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Cosmological evolution of domain wall networks
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We have studied the cosmological evolution of domain wall networks in two, three, and four spatial
dimensions using high-resolution field theory simulations. The dynamical range and number of our
simulations is larger than in previous works, but does not allow us to exclude previous hints of deviations
to the naively expected scale-invariant evolution. These results therefore suggest that the approach of
domain wall networks to linear scaling is a much slower process than that of cosmic strings, which has
been previously characterized in detail.
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I. INTRODUCTION

The cosmological consequences of primordial phase
transitions that are thought to have happened in the early
universe have been the subject of many studies in recent
years. One of these inevitable consequences is the forma-
tion of topological defects [1,2]. While most such studies
have focused on cosmic strings, domain walls can be of
interest too, although observational constraints rule them
out if their symmetry breaking scale is � � 1 MeV [3].
However, note that this constraint is on the assumption that
they are topologically stable and that their cosmological
evolution is scale invariant (i.e., that the network correla-
tion length is proportional to the horizon size, or equiv-
alently that the total area density is inversely proportional
to it).

In this work we want to highlight the fact that, in spite of
some simple analytic arguments in favor of it [4], this
hypothetical scale-invariant solution has not yet received
any strong backing from numerical simulations. In fact, in
previous simulations of cosmological domain wall evolu-
tion [5–9] some hints for deviations to a scale-invariant
evolution were found. The question we wish to address
presently is whether these deviations remain if one per-
forms larger runs.

We report on a large set of high-resolution simulations
of domain walls in two, three, and four spatial dimensions,
using the standard Press-Ryden-Spergel (PRS) algorithm
[5]. Our boxes are typically larger (hence can be evolved
for a longer dynamic range) than those in previous works.
Gains in statistical accuracy also come from performing
large numbers of runs. We highlight the differences be-
tween running a large number of small runs or a small
number of larger ones. We do find some statistical evidence
for deviations to the scale-invariant behavior, though there
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is some dependency on dimensionality and box sizes.
While 2D and 3D numerical simulations have been pre-
viously carried out (though usually in smaller boxes or
with smaller dynamic range) by a number of authors [5–9],
we have also carried out for the first time a series of 4D
simulations, which in a simple phenomenological way may
be of interest to brane world scenarios [10,11].

In what follows, we start with a brief description of the
PRS algorithm and then proceed to present some tests of
our code and the main results of our simulations. We also
compare these with the work of previous authors, and
highlight issues having to do with the slightly different
methods used in each case. Finally, we briefly comment on
the cosmological implications of our results.
II. EVOLUTION OF THE DOMAIN WALLS

Let us consider the evolution of a domain wall network
in a flat homogeneous and isotropic Friedmann-Robertson-
Walker universe with line element

ds2 � dt2 � a2�t��dx2 � dy2 � dz2�; (1)

where a�t� is the cosmological expansion factor, x, y, and z
are comoving coordinates, and t is physical time. The
dynamics of a scalar field 
 is determined by the
Lagrangian density,
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1
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� to be the generic 
4 potential
with two degenerate minima given by
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This obviously admits domain wall solutions. By varying
the action

S �
Z
dt

Z
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p
L; (4)
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with respect to 
 we obtain the field equation of motion:
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d

; (5)

where r is the Laplacian in physical coordinates and H �
�da=dt�=a is the Hubble parameter.

Following [5] we have modified the equations of motion
in such a way that the comoving thickness of the domain
walls is fixed in comoving coordinates. This has a small
impact on the large scale dynamics of the domain walls and
should not affect the quantities we want to measure for the
purpose of testing scaling properties [5], provided a mini-
mum acceptable thickness is used (this will be discussed in
Sec. III). On the other hand, it allows us to resolve the
domain walls through the network evolution. For a dis-
cussion of analogous issues in the context of cosmic
strings, see [12].

Then Eq. (5) becomes
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where � is the conformal time and � and � are constants:
� � 0 is chosen in order to have constant comoving thick-
ness and � � 3 to require that the momentum conservation
law of the wall evolution in an expanding universe is
maintained [5] In fact we have numerically tested this
with � � 2 and � � 4 and no significant differences
were found in the quantities we want to measure in this
context.

