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Limits on deviations from the inverse-square law on megaparsec scales
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We present an attempt to constrain deviations from the gravitational inverse-square law on large-scale
structure scales. A perturbed law modifies the Poisson equation, which implies a scale-dependent growth
of overdensities in the linear regime and thus modifies the power spectrum shape. We use two large-scale
structure surveys (the Sloan Digital Sky survey and the Anglo-Australian two-degree field galaxy redshift
survey) to constrain the parameters of two simple modifications of the inverse-square law. We find no
evidence for deviations from normal gravity on the scales probed by these surveys ( � 1023 m).
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I. INTRODUCTION

Einstein’s theory of general relativity, which generalizes
Newton’s law of gravity, has been extensively tested and
verified. But precision tests of the inverse-square force law
have been performed only on scales � 1013 m ([1] and
references therein). An enormous extrapolation is required
to apply this law to cosmological scales >1022 m [2].

Some recent theories propose a deviation from New-
tonian gravity at large distances, perhaps due to extra
dimensions, branes, or new particles (e.g., [3]). These
theories, mostly motivated by finding an alternative expla-
nation to dark energy for the cosmic acceleration (e.g. [4–
7]), modify gravity on scales comparable to the horizon
scale �1026 m.

Here we set out to constrain theories in which gravity
deviates from the inverse-square law on scales of �10 Mpc
or 1023 m. We evolve the power spectrum (and bispectrum)
under a perturbed law of gravity in the linear (and mildly
nonlinear) regimes, from recombination to the present day.
The perturbed law modifies the evolution of density fluc-
tuations, altering, in particular, the power spectrum shape.
We compare the prediction for the modified power spec-
trum to that measured from two galaxy redshift surveys:
the Anglo-Australian Two-Degree Field Galaxy Redshift
Survey (2dFGRS; [8,9]) and the Sloan Digital Sky Survey
(SDSS; [10–12]).

In the models we consider, gravity is consistent with the
inverse-square law on scales smaller than �1 Mpc, so the
deviation does not affect early universe physics through
recombination. Thus, we assume that the standard compu-
tation of the cosmic microwave background (CMB) an-
isotropies holds, and that the CMB observations provide
the mass power spectrum (and bispectrum) at recombina-
tion. Moreover, as explained later, we marginalize over
reasonable priors for the power spectrum amplitude and the
primordial power spectrum slope, thus making our analysis
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insensitive to reasonable changes in the other cosmological
parameters. We expect deviations from the inverse-square
law to modify the integrated Sachs-Wolfe (ISW) effect.
However, as this affects the CMB on large scales where
cosmic variance is large, we do not discuss ISW here.

In the context of Newtonian gravity, a similar approach
has been widely used in the literature to constrain cosmo-
logical parameters (e.g., [13]) and biasing, the relation
between clustering of galaxies and clustering of mass
(e.g., [14,15]). Here, we fix the background cosmology
[13] and assume a scale-independent bias [16]. The devia-
tion from Newtonian gravity is parametrized by a length-
scale and a strength on which we place constraints. We find
no compelling evidence for deviations from the inverse-
square force law on large-scale structure scales. This null
result leaves open the possibility that both Newton’s grav-
ity and our weak assumptions about scale-independent bias
and the primordial power spectrum are incorrect in some
contrived way so that their effects conspire to exactly
cancel. We regard such a scenario as exceedingly unlikely.
This is the first attempt to use cosmological data to con-
strain gravity on these scales, but for related theoretical
work, see [19–22].
II. METHOD

We consider a force of gravity that deviates from an
inverse-square law by a small perturbation on Mpc scales.
We examine two possible functional forms for this pertur-
bation, each parametrized by a strength and a length scale.
Since Newtonian gravity has been tested on very small
(mm) scales up to solar system scales [1], both models
recover the inverse-square law at small scales. The expan-
sion rate a�t� is set by WMAP’s best-fit 
CDM back-
ground cosmology [13]. Note that these models differ
from the modification to general relativity considered in
[23]. Since we are testing a null hypothesis, the specific
form of the parametrization does not matter; our choices
are based loosely on parametrizations used in small-scale
tests of gravity.
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FIG. 1. d̂�1=k�� and d̂�1=kR� for the Yukawa-like and PL
models, respectively, at a � 1 for a 
CDM cosmological model
(�m � 0:27 and �
 � 0:73).
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In the first model, we consider a Yukawa-like contribu-
tion to the potential,

