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Entropy of gravitationally collapsing matter in FRW universe models

Morad Amarzguioui*
Institute for Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway

Øyvind Grøn†

Oslo College, Faculty of Engineering, Cort Adelersgt. 30, 0254 Oslo, Norway
Department of Physics, University of Oslo, PO Box 1048 Blindern, 0316 Oslo, Norway

(Received 18 February 2005; published 14 April 2005)
*Electronic
†Electronic

1550-7998=20
We look at a gas of dust and investigate how its entropy evolves with time under a spherically
symmetric gravitational collapse. We treat the problem perturbatively and find that the classical
thermodynamic entropy does actually increase to first order when one allows for gravitational potential
energy to be transferred to thermal energy during the collapse. Thus, in this situation there is no need to
resort to the introduction of an intrinsic gravitational entropy in order to satisfy the second law of
thermodynamics.
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I. INTRODUCTION

Today there is broad consensus among cosmologists that
the configuration of energy in the early universe was very
homogeneous and isotropic. Observations of the tempera-
ture variations in the cosmic microwave radiation have also
shown that the Universe was in a state close to thermody-
namic equilibrium 400 000 years after Big Bang, with
relative temperature and density variations of the order
10�5 [1].

Naively, one expects the entropy in a gas to be higher the
more homogeneously distributed its density and tempera-
ture is. Thus, the early universe described above should be
one of near maximal entropy, since it differs only by a
small fraction from one of total homogeneity in density and
temperature. However, due to gravity, small inhomogene-
ities start to grow and eventually end up forming structures
such as galaxies, stars, planets, planetary clouds etc. This
evolution is in the direction of greater inhomogeneities
both in energy density and temperature, which according
to the argument above, appears to violate the second law of
thermodynamics by decreasing the entropy. Obviously,
something must be wrong with this picture, since we con-
sider the second law of thermodynamics to be a basic law
of physics and it should therefore not be violated.

A possible solution to this apparent paradox comes from
considering the quantity known as gravitational entropy.
This was introduced by R. Penrose in the 1977 in connec-
tion with his study of the properties of the initial singularity
of the universe [2–4]. It is a quantity which can be inter-
preted as an entropy intrinsic to the gravitational field. It
takes into account the attractive nature of gravity and
increases as a gas collapses under the influence of gravity.
This allows one to define a general entropy which is the
sum of the ordinary thermodynamic entropy and this new
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gravitational entropy. If the sum of the two types of entropy
increases during gravitational collapse of a gas, the second
law of thermodynamics will then be preserved.

In this paper we will show that the thermodynamic
entropy of a collapsing gas does actually increase, which
allows us to explain the collapse without introducing the
gravitational entropy. We look at a perturbed ideal gas in a
FRW background and consider changes in its classical
entropy up to first order in the energy density. We find
that the increase in the thermal energy which comes from
potential energy released in the collapse actually makes the
total thermodynamic entropy increase, even though the
temperature inhomogeneity increases.

The structure of this paper is as follows. In Sec. II we
look at a simplified model consisting of ideal particles in a
box and explain why one would expect the thermodynamic
entropy to decrease as the inhomogeneities increase. In
Sec. III we introduce a tool which we will need when
considering the growth of small inhomogeneities, namely,
cosmological perturbation theory. In Sec. IV we derive an
expression for the thermodynamic entropy of a gas in an
expanding universe. In Sec. V we specialize to spherically
symmetric collapsing gases and arrive at our main result.
Finally, Sec. VI contains a summary and our conclusion.
II. SIMPLE PICTURE: IDEAL GAS IN A BOX

In this section we look at gas confined to a box and show
that its entropy is maximal when the density is homoge-
neous and the temperature is the same everywhere.