Equation (6) was integrated using a standard finite-
difference scheme, with the value of the Hubble damping
term determined by numerical integration of the
Friedmann equation:

@�
@a

�
1

H0

1

a
���������������������������������������������������������������������������������
�m0a

�1 ���0a
2 � �1��m0 ���0�

p :

(7)

The conformal time evolution of the comoving correlation
length of the network �c 	

V
A was determined. Following

[5] the comoving area A was determined by finding the
neighboring grid points where 
 has different signs and
adding in these cases an increment 
A divided by a
weighting factor corresponding to the spatial gradient of

:

A � 
A
X
!
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where ! � 1 if the link crosses the wall and ! � 0 other-
wise. Finally, the ratio between the kinetic and potential
energy of the 
 field is roughly proportional to
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: (9)

This quantity is directly related to the root-mean squared
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velocity of the domain walls which is conserved if a scaling
solution exists. We assume the initial value of 
 to be a
random variable between �
0 and �
0 and the initial
value of @
=@� to be zero. See [8] for further discussion of
these issues.

III. SIMPLE TESTS OF THE CODE

A total of several thousand simulations in two, three, and
four spatial dimensions were run for various box sizes and
other initial conditions, as further detailed below. A num-
ber of observables were used as diagnostics for scaling. We
start by describing the one that is closest to previous work
(alternatives will be described subsequently). In each run
we looked for the best fit to the power law,

�w � ���1; (10)

where �w is the wall energy density and � the conformal
time, and thereby measured the exponent �. In terms of the
comoving and physical correlation lengths of the network,
this corresponds to the following scaling laws, respec-
tively:

�c � �1��; (11)

� � t1��=3: (12)

Note that since we will be looking for deviations to the
scale-invariant behavior, which corresponds to � � 0,
these will be larger if we work in comoving coordinates,
since any deviation exponent will be larger (though mea-
surement errors could also differ).

Each fit was made considering only the reliable dynami-
cal range of the corresponding simulation. Note that in the
beginning of the simulation the initial conditions will
influence the evolution, and additionally the comoving
correlation length must be significantly larger than the
wall thickness for the evolution to be sufficiently well
defined. On the other hand, towards the end of the simula-
tion the boundary conditions may become relevant.
Because in a (nearly) scale-invariant regime the average
wall velocity is expected to be approximately constant, our
choice of the reliable period was based on the constancy of
the kinetic to potential energy ratio, as in [5].

One finds that early in the simulations this ratio displays
strong oscillations while the initial conditions are relaxed.
The relaxation time scale is typically given by the wall
thickness, which we parametrize byW0 [5]. The ratio then
stabilizes and there follows a period where it is approxi-
mately constant. Finally, towards the end of the simulations
it may start to decrease or increase slightly. Two examples
are shown in Fig. 1. We do our fits in this intermediate,
near-constant regime, selecting the appropriate interval as
follows. First, we aggressively choose a preliminary inter-
val of conformal times, and determine the corresponding
average value of the ratio. Second, if we find that at any
point within the interval the kinetic energy varies by more
-2
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FIG. 2. The collapse of spherical domain walls with different
thickness W0. All simulations have a dynamical range of 1200.
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FIG. 3 (color online). Measuring scaling exponents � for rela-
tively small 2D (top set of points) and 3D (bottom set of points)
simulations of domain wall networks. In each case 2N is the total
number of points in a box, and the error bar is the standard
deviation in an ensemble of 100 simulations.
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FIG. 1 (color online). The evolution of the ratio between the
kinetic and potential energy of the 
 field with conformal time
for 20482 simulations in the radiation (top) and matter (bottom)
epochs. The simulations are run for a dynamical range of 1024.
W0 is the wall thickness; notice that this sets the relaxation time
scale.
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than about 10%, we reduce the interval (at either end, or
both ends if necessary) until this is no longer so, and this
final range is where the fit is then done.

Let us pause at this point to comment on the influence of
the wall thickness on the dynamics of the networks.
Consider first the collapse of a single spherical domain
wall of a given size, for different values of the thickness
W0. As we can see in Fig. 2, there is a minimum acceptable
resolution of about 5 grid points (which will still yield
inaccurate time scales), with 10 grid points being adequate.
This can be confirmed by looking at network evolution,
e.g. of 2D boxes in the radiation and matter epochs as in
Fig. 1. Here the relevant figure of merit is the average ratio
between the kinetic and potential energies after the initial
period of relaxation.
083509
We have carried out series of 100 test runs with different
2D and 3D boxes, to study the effect of the box size on the
evolution of the networks. In each case we ran a number of
different simulations, calculated an exponent for each
simulation, and then computed the standard deviation for
� from the ensemble of boxes (the fit range used was the
same for all simulations with the same dynamical range).
As shown in Fig. 3, the various results for the scaling
exponent are consistent with each other, with the standard
deviation in the result decreasing as we increase the box
size. Also, as can be seen from the example in Fig. 4, the
error function distribution for each ensemble of runs is
-3
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FIG. 4 (color online). The error function distribution for an
ensemble of 100 2563 matter era runs. The thin line is the
Gaussian function distribution.