��~r� � �G
Z

d3r0
	�~r0�

j ~r� ~r0j
	1 
 
�1 � e�j~r�~r0j=���; (1)

where 
 is small. The Yukawa parametrization has been
used in small-scale tests of gravity, where it is physically
motivated by the exchange of virtual bosons [1]. This
model nicely behaves like an inverse-square law at very
large and very small length scales relative to the length
scale �.

In the second model (hereafter the ‘‘PL model’’), we
consider a power-law-like (PL) potential of the form,

�� ~r� � �G
Z

d3r0
	�~r0�
j ~r� ~r0j

�
1
 ~��j ~r� ~r0j�

�
R

j ~r� ~r0j

�
N�1

�
;

(2)

where ~��r� � �r� R� is a step function, � � 1, R is a
physical length scale, � is the strength of the deviation, and
we discuss N � 2. The r dependence of ~� ensures agree-
ment with standard gravity at small scales. Incidentally,
this form of modification (with constant ~�) can be gener-
ated by the simultaneous exchange of two massless scalar
particles ([1], and references therein). However, such ef-
fects would likely occur at much smaller scales than we are
probing.

Let us consider the first model. In comoving coordinates,
~x  	~r=a�t��, the comoving gravitational potential is given
by �� ~x� � �G �	a2�� ~x�, where

�� ~x� �
Z

d3x0
1 
 �� ~x0�
j ~x� ~x0j

	1 
 
�1 � e��aj ~x� ~x0j=����; (3)

�� ~x� � 		� ~x� � �	�= �	, �	 is the average density of the uni-
verse, and we scale a�t� so a � 1 today.

Transforming � into Fourier space yields

�̂� ~k� �
4��̂� ~k�

k2

�
1 
 
F�1

�
a
k�

��
(4)

with F�1
�s� � s2=�1 
 s2�.

Following the same analysis as the first model, the PL
model yields

�̂� ~k� �
4��̂� ~k�

k2

�
1 
 �F�2

�
a
kR

��
; (5)

with F�2
�s� � 1

s 	
�
2 � Si�1s��, where Si�x� denotes the sine

integral.

A. Linear theory

In this section we compute the density fluctuations �̂, the
comoving velocity field, and the power spectrum for the
Yukawa-like model. The results for the PL model are
obtained simply by replacing 
 with �, � with R, and
F�1

�s� with F�2
�s�.
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The universe’s expansion rate is dominated by physics at
horizon scales, beyond the scales we consider here. We
thus use Friedman equations for the background cosmol-
ogy. Although for the PL model we simply make this
assumption, for the Yukawa-like model this assumption
can be justified. The Yukawa-like model recovers the
inverse-square law on horizon scales. A change in the value
of Newton’s constant G, as in the large-scale limit of the
Yukawa-like model, has the effect of changing the overall
amplitude of the growth factor, and thus of the power
spectrum normalization, over which we marginalize. We
are sensitive only to changes in the shape of the power
spectrum on supercluser scales, which is most strongly
affected by the growth of perturbations against the back-
ground cosmology, and not by the background cosmology
itself.

The equation for �̂ to first order in perturbation theory is

�̂�
 2
_a
a

_̂��G �	k2�̂ � 0: (6)

For 
 � 0 the equation is separable, with solution [24]

�̂ A� ~k; t�  A�t��̂o� ~k�: (7)

We now look for a solution of the form

�̂� ~k; t� � �̂A� ~k; t�	1 
 
d̂� ~k; t�� (8)

to first order in 
, and solve for d̂� ~k; a�t�� [25]. The initial
conditions d̂�0� � 0 and d̂0�0� � 0 ensure that gravity
behaves normally at small scales and that �̂ is finite at a �
0. For the PL model, all solutions are undefined at a � 0.
We set d̂ and d̂0 to zero at a sufficiently small scale that
changing that scale by an order of magnitude changes d̂ at
a � 1 by significantly less than our error bars.