Consider an isolated box that is divided into two cham-
bers of equal volume. Each of these contains a gas of the
same type of particles with different temperatures and
densities, as illustrated in Fig. 1. We will look at two
different scenarios: (i) when the temperature in the cham-
bers is the same but the density is different. And (ii) when
temperature is different, while the density is the same. We
then compare these to a third scenario, in which we remove
-1  2005 The American Physical Society
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FIG. 1. An isolated box consisting of two separated chambers
with particles of different temperatures and densities.
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the wall between the two chambers so that we have only
one gas with just one temperature and one density.

First, we need the expression for the entropy of an ideal
gas consisting of N ideal particles in a volume V [5],

Sideal � NkB ln
�
V
N

�
mkBT

2	 �h2

�
3=2

e5=2
�
: (1)

Let us look at the third scenario first. Let T be the
temperature in the gas and N the total amount of particles
in the box. The entropy in the box in this scenario, which
represents the totally homogeneous case, is then

S3 � NkB ln
�
KT3=2V

N

�
; (2)

where we have defined the constant

K �

�
mkBTe

5=3

2	 �h2

�
3=2

: (3)

How does the entropy differ from this in the other two,
inhomogeneous scenarios? In the first scenario the tem-
peratures are the same, but the number of particles in the
two chambers is different. The total number of particles is
conserved, so we have that N1 � N2 � N, where N1 and
N2 are the numbers of particles in the two chambers,
respectively. Furthermore, we assume that the two cham-
bers have the same volume V=2. The total entropy in the
box is then the sum of the entropies in the two chambers:

S1 � N1kB ln
�
KT3=2V
2N1

�
� N2kB ln

�
KT3=2V
2N2

�

� NkB ln
KT3=2V

2
� �N1kB lnN1 � N2kB lnN2� (4)

A transition from the totally homogeneous scenario to this
results in an entropy difference which is


S � S1 � S3 � �NkB�ln2� x lnx� �1� x� ln�1� x��;

(5)
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where we have defined x � N1=N. We can restrict x to the
interval 0< x< 1=2 without any loss of generality. It is
then a simple task to verify that 
S < 0. Thus, based on
this simple picture, we can conclude that an increase in
inhomogeneity of the density of an ideal gas leads to a
reduction of the entropy.

Now, let us look at the second scenario, where there is a
temperature difference between the two chambers which
both contain the same amount of particles, N=2. The
temperatures of the two chambers are T1 and T2, respec-
tively. The total entropy of the box in this scenario is

S2 � NkB

�
ln
KV
N

�
3

4
ln�T1T2�

�
: (6)

If we imagine the gas first being in the totally homoge-
neous state of scenario 3 and then changing into the
thermally inhomogeneous state of scenario 2, the entropy
difference will be


S �
3NkB
4

ln
T1T2

T2 : (7)

Assume now that the thermal energy is conserved in this
transition, i.e. that the average temperatures in the two
scenarios are the same. This means that T1 � T2 � 2T.
Under this assumption, when does this entropy difference
become non-negative? We see that this will be the case
when

4T1T2

�T1 � T2�
2 � 1 i:e: �T1 � T2�

2 � 0: (8)

This is only satisfied when T1 � T2 � T, in which case
there will be an equality between the left and the right hand
side. If T1 and T2 are different, i.e. there is a temperature
difference between the two chambers, the entropy differ-
ence in (7) will be negative. Thus, an increase in tempera-
ture inhomogeneity will result in a decrease in the entropy.

However, we must not forget that we have assumed that
the thermal energy is conserved, just as we assumed that
the particle number is conserved. For this simple example
of particles in an isolated box both these assumptions will
be true. For a gravitationally collapsing gas, however, this
need not be true. The total mass, which is the equivalent of
the total particle number in the box example, must obvi-
ously be conserved so we should expect the entropy to
decrease as the energy density becomes more inhomoge-
neous. But the thermal energy will not be conserved as the
gas undergoes a gravitational collapse. As the energy
density near the overdensity increases, the potential energy
of the inward falling portions of the gas is converted to
thermal energy. In other words, there will be an increase in
the thermal energy of the gas, which tends to increase the
entropy.