TABLE I. The measured scaling exponent � for D � 2, D � 3, a
comparison, we include both our own results and those of previous
which each set of simulations was performed. The ninth and tenth col
of the simulation (or the range until the horizon reaches half the box
conformal time dynamic range of the part of the simulation that was a
explicit numbers are not provided by authors. Whenever possible we
with NP.

Dimension Reference Box size Epoch �0

�
�0



�

2D [5] 10242 Matter 1:0 1:0 1:
2D [6] 10242 Radiation 1:0 1:0 1:
2D [7] 10242 Matter 1:0 1:0 1:
2D [9] 10242 Radiation 1:0 0:1 0:
2D [9] 10242 Matter 1:0 0:1 0:

2D This work 40962 Radiation 1:0 0:25 1:
2D This work 40962 Matter 1:0 0:25 1:
2D This work 81922 Radiation 1:0 0:25 1:
2D This work 81922 Matter 1:0 0:25 1:

3D [5] 2003 Matter 1:0 1:0 1:
3D [6] 1283 Radiation 1:0 1:0 1:
3D [7] 1283 Matter 1:0 1:0 1:
3D [9] 5123 Radiation 1:0 0:1 0:
3D [9] 5123 Matter 1:0 0:1 0:
3D [9] 40963 NP 1:0 0:08 0:

3D This work 2563 Radiation 1:0 0:25 1:
3D This work 2563 Matter 1:0 0:25 1:
3D This work 5123 Radiation 1:0 0:25 1:
3D This work 5123 Matter 1:0 0:25 1:

4D This work 1284 Radiation 0:1 0:05 1:
4D This work 1284 Matter 0:1 0:05 1:
4D This work 1284 Radiation 1:0 0:25 1:
4D This work 1284 Matter 1:0 0:25 1:
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approximately Gaussian (results for other series of runs are
qualitatively similar). Notice that the exponents differ in
2D and 3D (we shall return to this point in the main results
section).

Another simple test is to consider the evolution of the
standard deviation in conformal time. In the scaling regime
we would expect the standard deviation to be proportional
to

����
N

p
=N / �3=2, N � �Lc=��3 and Lc is the comoving

box size and � is the horizon size. If one allows for the
correction ��3=2�1���, with � calculated as before for all
the simulation fit range, we found that the standard devia-
tion was almost constant and independent of conformal
time.

IV. NUMERICAL SIMULATION RESULTS

Our results are summarized in Table I, where for com-
parison purposes we also show a number of previously
obtained results. In each case we ran a number of different
simulations, calculated an exponent for each simulation,
and then computed the standard deviation for � from the
ensemble of boxes. Note that other authors calculate errors
nd D � 4 numerical simulations of domain wall networks. For
authors. The fourth column describes the cosmological epoch in
umns show, respectively, the total conformal time dynamic range
size, for the case of simulations that extend beyond this) and the
ctually used in order to fit for the scaling exponent. In some cases
have estimated them; cases where this was impossible are marked

x
0

W0 Full range Fit range Runs Scaling exponent �

0 10 512 5:0 10 0:129� 0:015
0 5 512 10:0 5 0:12� 0:04
0 NP 512 10:0 Few 0:05� 0:08
3 3.3 1536 5:0 5 0:004� 0:018
3 3.3 1536 5:0 5 0:008� 0:014

0 10 2048 200 100 0:0448� 0:0045
0 10 2048 200 100 0:0340� 0:0046
0 10 4096 500 10 0:0285� 0:0067
0 10 4096 500 10 0:0095� 0:0035

0 10 100 2:0 9 0:08� 0:02
0 5 64 6:4 5 0:11� 0:06
0 NP 64 6:4 Few 0:08� 0:08
3 3.3 768 5:0 5 0:006� 0:013
3 3.3 768 5:0 5 0:003� 0:012
3 3.3 7680 5:0 1 0:015� 0:003

0 10 128 12:0 100 0:0811� 0:0044
0 10 128 12:0 100 0:0681� 0:0032
0 10 256 25.0 10 0:0343� 0:0023
0 10 256 25.0 10 0:0468� 0:0019

0 10 51 5:0 5 0:0727� 0:0013
0 10 51 5:0 5 0:0707� 0:0005
0 10 64 6:0 8 0:0743� 0:0025
0 10 64 6:0 8 0:0702� 0:0044
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FIG. 5. The evolution of the scaling exponent � with confor-
mal time for 100 40962 simulations in the radiation (top) and
matter (bottom) epochs. The dynamical range of each simulation
was divided into 20 equally spaced bins, and an exponent
measured for each bin and then averaged over the 100 runs.
The error bar is the standard deviation in the ensemble.
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in slightly different ways. For example, [9] first carries out
an average of all runs and then does the fit on the ‘‘aver-
aged run.’’

