� 6 (2)
(165) 98 130 (176) 79 110 (154)

16�19� 13 16 (19) 11 14 (19)
(66) 18 63 (35) 4 33 (31)
(0.3) & 2 3�& 1� 0 & 2�& 1�
��0:1� 0.1 & 0:2��0:1� <0:1 & 0:2�0�
(15) 5 (20) 11 (14) 0�26� 7 (17)

(129) 54 75 (133) 41 61 (88)
(17) 8 11 (17) 6 9 (14)

assini bound is �PPN � 1 � �2:1 � 2:3�  10�5.
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’�;R, whatever its initial velocity. During the matter era,
the evolution of ’� is the one of a damped oscillator that
starts with a vanishing initial velocity. ’� will thus move
toward the minimum of a�’�� where � � 0, if �> 0. That
is the scalar-tensor theory will become infinitely close to
general relativity.

2. Massless scalar field models

We first investigate a class of models with a vanishing
potential and a quadratic coupling defined in the Einstein
frame, as in the original Ref. [16]. The coupling function
takes the form

a�’�� � am 	
1

2
��’� � ’m�

2; (165)

where ’m is the value of the field at minimum. The
functions � and � defined in Eqs. (13) and (14) are thus
given by

��’�� � ��’� � ’m�; ��’�� � �: (166)

The coupling (165) can be rewritten as

a�’�� � a0 	 �0�’� � ’�
0� 	

1

2
��’� � ’0�

2; (167)

where ’0 is the value of ’� today. Without loss of general-
ity, a redefinition of units allows to reduce to this form

a�’�� �
1

2
�’2

�: (168)

The post-Newtonian constraints (23) and (24) imply that

�2
0< 10�5; �8:5 10�4<�2

0�1	�0�< 1:5 10�4:

(169)

A detailed analysis [17] of the primordial nucleosynthesis
in this particular model also gives constraints on ��0; ��.

During the matter era, assuming ’02
� � 3, the Klein-

Gordon equation simplifies to

2

3
’00

� 	 ’0
� 	 �’� � 0: (170)

According to the value of �, it has two different kinds of
-2.0

-1.0

 0.0

 1.0

 2.0

 0  5  10  15  20

(1
+

z *
)-3

/4
ϕ *

(z
*)

 ×
10

9

ln(1+z*)

FIG. 9. Evolution of the scalar field in Einstein frame in a model
102). We compare the case of a vanishing potential (solid) and a co
period of the oscillation is compatible with the analytic result, as can b
factor �1 	 z��

3=4.
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solutions. For �< 3=8, that is for a small curvature of the
coupling,

’��z�� � A	�1 	 z��3�1	r�=4 	 A��1 	 z��3�1�r�=4; (171)

where we have set r �
���������������������
1 � 8�=3

p
. The solution compat-

ible with the bound (169) is thus given by

’��z�� � ’0�1 	 z��
3�1�r�=4: (172)

For �> 3=8, we have damped oscillations around the
minimum of a�’��

’��z�� � �1 	 z��
3=4

�
A cos

�
3

4
r ln�1 	 z��

�

	 B sin
�
3

4
r ln�1 	 z��

��
: (173)

In this situation, Gcav may be oscillating during the matter
era. In the radiation era, the solution for the scalar field can
be shown [16] to behave as

’� � �
���
3

p
arctanh

��������������������������������
1 � A�1 	 z��2

q
	 B: (174)

In Fig. 9, we show that the numerically computed evo-
lution of the scalar field fits very well the previous analytic
solutions. Interestingly, the models considered in Fig. 9 are
compatible with nucleosynthesis and Solar System bounds.
We can check that the oscillations of the scalar field do not
leave any imprint on both matter and CMB angular power
spectra.

Figure 10 depicts the shear power spectrum for a model
with a massless dilaton with quadratic coupling (165) with
��2

0; �� � �10�4; 0:1�. The scalar field is attracted toward
the minimum of the coupling very efficiently so that the
model can hardly be differentiated from the analogous
model in general relativity. We emphasize this class of
models, which have also been constrained by BBN [17],
do not account for the late acceleration of the Universe.
Thus, we have compared them to a standard cold dark
matter model with � � 0.