To summarize, the entropy change in a gravitationally
collapsing gas can be ascribed to two different effects,
namely, a decrease due to increasing density and tempera-
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ture inhomogeneities and an increase due to increasing
temperature. As we will show, using first order perturbation
theory, the sum of these two effects yields an increasing
total entropy when one assumes that all the loss in potential
energy is converted into thermal energy.

We start by reviewing the basics of scalar perturbation
theory.

III. SCALAR PERTURBATION THEORY

We will only consider scalar perturbations since these
are the only ones that give rise to gravitational collapse.
For a more detailed review of perturbation theory, the
interested reader is referred to the standard Refs. [6–8].
We assume that the universe is occupied by matter in the
form of a perfect fluid with no anisotropic stress. The
energy density inhomogeneity is described as a linear
perturbation to a flat, matter dominated FRW universe.
This allows us to write the perturbed metric in terms of
only one perturbing function �, the so-called Bardeen
potential:

ds2 � a2���f�1� 2��d�2 � �1� 2���ijdx
idxjg; (9)

where � is conformal time and a is the scale factor of the
universe.

The energy-momentum tensor for the matter content is
written as a homogeneous zeroth order term plus a non-
homogeneous first order perturbation:

T�
� � �0�T�

� � �T�
� : (10)

Using the definition for the energy-momentum tensor of a
perfect fluid, the equation of state for matter, and the four-
velocity identity u�u� � 1, we can write the components
as:

�0�T0
0 � �0 �T0

0 � �� (11)

�0�T0
i � 0 �T0

i � ��0a�ui (12)

�0�Ti
j � 0 �Ti

j � 0 (13)

where �0 is the average density of the fluid, �� is the
density perturbation and �ui the velocity perturbation. In
the expressions above and throughout this paper we use the
convention that Latin indices run over spatial components
only, while Greek indices run over both space and time
components.

We require the Einstein equation for the fluid to be
satisfied independently for each order in the perturbation.
This gives us the following zeroth order equations

H 2 �
8

3
	Ga2�0 (14)

and

H 2 � 2 _H � 0; (15)
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where H � 1
a

da
d� and the dot denotes differentiation with

respect to �. The first order equations are

r2�� 3H � _��H�� �
3

2
H 2� (16)

f _��H�g;i � �
3

2
H 2a�ui (17)

��� 3H _�� �H 2 � 2 _H �� � 0 (18)

where we have defined the density contrast as � � ��=�0,
and A;j �

@A
@xj . The zeroth order equations are the ordinary

FRW equations for a matter dominated, flat universe ex-
pressed in conformal time instead of the usual comoving
time. The solution to these equations is

a �

�
�
�0

�
2

and �0 � �00

�
�0

�

�
6
; (19)

where we have defined �0 such that a��0� � 1, and �00 is
the energy density at � � �0, which can be written as

�00 �
3

2	G�2
0

: (20)

We shall later need the relation between conformal and
comoving time. Using the definition a���d� � dt, we can
write this as

� � �0

�
t
t0

�
1=3

; (21)

where t0 is the initial comoving time that corresponds to
�0. These are related via the expression

t0 �
�0

3
: (22)

Let us introduce a new dimensionless time parameter  ,
which measures time relative to the initial time t0, i.e.

 �
t� t0
t0

: (23)

Using this new time parameter we can write the scale
factor and the unperturbed energy density as

a� � � �1�  �2=3 and �0� � � �00�1�  ��2: (24)

Next, we solve the first order equations. We start with
Eq. (18), which does not couple to the other two equations,
and obtain the metric perturbation �. The remaining per-
turbing functions � and �ui are then obtained by a simple
substitution of � into Eqs. (16) and (17). Disregarding
solutions that decrease with time, we can write the pertur-
bations as:

��x;  � � f�x� (25)

��x;  � �
1

6
�2
0�1�  �2=3r2f�x� � 2f�x� (26)
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�ui�x;  � � �
�0