We quote both the full dynamic range (in conformal
time) of each simulation and also the dynamic range
corresponding to the interval that was actually used to fit
for the scaling exponent. In some cases explicit details are
not provided by previous authors and we have estimated
them, either based on indirect information or by inspection,
e.g. of figures. For the case of [9], the full dynamic range is
effectively overestimated, since early in their simulations
dissipation was introduced in order to speed up the for-
mation of the domain wall network. It is noticeable that
larger, longer simulations do not necessarily correspond to
a bigger dynamic range for the fit. Admittedly, this reflects
the fact that different authors have different criteria to
decide when they trust their simulations to be near the
scaling regime, and hence which range to use in the fits.
By comparison with previous work, our method seems to
be fairly conservative, and this is one of the reasons why
we can get quite small error bars. We have verified through
simple tests (e.g., changing the 10% cutoff to 3%) that
within error bars our results do not critically depend on it.

Our results confirm previous work in that the approach
to scaling is indeed very slow. We again find hints for
deviations from the scale-invariant (� � 0) behavior,
which are consistent with most previous results (in par-
ticular with the original runs of Press, Ryden, and Spergel
[5]). This is to be contrasted with the evolution of cosmic
string networks, where field theory simulations with com-
parable or even smaller dynamic range find a relatively
faster relaxation to scaling [12,13]. On the other hand,
notice that in the case of Garagounis and Hindmarsh [9]
no deviations from the scale-invariant behavior are found
in their standard simulations, but a one-off very large 3D
simulation does find them. We do agree with [9] that there
is not any strong evidence for a logarithmic correction to
the scaling law (which has been suggested by [5]), though
it must be kept in mind that even with our larger dynamic
ranges it would not be trivial to identify such a correction
and, more to the point, to distinguish it from a power-law
deviation to scale invariance.

Moreover, we caution that comparisons between [9] and
the other simulations are not straightforward for various
reasons. Apart from their choice of physical rather than
conformal time to present the results, they also use a
different algorithm for calculating the domain wall areas
and, more importantly, dissipation is put into the early part
of the simulations. While this has the obvious benefit of
speeding up the formation of the wall network, and hence
to some extent the approach to whatever is the late-time
attractor solution for the network, it is not clear that it will
not change the scaling properties themselves. At a quali-
tative level, we would expect that his could be the differ-
ence between their results and the others. Also, for a
083509
generic discussion of the possible pitfalls of lattice-based
simulations, see [14].

Since our simulations have a large dynamical range, one
can make the point that having a single exponent to char-
acterize the entire range might not be a very good approxi-
mation, for presumably if the network is indeed
approaching a linear scaling regime then the deviations
should be decreasing as the simulations evolve. This is
indeed a valid objection, and a simple way of studying
what happens is as follows. We have taken our sets of 100
simulations of 40962 and 2563 boxes and divided the
dynamic range of each into a number of equally spaced
bins in conformal time (20 bins for the former, 12 for the
latter). We have then calculated a scaling exponent for each
bin and run, and finally averaged over the ensemble of 100
runs for each of the bins.

The results are shown in Figs. 5 and 6. A noticeable
feature is that the error bars tend to increase as the dynamic
-5
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FIG. 6. The evolution of the scaling exponent � with confor-
mal time for 100 2563 simulations in the radiation (top) and
matter (bottom) epochs. The dynamical range of each simulation
was divided into 12 equally spaced bins, and an exponent
measured for each bin and then averaged over the 100 runs.
The error bar is the standard deviation in the ensemble.
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range increases. This is because as the Hubble volume
becomes a larger fraction of the box size there are effec-
tively less independent regions to sample from. The plots
of the 3D simulations do show some evidence of evolution
of the scaling exponent, which (if one neglects the initial
bin) starts out around �i � 0:1 and then slowly but steadily
decreases. The situation is not so simple in the 2D case.
Here in fact the exponent starts out at approximately the
same value—a consequence of the fact that the same
algorithm is being used to generate the initial conditions.
However, in the longer dynamic range available the ex-
ponent oscillates and eventually ‘‘overshoots’’ the linear
scaling regime, reaching negative exponents towards the
end of the runs. Whether this is a numerical artifact or has
some physical significance is presently unclear.