Note that adding a constant potential, that is a cosmo-
logical constant defined in Einstein frame, leaves the dila-
-1.0

 0.0

 1.0

 2.0

 3.0

 4.0

 5.0

 1  10

ϕ *
(z

*)
 ×

10
7

(1+z*)

of massless dilaton with a quadratic coupling (�0 � 10�4, � �
nstant potential (dashed). The solutions differ only recently. The
e seen on the left plot where ’� has been divided by the damping
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FIG. 10 (color online). Relative deviation �P�=�P��SCDM � 1�
from a SCDM model (� � 0) on the convergence power spec-
trum of the massless scalar fields models, with quadratic cou-
pling with ��2

0; �� � �10�4; 0:1�, as a function of the multipole
‘. Linear (solid) and nonlinear (dashed) regimes are presented.
The field is attracted rapidly toward the minimum of the cou-
pling function so that the model does not differ from a SCDM by
more than 0.1%.

CARLO SCHIMD, JEAN-PHILIPPE UZAN, AND ALAIN RIAZUELO PHYSICAL REVIEW D 71, 083512 (2005)
ton massless and does not affect its dynamics apart from at
very small redshift (see Fig. 9).

As for the nonminimal quadratic model, this class of
model will not leave any significant signature on lensing
observables.

3. Extended quintessence

In the previous models, the scalar field accounts for a
new interaction but not for the acceleration of the Universe
that was driven by a pure cosmological constant.

In the context of quintessence, extended quintessence
models have been widely considered. In particular, it was
realized [14] that scalar-tensor quintessence models with
attraction toward general relativity can be constructed.
This is the case, for instance, when quintessence is con-
structed as a runaway dilaton [19,20]. In this case, the
coupling function typically reduces to

��’�� � �Be��’� (175)

and the potential takes the form

V�’�� � M4
�’�m

� : (176)
 1000

 10000

 0.001  0.01  0.1  1

a = (1+z)-1

QCDM-11
EQ11-ξ1

QCDM-6 
EQ6-ξ1 

FIG. 11 (color online). Ratio D�a�=a as a function of the scale f
models with quadratic (& � 	0:01, left panel) and exponential co
minimally coupled models. Notice that the potential are defined in
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During the radiation era, the coupling is not effective and
the scalar field evolution will get its standard attractor
solution. In the matter era, the field will start by slow
rolling. If we assume it is always slow-rolling and that it
explains the acceleration of the Universe today, then the
Klein-Gordon equation reduces to

’0
� ’ Be��’� ; (177)

whose solution is well approximated by

e �’� � e�’0 	 B� ln�1 	 z��: (178)

It follows that

��z�� �
�0

1 � ��0 ln�1 	 z��
; (179)

where �0 � �Be��’0 and �0 � ���0. Besides, as in
quintessence, the value of ’0 is obtained from the con-
straint on "�. Note also that no clear bounds from BBN
but the general ones (31) have been inferred. Another
constraint on ’0

0 arises from the bounds on the time varia-
tion of the gravitational constant.

To illustrate this scenario, we consider four flat quintes-
sence models with "’;0 � 0:7, runaway potential (176)
with m � 6; 11 and
(1) B
 1000

 10000

actor a
upling
differen
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� 0:5, � � 4, labeled by DN4;

(2) B
 � 0:1, � � 4, labeled by DN5.
The two choices of the coupling parameters are chosen to
satisfy the ‘‘old’’ Solar System and ‘‘new’’ Cassini con-
straints, respectively. These models are labeled by EQm�
DNn, where m defines the inverse power law potential and
n � 4; 5. We have to stress that the deviations on BBN
constraints for such a class of models need to be studied.