3

df�x�
dxi

�1�  ��1=3 (27)

where f�x� is an arbitrary function of spatial coordinates
only. In order for these perturbations to be physically
acceptable they must vanish at infinity, i.e.

lim
kxk!1

f�x� � lim
kxk!1

��x;  � � lim
kxk!1

�ui�x;  � � 0: (28)

Furthermore, we must also require that the total energy
density at  � 0 in the perturbed and the unperturbed
universe remains the same, which is the same as saying
that the total energy must be conserved when the pertur-
bation is introduced. For this requirement to be satisfied,
the initial density perturbation must satisfy the integral
condition Z

V
��x; 0�dV � 0: (29)

Substituting for the left hand side from Eq. (26) and using
the boundary conditions in Eq. (28), we find that the
volume integral of the metric perturbation must also van-
ish, Z

V
f�x�dV �

Z
V
r2f�x�dV � 0: (30)

This implies that the volume integral of the density pertur-
bation must vanish for all values of  ,Z

V
��x;  �dV � 0: (31)

What this equation says is simply that the total energy in
the perturbed universe must be the same as that in the
unperturbed universe at all times. This is nothing but a
statement of energy conservation.

IV. ENTROPY OF A PERTURBED IDEAL GAS IN A
FRW UNIVERSE

Equation (1) gives us the entropy of an ideal gas con-
sisting of N distinct particles. The collapsing gas we wish
to examine, whose time evolution is given by Eq. (26),
consists of a continuous fluid. We must therefore rewrite
the expression in (1) into a form that we can use for a
continuous fluid. In order to do that we consider an ideal
gas contained within a small volume element dV. The
number of particles inside this volume is

dN �
�dV
m

; (32)

where m is the mass of the particles which the gas consists
of. Inserting this expression for the particle number into
Eq. (1), we can write the entropy associated with the
volume element in terms of the density of the fluid:

dS � kB
�
m

ln
�
mKT3=2

�

�
dV � "dV; (33)
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where the constant K is defined in (3) and " can be
interpreted as the entropy density of the ideal, continuous
gas distribution.

We substitute the energy density of the perturbed pres-
sureless gas for the density which appears in this expres-
sion. The former can be written as � � �0�1� ��, where
�0 and � are given by (24) and (26), respectively. This
allows us to write the entropy density as

"T � kB
�0

m

�
ln
mKT3=2

�0
� �

�
ln
mKT3=2

�0
� 1

��
: (34)

Time dependence enters into this expression via the un-
perturbed energy density �0, the density contrast � and the
temperature T. For a totally homogeneous universe which
contains only matter, the temperature can be shown [9] to
scale like �T � a�2, where the bar denotes that the tem-
perature is that of a nonperturbed gas. In terms of the
dimensionless time parameter  , we can write the time
dependence of the homogeneous temperature as

�T � T0�1�  ��4=3; (35)

where T0 is the temperature of the gas at the initial time
 � 0.

In a perturbed gas we expect there to be an additional,
nonhomogeneous contribution to this temperature. Thus,
we can write the total temperature as

T � �T�1� 
T�; (36)

where �T
T is the nonhomogeneous addition to the homo-
geneous temperature �T resulting from the first order den-
sity perturbation �. As we will see later, 
T will turn out be
too large for us to treat it as a first order perturbation.

The time evolution of 
T depends on how much energy
we assume is transferred from potential into thermal en-
ergy due to the gravitational collapse and how this is
transferred. The two extremes are: (i) No energy is trans-
ferred and (ii) All the potential energy is transferred adia-
batically into thermal energy. The most realistic scenario
would probably be somewhere in between these two ex-
tremes, but for simplicity we will assume the latter scenario
when we calculate 
T explicitly in the next section. Using
Eqs. (24), (35), and (36) we can write the entropy density
of the ideal, perturbed gas as

" �
kB
m

�00

�1�  �2

�
ln
mKT3=2

0

�00
�

3

2
ln�1� 
T�

� �
�
ln
mKT3=2

0

�00
� 1

��
: (37)