Figure 1 shows d̂�1=k�� for the Yukawa-like model
(dashed line) and d̂�1=kR� for the PL model (solid line)
for a 
CDM universe at a � 1. Since a positive value of 
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makes gravity stronger, we expect more clustering (d̂ > 0).
The step function in the PL model’s potential causes some
ringing in the Fourier transform, so the change in the
comoving potential and d̂ both oscillate as functions of k.

We find that �
 weakens the effect of 
 or � at large
scales.

We can now compute the comoving velocity to first
order in perturbation theory using the continuity equation
and the equation of motion in Fourier space [26]. For
simplicity, we will work in an Einstein–de Sitter (EdS)
universe. We only use the velocity to compute the bispec-
trum, and the bispectrum is robust to changes in cosmology
(see, e.g., Fig. 1 in [27]). To first order in 
, we find

~̂v � ia
~k

k2
_̂� � ia

~k

k2
_A�̂o

�
1 
 
Fv

�
a
k�

��
; (9)

where

Fv�s�  d̂�s� 
 sd̂0�s�: (10)

The power spectrum is given by

�2��3P� ~k; t��D� ~k
 ~k0� � h�̂� ~k; t��̂� ~k0; t�i; (11)

where

hj�̂� ~k; t�j2i � hj�̂A� ~k; t��1 
 
d̂� ~k; t��j2i (12)

and h i denote an ensemble average over all realizations of
the universe. The present-day power spectrum derived
using our model of modified gravity, to first order in 
,
is then

P�k� � Po�k�
�
1 
 2
d̂

�
1

k�

��
; (13)

where Po is the power spectrum expected for Newtonian
gravity.

To test the validity of our first-order approximation in 
,
we also compared d̂ for an EdS universe to the Yukawa-
like model’s exact solution. The growing EdS solution for
the density fluctuation is a hypergeometric function,

�̂�s� � 2F1

�
5 �

���������������������
25 
 24


p

8
;
5 


���������������������
25 
 24


p

8
;
9

4
;�s2

�

� s�̂0�k�; (14)

where s  �a=k��. We find that the higher-order 
 correc-
tions contribute a small fraction most values of s � �a=k��
in our analysis. For example, for s � 100 (the largest s in
our analysis), we get �20% error for j
j � 0:2; for small
values of s—and the same j
j value—the error is less than
a percent. We are only concerned with effects that change
the result by orders of magnitude, not factors of a few, since
gravity has never been tested on these scales before. Thus,
we believe the Taylor expansion in 
 and � is sufficient for
our first search for constraints.
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B. Mildly nonlinear theory

The equation for �̂ to second order in perturbation
theory is

�̂�
 2
_a
a

_̂�

k2

a2 �̂ � �
1

a2 	ki�̂ � ki�̂
 �̂ � k2�̂


 kikj�v̂
i � v̂j��; (15)

where we use the Einstein summation convention over
spacial indices i; j. The symbol ‘‘�’’ denotes a convolution
in k space,

f� ~k� � g� ~k� 
Z

d3l
Z

d3m�D�~l
 ~m� ~k�f�~l�g� ~m�;

(16)

where �D� ~k� is the three-dimensional Dirac delta function.
We use the solution for ~v from first-order perturbation
theory.