We compare each model with its related quintessence
model. Figure 11 depicts the effect of the coupling on the
growth of density perturbations. As can be shown on
Fig. 12, this implies effects of more than 10% on the shear
power spectrum and thus on all the 2-point statistics. On
the scales of interest, we can safely use the relations quoted
in Sec. VI B 3. Tables IV and V show that the amplitude of
the matter power spectrum evaluated today is the main
source of deviation on P�. Indeed this amplitude takes
into account the whole history of the modes since the
 0.001  0.01  0.1  1

a = (1+z)-1

QCDM-11 
EQ11-DN5
QCDM-6  
EQ6-DN5 

, normalized at high redshift, for extended quintessence
(� � 4; B � 0:1, right panel) and for the corresponding
t frames.
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FIG. 12 (color online). Comparison between a runaway dilaton model with � � 4; B � 0:1, and m � 6; 11 and a quintessence
model with same potential. (left) convergence power spectrum ��P��EQ�&=�P��QCDM � 1�, (middle) aperture mass variance and (right)
and shear variance. Solid (long dashed): linear (nonlinear) regime for Ratra-Peebles potential withm � 6. Short dashed (dotted): linear
(nonlinear) regime for Ratra-Peebles potential with m � 11.
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CMB, and, in particular, in eras where large deviations
from general relativity are now possible, see Fig. 7.
Interestingly, in the shallow universe, deviations from gen-
eral relativity are small and effect on the background
quantity around z1=2 ’ 0:5 are of the order of a couple of
percents. The comparison of the number presented in
Tables IV and V with the estimate (155) in the linear
regime agrees within a factor of a few percent.

For instance, the model labeled by EQ11 � DN5 fits the
Solar System (Cassini) constraints and lead to a deviation
of order 10% from the corresponding minimally coupled
(QCDM) model on the shear power spectrum.

Besides, there are other signatures of these models de-
scribed in Fig. 13. First, the Poisson equation differs from
its standard expression since the scalar field, which is a
dark component, contributes to the total energy density.
This implies that �eff � �m. Indeed on small scales we
have found that they are proportional [see Eq. (144)] and
that the proportionality factor is k-independent. This is not
the case on large scales anymore. This implies that the
shape of Pm and Peff will differ on small k. Lensing is
sensitive to Peff while galaxy catalog may determine Pm.
This effect is of order 10% and can be hoped to be detected,
as first pointed out in Ref. [55]. Second, in this model the
CMB angular power spectrum will be modified: the inte-
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FIG. 13 (color online). Other possible signatures of the runaway di
differs from the power spectrum of the metric perturbation because of
to the deflecting potential & and thus enable to measure �eff , see Eq
Eq. (B6)] that are important only on large scales, the ansiotropic str
latter is dominant by a large factor in scalar-tensor theories. (right)
data (cross) compared to the runaway dilaton model prediction assu
m � 6 (dotted line) compared to a �CDM.
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grated Sachs-Wolfe effect will be amplified and the ampli-
tude of the secondary peaks will be smaller.

Note, however, that on large angular scales Peff � Pm,
even for a pure �CDM model (Fig. 13). The reason is that
on these scales one cannot neglect the anisotropic stress of
the radiation [see Eq. (B6)]. Even if the contribution of the
scalar field involves a deviation from the usual Poisson
equation, it is not clear that this effect is not blurred by the
effect of the radiation.
VIII. DISCUSSION AND CONCLUSIONS

We have investigated the imprint of quintessence mod-
els, both in general relativity and scalar-tensor theories, on
weak-lensing observations.

For that purpose, we have derived the lensing quantities
in a way that is not restricted to general relativity but holds
for all metric theories. Then, we have developed a numeri-
cal extension to our CMB code [9] that computes the shear
and convergence statistics. This allows us to ‘‘CMB nor-
malize’’ all spectra.

We have investigated various models and reach different
conclusions:
(1) C
 0.01  0

 (h Mpc-1)

Q
EQ6-DN4
EQ6-DN5

laton m
the mo

. (81). (
ess of
The W
ming an
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oncerning quintessence models, density perturba-
tions grow more slowly than in a �CDM model.
.1  1  10
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odels. (left) The spectrum of the density perturbation Pm
dification of the Poisson equation. The lensing is sensitive
middle) The anisotropic stress has two contributions [see
the radiation and the contribution of the scalar field. The
ilkinson Microwave Anisotropy Probe (WMAP) satellite

optical depth of F � 0:16 for m � 11 (dashed line) and
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FIG. 14 (color online). CMB angular power spectra: the
WMAP data (cross line) compared to two models differing
only by their optical depth F � 0 (solid line) and F � 0:16
(dashed line). This shows the influence of the reionization
when one chooses to normalize to the CMB temperature anisot-
ropies.