The total entropy of the gas is the volume integral of this
expression over the whole of space. The volume element
which appears in the integral is given by the determinant of
the spatial metric hij. In Cartesian coordinates, this can be
written as
-4
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dV �
����������������
j dethijj

q
d3x � �1�  �2�1� 3��d3x; (38)

where d3x is the Euclidean volume element. This allows us
to write the entropy element as

dS � "dV

�
kB�00

m

�
�1� 3��

�
ln
mKT3=2

0

�00
�

3

2
ln�1� 
T�

�

� �
�
ln
mKT3=2

0

�00
� 1

��
d3x: (39)

As a consistency check we can calculate the entropy inside
a comoving volume V of the unperturbed FRW model,
which we know to be a constant [10]. Using our definition
of the entropy of an ideal, cosmological gas (39), we find
that

Sunpert �
Z
V

kB�00

m
ln
mKT3=2

0

�00
d3x �

kB�00V
m

ln
mKT3=2

0

�00
;

(40)

which is indeed a constant. What about the perturbed
entropy? If the gravitational collapse is not to conflict
with the second law of thermodynamics this should in-
crease with time, or at least not decrease with time. The
change in entropy resulting from the density perturbation is


S �
kB�00

m

Z
V

�
�
�
ln
mKT3=2

0

�00
� 1

�
� 3� ln

mKT3=2
0

�00

� �1� 3��
3

2
ln�1�
T�

�
d3x: (41)

Because of the energy conservation Eqs. (30) and (31), the
first two terms in this integral will vanish. This leaves us
with a contribution from the temperature inhomogeneity
only


S �
3

2

kB�00

m

Z
V
�1� 3�� ln�1� 
T�d

3x

�
3

2

kB�00

m

Z
V
ln�1� 
T�d3x: (42)

In the simplified box example of Sec. II we found that
density inhomogeneities tend to reduce the total entropy. It
might therefore seem odd that the density inhomogeneities
in the gravitationally collapsing gas do not contribute to the
entropy. The reason that the entropy decreased in the box
example is that the expression for the entropy is nonlinear
in the particle number (or alternatively in the density). This
leads to the result that the sum of the entropies of two gases
with different particle numbers is generally different from
that of a gas whose particle number is equal to the sum of
the particles in the two first gases. But if we treat the
problem perturbatively to first order, we force all physical
quantities to be linear in the perturbed quantities. Since the
density is conserved, as we can see in Eq. (31), the con-
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tribution to the entropy from the density inhomogeneity
must vanish to first order.

In the next section we examine how the entropy changes
when energy is converted adiabatically from gravitational
potential energy into thermal energy for a spherically
symmetric collapsing gas.
V. SPHERICALLY SYMMETRIC PERTURBATIONS

In this section we will specialize to spherically symmet-
ric perturbations. Furthermore we assume that the potential
energy in the gravitational field is transferred into thermal
energy adiabatically during the collapse. The density in-
homogeneity will then give rise to a temperature gradient.
If we assume that the gas is in hydrostatic equilibrium
during the whole collapse and that the gas collapses to-
wards the origin of the coordinate system, we can write the
temperature gradient as [11]

@
T

@r
� �C

4	Gm
kB

�a2

�Tr2
Z r

0
dr0r02��r0;  �; (43)

where C � 2=5 for an ideal monoatomic gas. To proceed
further we need to know how the density perturbation �
behaves. We must therefore solve the differential Eqs. (25)
and (26). In order to do this we must specify initial and
boundary conditions for both the metric and the density
perturbation. The boundary conditions are stated in
Eq. (28). Once we give an initial profile for the density
perturbation we can solve Eq. (26) at  � 0 for the metric
perturbation. The time evolution of � is then determined by
reinserting the solution for � into (26) for arbitrary  .