Let �̂�1� represent the solution to �̂ in linear theory, and
�̂�2� represent the second-order term (of order �̂2

A), so �̂ �

�̂�1� 
 �̂�2� plus smaller, higher-order terms.
For 
 � 0 (or � � 0), the solution for the second-order

term is

�̂�2�
A  A2�t��̂�2�

o � ~k�

� A2

�
5

7
�̂o � �̂o 
 ki�̂o �

ki

k2 �̂o 

2

7

kikj

k2 �̂o �
kikj

k2 �̂o

�
:

(17)

We then follow the same approach as in the linear
theory. Using the first model as our example, we look for
a solution to first order in 
 of the form

�̂ �2� � �̂�2�
A 	1 
 
ĝ� ~k; t��: (18)

Switching the time variable to a, the resulting differential
equation for ĝ� ~k; a� in an EdS universe is

@2ĝ

@a2



11

2a
@ĝ
@a



7

2a2 ĝ �
1

�̂�2�
o

3

2a2 N� ~k; a�; (19)

where

N� ~k; a� � F�1

�
a
k�

�
�̂�2�

o



ki

k2 �̂o

�
F�1

�
a
k�

�

 d̂

�
a
k�

�



4

3
Fv

�
a
k�

��
� ki�̂o



ki

k2 �̂o � ki�̂o

�
d̂
�
a
k�

�



4

3
Fv

�
a
k�

��


 �̂o � �̂o

�
F�1

�
a
k�

�

 2d̂

�
a
k�

�



4

3
Fv

�
a
k�

��



4

3

kikj

k2 �̂oFv

�
a
k�

�
�
kikj

k2 �̂o; (20)

with initial conditions ĝ� ~k; 0� � 0 and @
@a ĝ�

~k; 0� � 0. The
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bispectrum is given by

B� ~k1; ~k2��D� ~k1 
 ~k2 
 ~k3�  h�̂� ~k1��̂� ~k2��̂� ~k3�i

� h	�̂�1�� ~k1� 
 �̂�2�� ~k2��

� 	�̂�1�� ~k2� 
 �̂�2�� ~k2��

� 	�̂�1�� ~k3� 
 �̂�2�� ~k3��i:

(21)

The leading term, h�̂�1�� ~k1��̂
�1�� ~k2��̂

�1�� ~k3�i, vanishes under
Gaussian initial conditions. Modified gravity still preserves
Gaussianity in the linear regime, and introduces a correc-
tion to the bispectrum in second-order perturbation theory.
To first nonvanishing order in �̂A and 
, we get

h�̂� ~k1��̂� ~k2��̂� ~k3�i � A4h�̂o� ~k1��̂o� ~k2��̂
�2�
o � ~k3�i

�

�
1 
 


�
d̂
�

a
k1�

�

 d̂

�
a

k2�

�


 ĝ� ~k3; a�
��


 cyc (22)

where again we can pull d̂ and ĝ out of the ensemble
average, ~k3 � � ~k1 � ~k2, and cyc denotes cyclic permuta-
tions of the subscripts 1,2,3.

Since we already know d̂, we need to solve only for the
last term. To do so, let us examine the term X 

h�̂o� ~k1��̂o� ~k2��̂
�2�
o � ~k3�ĝ� ~k3; a�i. From Eq. (19) we can write,

@2X

@a2



11

2a
@X
@a



7

2a2 X �

�
�̂o� ~k1��̂o� ~k2�

3

2a2 N� ~k3; a�
�
:

(23)
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N� ~k; a� is a sum of terms with k-space convolutions and a
dependence. We can thus rewrite Eq. (20) as

N� ~k; a� �
X
n

�̂o� ~k�Jn� ~k; a� � �̂o� ~k�Kn� ~k; a�; (24)

where the expressions for Jn and Kn are easily obtained by
equating Eq. (24) with Eq. (20). Using Eq. (16), we rewrite
the right-hand side of Eq. (23) as

3

2a2

�Z
dl3dm3�D�~l
 ~m� ~k3��̂o� ~k1��̂o� ~k2��̂o�~l��̂o� ~m�

�
X
n

Jn�~l; a�Kn� ~m; a�
�

(25)

which becomes

3

2a2

Po

A2 �k1�
Po

A2 �k2�
X
n

Jn� ~k1; a�Kn� ~k2; a�


 Jn� ~k2; a�Kn� ~k1; a�: (26)

We can then solve Eq. (23) for each function of a that
appears in the above sum, and get an expression for the
bispectrum.