TABLE VI. Root mean square of the variance of the matter
density contrast on scale of 8 h�1Mpc today, �8, assuming
vanishing optical depth (upper) or accounting for the reioniza-
tion with optical depth F � 0:16 (lower). Dots refer to not
evaluated models.

Coupling m � 0 m � 6 m � 8 m � 11

No 0.90 0.50 0.41 0.32
&1 0.95 0.57 � � � 0.40
&2 0.95 0.50 � � � 0.32
&3 � � � 0.50 � � � 0.32
&4 0.95 0.48 � � � 0.31
DN1 0.83 � � � � � � � � �

DN2 0.83 � � � � � � � � �

DN3 0.83 � � � � � � � � �

DN4 � � � 0.71 � � � 0.40
DN5 � � � 0.53 � � � 0.33

No 1.11 0.58 0.48 0.37
&1 1.11 0.67 � � � 0.47
&2 1.11 0.58 � � � 0.37
&3 � � � 0.58 � � � 0.37
&4 1.11 0.56 � � � 0.36
DN1 0.96 � � � � � � � � �

DN2 0.96 � � � � � � � � �

DN3 0.96 � � � � � � � � �

DN4 � � � 0.82 � � � 0.46
DN5 � � � 0.62 � � � 0.39
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This implies some difference of about 10%-20% in
the linear regime that can be amplified to more than
50% in the nonlinear regime, affecting both the
shape and amplitude of the spectra. This conclusion
was reached in various previous investigations.
(2) F
or scalar-tensor gravity we have shown that, given
the constraints in the Solar System, a nonminimal
quadratic coupling in Jordan frame will not change
the prediction by more than 1%.
(3) O
n the other hand, runaway dilaton models that
incorporate attraction toward general relativity can
lead, for the same scalar field potential, to change of
order 10% in the predictions. Besides the effect on
the amplitude, there exists a differential effect which
modifies the shape of the spectra. This opens some
hope to be able track such a coupling.
To illustrate the effect on the growth of density perturba-
tions, one can look at the value of �8, see Table VI. Let us
also note that the redshift dependence of the source distri-
bution plays an important role.

There are, however, some hypotheses and limitations of
our analysis that have to be stressed. First, while inves-
tigating the nonlinear regime, we have adopted universal
mappings. These mappings are calibrated onN-body simu-
lations for �CDM models. We have argued that these
mappings should hold for quintessence models and in
scalar-tensor theories, as long as we do not enter the strong
083512
field regime. The verification of this hypothesis will require
devoted numerical simulation but we do not expect the
order of magnitude of the effects discussed here to change
drastically.

A second point to be mentioned is related to the possi-
bility that our universe has been reionized. Reionization
affects the global normalization of the CMB anisotropies
and thus our normalization of the power spectra. As an
example of its effect, Table VI compares the results for
vanishing optical depth (upper) and for an optical depth
F � 0:16. Generically it changes the value of�8 by 10% to
20%. But, it will not change the shape of the power spectra.
The effect of the reionization on the normalization can
easily been understood by looking at the CMB angular
power spectrum (Fig. 14).

Let us also emphasize an effect that may be of impor-
tance while interpreting lensing data on large scale, as
could be obtained by a wide field imager. The radiation
anisotropic stress of the radiation implies, even if gravity is
described by general relativity, that the two gravitational
potentials are not equal so that the value of the deflect-
ing potential is not equal to twice the gravitational
potential.