We restrict ourselves to a general type of initial con-
ditions where there is only one initial overdensity, namely,
centered at the origin. These profiles must satisfy the
energy conservation condition in (29). A simple density
profile contained within this class of initial conditions is

��r; 0� � d0

�
1�

r
L
�

1

3

�
r
L

�
2
�
e�r=L; (44)

where L and d0 are measures of the size and the amplitude,
respectively, of the initial overdensity. The reason that we
have chosen this explicit expression for the initial density
perturbation is that it allows us to solve the differential
equation analytically. However, as we will show in the
appendix, the results we obtain apply qualitatively for all
initial density profiles in the class we defined above.

In analogy with the time parameter  , we introduce a
new dimensionless radial coordinate y, which measures
comoving radial distance relative to the length scale L,

y �
r
L
: (45)

The differential equation which determines the metric
perturbation can now be written as
-5
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FIG. 2 (color online). (a) The left panel shows a plot of the metric perturbation that results from the initial density inhomogeneity
described in Eq. (44). (b) The right panel illustrates the time evolution of the corresponding density perturbation. The curves represent
the spatial configuration of the density contrast at, from bottom to top,  � 0:0; 0:25; 0:5; 0:75; 1:0
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1

6

�
�0

L

�
2
�
d2

dy2
�

2

y
d
dy

�
f�y� � 2f�y�

� d0

�
1� y�

y2

3

�
e�y: (46)

This can be solved analytically by e.g. using the computer
program Maple. However, the analytical solution is too
long for us to list up here. Instead we illustrate the solution
by plotting it in Fig. 2(a). The amplitude of the initial
perturbation was chosen to be d0 � 10�5. This corre-
sponds to the amplitude of the density perturbations in
our own universe at the time of recombination, t0 �
400 000, which we choose as the initial time of our
perturbation.

The time evolution of the density perturbation depends
on the size of the perturbation. If L is sufficiently large, the
ratio �0

L will be so small that ��y;  � remains essentially
constant in time, which can seen directly from Eq. (26).
Since we are interested in perturbations that grow with
time, L must be chosen accordingly. This can be achieved
by choosing �0

L � 1. The value we used to obtain the
solution plotted in Fig. 2(a) was �0

L � 10.
According to Eq. (26), once we know the metric pertur-

bation we automatically know the time evolution of the
density perturbation. The analytical expression for this is
even longer than that for the metric perturbation so we will
omit writing it down. Fig. 2(b) shows a plot of the density
contrast for a selection of different times, thus illustrating
how it grows with time.

Obtaining the relative temperature change 
T is now
simply a matter of integrating Eq. (43) with the density
contrast given by the analytical expression found above.
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Just as for the two perturbed quantities � and �, we
demand that the 
T vanishes as r ! 1. This allows us to
write the relative temperature change as


T�y;  � � �
6mC
kBT00

�
L
�0

�
2
�1�  �2=3

Z y

1
dy0

1

y02

�
Z y0

0
dy00y002��y00;  �: (47)

The remaining constant which we need to determine in this
expression is the initial temperature T00. Since the initial
time and amplitude of the density perturbation were chosen
to correspond to perturbations in our own universe at the
time of recombination, it is only natural that we also
choose T00 to be the temperature of the universe at the
same time, namely T00 � 3000K. Furthermore, the gas we
consider consists of baryons, which allows us to use the
mass m � 1:67� 10�27 kg. Using these values we find
that the dimensionless constant that multiplies the integrals
in Eq. (47) will be of the order �107. Since the density
contrast is of the order �10�5 we see that the relative
change in temperature caused by the density perturbation
must be very large. We can find a plot of this relative
temperature change in Fig. 3, which shows us that 
T is
positive everywhere and that it grows with time. Thus,
inserting the analytical expression for 
T into Eq. (42),
we see that the entropy change induced by the density
perturbation will be positive, and it will grow with time
as the density inhomogeneity increases. This shows that
the entropy of a gravitationally collapsing gas evolves
according to the second law of thermodynamics up to first
order. It is natural to assume that this will be the case to any
order.
-6
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Strictly speaking, we have only showed this for the
special initial density perturbation described in Eq. (44).
In the appendix we show that this will be the case for all
initial density perturbations of the class defined in the
beginning of this section.
VI. CONCLUSIONS