The full expression for the bispectrum given by

B� ~k1; ~k2��D� ~k1 
 ~k2 
 ~k3� � J� ~k1; ~k2�Po�k1�Po�k2�


 cyc; (27)

where
J� ~k1; ~k2� � Jo� ~k1; ~k2� 
 

�
Jo� ~k1; ~k2�

�
d̂
�

a
k1�
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�
a
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�
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�
a
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��
5

7
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k2
2



2

7
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k1k2

�
2
�
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k2
1

�
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�
a
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�

G2

�
a

k1�

�



4

3
G3

�
a

k1�

�

G2

�
a

k2�

�



4

3
G3

�
a

k2�

��

G1

�
a

k2�

�

 2G2

�
a

k2�

�



4

3
G3

�
a

k2�

�



4

3
G3

�
a

k2�

�� ~k1 � ~k2

k1k2

�
2

 � ~k1 $ ~k2�

��
; (28)

Jo� ~k1; ~k2�Po�k1�Po�k2� is the Newtonian gravity result given by Eq. (40) of [28], and

G1�s� �
3

7



2

5s2 

3

���
2

p

10
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s7=2
arctan

� �����
2s

p

s� 1

�
�

3

5s
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3
���
2

p

20

1

s7=2
ln
�
1 
 s


�����
2s

p

1 
 s�
�����
2s

p

�
;

G2�s� �
9

50s7=2

Z s

0
dx x5=2

�
2F

�1;0;0;0�
1

�
0;

5

4
;
9

4
;�x2

�
� 2F

�0;1;0;0�
1

�
0;

5

4
;
9

4
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��

�
9
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Z s

0
dx

�
2F

�1;0;0;0�
1

�
0;

5

4
;
9

4
;�x2

�
� 2F

�0;1;0;0�
1

�
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5

4
;
9

4
;�x2
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G3�s� �
1

s

Z s

0
dx

x2

5 2F1

�
1;

9

4
;
13

4
;�x2
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1

s7=2

Z s

0
dx

�x9=2

5 2F1

�
1;

9

4
;
13

4
;�x2

�

G2�s�; (29)
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Here, 2F
�1;0;0;0�
1 denotes the partial derivative of the hyper-

geometric function with respect to the first argument, and

2F
�0;1;0;0�
1 denotes the partial derivative with respect to the

second argument.
Since the bispectrum contains complementary informa-

tion from the power spectrum, we anticipate that combin-
ing the two should produce stronger constraints. However,
we leave the bispectrum analysis to future work.
III. ANALYSIS

We can use the power spectrum measurements from the
2dFGRS [9] and the SDSS [12] to constrain the parameters
of our models. The bispectrum derivation shows that the
bispectrum should help disentangle the effects of biasing
from possible modifications to gravity, but the analysis will
follow in a subsequent paper.

The z � 0 power spectrum for normal gravity can be
theoretically calculated using the transfer functions com-
puted with CMBFAST for the WMAP best-fit parameters.
The theoretical power spectrum for given values of 
 and �
(or � and R) can then be obtained from Eq. (13). Assuming
Gaussian likelihood, we computed the likelihood for each
survey’s power spectrum measurements as a function of 

and � (or � and R).

To make our analysis insensitive to assumptions about
the background cosmology, we marginalized over reason-
able priors for the power spectrum amplitude and the
primordial power-law power spectrum slope, n. For the
amplitude, we find that the ranges 0.6 to 1.4 (for the first
model) and 0.4 to 1.4 (for the PL model) times the best-fit
power spectrum amplitude for normal gravity are sufficient
to allow for changes in the expansion rate of the universe.
The values of �m, �
, and the dark-energy equation of
state parameter (assumed to be constant) affect primarily
the power spectrum amplitude in linear theory and for the
FIG. 2. Results from the first (Yukawa-like) model. Left: Likelihoo
2dF data. Contours denote one sigma marginalized (solid line), one si
Middle: Chi square as function of 
, marginalized over �, using data u
chi square with error bars denoting one sigma, as a function of the