Weak-lensing observables combine the effects of the
background properties and the growth of the perturbations
and extend from the linear to nonlinear regime. These two
regimes are complementary mainly because of the sensi-
tivity on the time at which the modes enter the nonlinear
regime. In conclusion, weak-lensing survey appears to be a
key observation of the shallow universe to investigate the
nature of the dark energy.
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APPENDIX A: BACKGROUND EQUATIONS

We summarize the equation of the background for the
Lagrangian (1) following the general equations presented
in Ref. [9]. The metric takes the form

d s2 � a2�0���d02 	 �ijdxidxj� (A1)

and we denote the derivation with respect to the conformal
time 0 by a dot and we define the comoving Hubble
parameter by

H � _a=a: (A2)

Let us start by the conservation equations. The Klein-
Gordon equation for the scalar field takes the form

/’	 2H _’ � �a2U;’ 	 3F;’�H
2 	 _H 	 K�; (A3)

while the conservation equation of the matter fields is given
by

_�	 3H ��	 P� � 0: (A4)

We have used the notation

F;’ �
dF
d’

: (A5)

Note that the matter energy-density scales as � / a�3. This
is one of the reasons for which it is easier to solve the
system in Jordan frame since in Einstein frame �� � A4�
will behave as A�’�a���a�3

� which entangles the evolution
of the density with the one of the background.

The Einstein equations give the two Friedmann equa-
tions

3F�H 2 	 K� � 8�G�a
2�	

1

2
_’2 	 a2U� 3HF;’ _’

(A6)

2F�H 2 � _H 	 K� � 8�G�a2��	 P� 	 _’2 	 F;’’ _’2

	 F;’� /’� 2H _’�: (A7)

For completeness, let us give the analog equations in
Einstein frame where the metric takes the form

d s2� � a2
��0���d0	 �ijdxidxj�: (A8)

The Klein-Gordon equation takes the form

/’ � 	 2H � _’� � �a2
�V;’ � 4�G���’����� � 3P��

(A9)

and the Friedmann equations become

3�H 2
� 	 K� � 8�G�a2

��� 	 _’2
� 	 2Va2

�; (A10)
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3 _H � � �4�G�a
2��� 	 3P�� � 2 _’2

� 	 2Va2
�:

(A11)

The scale factors of the Jordan and Einstein metrics are
related by

a � A�’��a� (A12)

so that the two cosmic times are related by

d t � A�’��dt�; d0 � d0�: (A13)

This implies that redshifts in both frames are related by

1 	 z �
A�’��

A�’�0�
�1 	 z�� (A14)

and that the physical lengths associated with to a comoving
lengths ‘c � �1 	 z�‘phys are connected by

‘phys
� �

A�’�0�

A�’��
‘phys: (A15)

It will be convenient to decompose the energy-density of
the scalar field as

�’ � �MC 	 �F (A16)

with

�MCa
2 �

1

2
_’2 	 a2U; (A17)

�Fa
2 � �3HF;’ _’: (A18)

Then, we can define the density parameters as

"f �
8�Geff�fa

2

3H 2
; "’ �

�’a2

3FH 2
;

"K � �
K

H 2

(A19)

so that the Friedmann equations take the formX
f

"f 	 "’ 	 "K � 1: (A20)

Note that we could have defined

 " X �
8�Geff;0�Xa

2

3H 2
;  "’ �

�’a2

3F0H
2
;

 "K � �
KF

H 2F0

:

(A21)

The two sets of density parameters agree today and are
related by

 " � "F=F0: (A22)

We deduce that in a matter universe the Friedmann equa-
tion can be rewritten as
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H 2

H 2
0

�"m;0
F0

F
�1	z�	"’;0

F0

F

�’
�’;0

�1	z��2�"K;0:

(A23)

To finish, let us define the function

E�z� � �1 	 z�H �z�=H 0 (A24)

that is explicitly given by

E2 � "m;0
F0

F
�1 	 z�3 	 "’;0

F0

F

�’
�’;0

� "K;0�1 	 z�2:

(A25)

CARLO SCHIMD, JEAN-PHILIPPE UZAN, AND ALAIN RIA
APPENDIX B: PERTURBATION EQUATION

The general gauge invariant perturbation equations in
scalar-tensor that are being integrated in the CMB code
have been presented in Ref. [9]. We just summarize the
scalar mode equations in the case of a single fluid in a
universe with Euclidean spatial sections.