The main objective of this paper was to show that the
entropy of an inhomogeneous gas increases as the gas
collapses under the influence of gravity. Naively, one might
expect the opposite to be the case since inhomogeneities in
both the density and the temperature increase under such a
collapse, which is an evolution that we generally associate
with a decrease in entropy. By allowing for a transfer of
energy from the gravitational potential to thermal energy,
the temperature in the gas will increase as a result of the
collapse. Treating the inhomogeneous gas as a first order
perturbation to a homogeneous FRW model, we showed
that the increase in temperature results in an increase in the
entropy which outweighs any decrease due to increasing
inhomogeneities in the temperature and the density. This
was shown to be the case for any initial density inhomo-
geneity which consists of one overdense region. Although
our results were derived only up to first order in the
inhomogeneity, it is only natural to extend the conclusions
to any type of inhomogeneity. This allows us to conjecture
that the entropy of any gravitationally collapsing gas will
always increase with time, in accordance with the second
law of thermodynamics.
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APPENDIX: MORE GENERAL PERTURBATIONS

We define a class of perturbations where the initial
profile has only one overdensity. The coordinate system
is chosen so that the center of the overdensity is situated at
the origin. Define the function

F�y;  � �
Z y

0
dy0y02��y0;  �: (A1)

From Eq. (31) we get that

lim
y!1

F�y;  � � 0: (A2)

The fact that the only overdensity is that at the origin
implies that there exists a y0 such that ��y;  �> 0 for 0 �
y < y0 and ��y;  � � 0 for y > y0. This along with
Eq. (A2) implies that F�y;  � must be positive for all values
of y,

F�y;  �> 0 for y > 0: (A3)

The temperature change in Eq. (47) can be written as


T�y;  � / ��1�  �2=3
Z y

1
dy0

F�y0;  �

y02
: (A4)

From this expression we see why the lower limit of the
integration must indeed be �1: We require the tempera-
ture change to vanish at infinity. Since the integrand is
always greater than zero, this can only be accomplished if
the range of integration vanishes at infinity, which implies
that the lower integration limit must be �1. This in turn
implies that the integral in Eq. (A4) will be negative for all
y. Thus we have shown that 
T will be positive for all y.
This is the first step in our proof. We must also show that

T increases with time. In order to do this we differentiate
Eq. (A4) with respect to  . This yields the expression

@
T

@ 
/ �

 
2

3
�1�  ��1=3

Z y

1
dy0

F�y0;  �

y02
� �1�  �2=3

�
Z y

1

dy0

y02
@F�y0;  �

@ 

!
:

(A5)

The first term inside the parentheses will be negative due to
the same arguments as above. Using the definition in
Eq. (A1), we can write

H�y;  � �
@F�y;  �

@ 
�
Z y

0
dy0y02

@��y0;  �
@ 

: (A6)

Again, using Eq. (A2), we find that limy!1H�y;  � � 0.
We know that the effect of gravity on the density perturba-
tion is such that overdense regions become more dense,
while underdense regions become less dense. This means
that @��y; �

@ > 0 for 0 � y < y0 and @��y; �
@ � 0 for y > y0.

Thus, just as for the integrand in Eq. (A4), this implies that
the integrand in Eq. (A6) must be positive and hence that
-7
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H�y;  � must also be positive. The integral in the second
term in Eq. (A5) must therefore be negative since the
integrand is positive while the integration path is negative.
This proves that @
T

@ is positive for all y > 0 and  > 0.
083011
In summary, we have shown that a density perturbation
of the class defined at the start of this appendix yields a
temperature change 
T which is positive everywhere and
grows with time. This concludes our proof.
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