083004
scales of interest. We marginalized over n using the
WMAP prior (n � 0:99 � 0:04 at the one-sigma level
[13]). The large-scale structure power spectrum shape
has a weak dependence on $ ’ �mh, which shows up
only on the largest scales and is strongly degenerate with
�baryon and n [9,29]. The large-scale structure power spec-
trum has a very weak sensitivity to �baryon via two effects.
One is the appearance of the so-called baryonic wiggles; as
this effect has not yet been detected from these data sets, it
cannot yet give sensitivity to �baryon. The other effect is a
weak change in power spectrum slope, degenerate with n.
We are also somewhat insensitive to the uncertainty in
neutrino mass. Increasing neutrino mass affects first the
amplitude and then the shape of the galaxy power spectrum
in the scales of interest (see, e.g., Fig. 8 of [30]). Present
constraints would be weakened if a running of P�k� and/or
a redshift dependence of the dark-energy equation of state
were explored.

Last, since we are mainly interested in a constraint on 

and/or � rather than on the scale � and/or R, we marginal-
ized over � (or R) from 10 to 100 Mpc=h.
IV. RESULTS AND CONCLUSIONS

Figure 2 shows the Yukawa-like model’s parameter
constraints for the 2dFGRS and SDSS data, and Fig. 3
shows the PL model’s constraints. The ‘‘ringing’’ in the d̂
function in the PL model, creates ‘‘wiggles’’ in the large-
scale structure power spectrum which are responsible for
the geometry of the isolikelihood contours in Fig. 3. The
left plots show the likelihood contours for one-sigma
marginalized, one-sigma joint, and two-sigma joint con-
fidence levels for one survey in �,
 (or R,�) space. The
center plots show the difference in chi square (�,2) as a
function of 
 or �, marginalized over � or R. We used data
up to k� 0:15 h=Mpc for both surveys. The results are
d as a function of 
 and � using data up to k� 0:15 h=Mpc using
gma joint (dashed line), and two sigma joint (dashed-dotted line).
p to k� 0:15. Right: Values of 
 corresponding to the maximum

maximum k included in the analysis.
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FIG. 3. Results from the PL model. Left: Likelihood as a function of � and R using data up to k� 0:15 h=Mpc using SDSS data.
Inner contours denote one sigma marginalized ( � �,2 � 1 solid line), bottom contour denotes one sigma joint ( � �,2 � 2:3 dashed
line). Right: Chi square as function of �, marginalized over R, using data up to k� 0:15.
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consistent with each other and with a strict inverse-square
law. Since the constraints are weak and the Taylor expan-
sion analysis breaks down at large values of j
j and j�j, we
extrapolated the error bars from the graphs. We find 
 �
0:025
1:7

�1:7, � � 0:05
1:3
�0:4 for 2dFGRS and 
 � �0:35
0:9

�0:9,
� � 0:45
1:4

�1:4 for SDSS, at the one-sigma level. Non-
linearities become increasingly important as k increases
and might introduce systematic errors, but the signal-to-
noise for the power spectrum increases with increasing k.
Therefore we explore the dependence of the result as a
function of the maximum k included in the analysis (kmax)
on the right panel of the figures.

Since our analysis probes deviations in the shape of
today’s power spectrum, the strongest constraints on 

and � occur at scales where the slope of d̂ (with a � 1)
is greatest. This typically corresponds to � and R towards
the smallest scales of the data, so the smallest comoving
scales probed have just reached the physical scale of the
force-law deviation today, and the larger comoving scales
have passed it. (A deviation near a physical scale � or R has
083004
only affected comoving scales that have grown larger than
� or R.) The weakness of our constraints arises primarily
from the need to marginalize over a wide range of power
spectrum amplitudes and the spectral slope. Future weak
lensing surveys will measure the power spectrum for dark
matter directly. If a�t� can also be measured independently,
this data will eliminate the need to marginalize over the
amplitude and shrink our error bars for the PL model. We
forecast that this would roughly halve the error on �. The
constraint does not improve significantly for the Yukawa-
like model.
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