In Newtonian gauge, the metric takes the form

d s2 � a2�0����1 	 29�d02 	 �1 � 2 �dx2�: (B1)

The fluid velocity perturbation is decomposed as

�u
 � a��9; @kV�: (B2)

�N is the density perturbation in Newtonian gauge and we
introduce the density perturbation in comoving gauge as

� � �N � 3H �1 	 w�V; (B3)

where w � P=�.
The fluid conservation equation is given by�

�N

1 	 w

�
:
� ��V 	 3 _ � 3H

w
1 	 w

%; (B4)

while the Euler equation takes the form
083512
_V 	HV � �9�
c2
s

1 	 w
�	

w
1 	 w

�
% 	

2

3
�  �

�
;

(B5)

where c2
s � dP=d� defines the velocity of sound, % is the

entropy perturbation, and  � the anisotropic stress.
Among the four independent Einstein equations, we can

retain

 �9 � 8�G�P  �	
F’
F
�’; (B6)

2F� _ 	H9� 	 _F9 � �8�G���1 	 w�a2V 	 _’�’

	 � _F�H�F; (B7)

2F�9	� _’2�3H _F�9�3 _F _9

�8�G��a
2��8�G�P�  ��F’

�
�	3�H 2	

_F2

F2�

�
�’

	�U;’a
2	3H _’��’	 _’� _’	3

_F
F
� _F: (B8)

The Klein-Gordon equation for the evolution of the scalar
field is then given by

� /’	 2H� _’� �� 	 3 _HF;’’ �U;’’a
2��’

� � _9	 3 _ �� _’� 2a29U;’ � ���9� 2 �

	 3� / 	 3H _ 	H _9��F;’: (B9)

In all these equations, we have

_F � F;’� _’; /F � F;’’ _’2 	 F;’� /’;

�F � F;’�’:
[1] P. J. E Peebles and B. Ratra, Rev. Mod. Phys. 75, 559
(2003); V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D
9, 373 (2000); S. M. Carroll, Living Rev. Relativity 4, 1
(2001).

[2] J.-P. Uzan, N. Aghanim, and Y. Mellier, Phys. Rev. D 70,
083533 (2004).

[3] C. Wetterich, Nucl. Phys. B B302, 668 (1988); B. Ratra
and P. J. E Peebles, Phys. Rev. D 37, 3406 (1988); R. R.
Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett.
80, 1582 (1998); P. J. Steinhardt, L. Wang, and I. Zlatev,
Phys. Rev. D 59, 123504 (1999); A. R. Liddle and R. J.
Scherrer, Phys. Rev. D 59, 023509 (1999).

[4] C. Wetterich, Phys. Lett. B 561, 10 (2003).
[5] J.-P. Uzan, Rev. Mod. Phys. 75, 403 (2002); J.-P. Uzan,

AIP Conf.Proc.736:3-20 2005.
[6] J.-P. Uzan, Phys. Rev. D 59, 123510 (1999).
[7] T. Chiba, Phys. Rev. D 60, 083508 (1999); L. Amendola,

Phys. Rev. D 62, 043511 (2000); A. Riazuelo, and J.-P.
Uzan, Phys. Rev. D 62, 083506 (2000).

[8] F. Perrotta, C. Baccigalupi, and S. Matarrese, Phys. Rev. D
61, 023507 (2000).

[9] A. Riazuelo and J.-P. Uzan, Phys. Rev. D 66, 023525
(2002).

[10] X. Chen and M. Kamionkowski, Phys. Rev. D 60, 104036
(1999).

[11] C. Baccigalupi, S. Matarrese, and F. Perrotta, Phys. Rev. D
62, 123510 (2000).

[12] L. Amendola, Phys. Rev. Lett. 86, 196 (2001).
[13] R. Nagata, T.Chiba, and N. Sugiyama, Phys. Rev. D 66,

103510 (2002); 69, 083512 (2004).
-24



WEAK LENSING IN SCALAR-TENSOR THEORIES OF GRAVITY PHYSICAL REVIEW D 71, 083512 (2005)
[14] N. Bartolo and M. Pietroni, Phys. Rev. D 61, 023518
(2000).
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