Notice that the fact that the exponent is negative (that is,
� is growing proportionally faster than time) does not
083509
necessarily mean there is any violation of causality. By
this time there can be a sufficiently large number of walls
inside a Hubble volume for such a regime to ensue, albeit
transiently. A similar situation happens with the Kibble
regime for the evolution of cosmic string networks [15,16].
There, the network must be friction dominated for such a
regime to occur. In the present context this is not the case,
though it cannot be excluded that with the increasing
dynamic range a background of small-scale features accu-
mulates which could slow the walls down. Note that mea-
suring velocities in field theory simulations is notoriously
difficult (see [12] for a discussion of the issue in the context
of cosmic string simulations).

Finally, it must be emphasized that, if the network does
indeed not have a scale-invariant solution, or if it does have
one but it takes much longer to reach it than the dynamic
range available to existing simulations, then the initial
conditions with which one starts the simulations will of
course play an important role in determining the subse-
quent evolution of the networks, and may therefore affect
the scaling exponents obtained. This also needs to be taken
into account when comparing the results obtained by dif-
ferent authors. Understanding the specific differences be-
tween the different available numerical pipelines and
possibly even carrying out independent tests with other
algorithms are clearly key issues, and deserve further
investigation.
V. DISCUSSION AND CONCLUSIONS

We have presented the results of high-resolution, long
dynamic range field theory simulations of domain wall
networks. In addition to the usual 2D and 3D numerical
simulations, we have also performed some simulations of
domain wall evolution in four spatial dimensions. These
can be relevant, in a phenomenological way, for models
with additional space-time dimensions, such as the so-
called brane world scenarios.

Our results are further evidence of the fact that these
networks have a very slow relaxation towards the expected
asymptotic linear scaling solution. Even with the longest
dynamic ranges we can presently run, we cannot find
unambiguous evidence for the onset of a linear scaling
solution. The large number and size of our simulations
has allowed us to measure scaling exponents with consid-
erably smaller error bars than in previous works, thereby
strengthening the evidence for small violations of scale
invariance in the ranges we can probe. However, one is
always limited by the finite dynamical range of our simu-
lations and it is always possible that future simulations
with a much larger dynamical range will produce results
consistent with scaling. It is also worth emphasizing that
the measured deviations tend to decrease when we increase
the box size. Box size effects, as well as possible depen-
dencies on the way initial conditions are generated, clearly
deserve further investigation.
-6
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It is interesting to try to understand what could be the
physical mechanism behind the violations to the scale
invariance. Notice that typically they are such that the field
configurations are equilibrating somewhat more slowly
than would be allowed by causality (with the exception
discussed above). As was already pointed out, measuring
velocities is a very difficult task in this type of simulation,
but we do find that our networks are relativistic. A possible
explanation for the slower evolution is that it is due to the
existence of long-range forces between the walls. How-
ever, if that was the case we would expect that the expo-
nents �, measuring the deviations from scale invariance,
would decrease as the number of spatial dimensions in-
creases: the more dimensions one has the easier it is for the
walls to unwind, and the smaller (in relative terms) will be
the effect of these forces. In fact, the opposite is the case in
our simulations, although this is compounded by the fact
that the dynamic ranges we can run are obviously smaller
for larger dimensions, so one is not really comparing like
with like.

Finally, let us point out that the existence of violations to
scale invariance can have some cosmological consequen-
ces. Consider a network formed as early as observationally
allowed, that is (roughly speaking, for the simplest stan-
dard scenarios) when the temperature of the universe (pho-
ton temperature) was T 
 0:1 MeV. At formation there
083509
would be on average one domain per horizon volume,
and that would also be the case today if the network
quickly reached the linear scaling regime. However, if
we assume that from then on �c��1�� with � � 0, then
the number of walls per horizon volume today could be as
high as about ten for allowed values of the exponent. In
other worlds, each Hubble volume could be divided into a
significant number of domains, each conceivably having
different properties. An example of such a model is de-
scribed in [17]. Although these would be important mod-
ifications to the standard domain wall scenario, we do not
expect the limits on the wall mass per unit area (or equiv-
alently to the symmetry breaking scale) to be severely
modified.
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