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Measure of the path integral in lattice gauge theory
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We show how to construct the measure of the path integral in lattice gauge theory. This measure
contains a factor beyond the standard Haar measure. Such a factor becomes relevant for the calculation of
a single transition amplitude (in contrast to the calculation of ratios of amplitudes). Single amplitudes are
required for computation of the partition function and the free energy. For U(1) lattice gauge theory, we
present a numerical simulation of the transition amplitude comparing the path integral with the evolution
in terms of the Hamiltonian, showing good agreement.
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I. INTRODUCTION

In lattice gauge theory, it is customary to compute the
expectation value of an observable Ô�U�, such as the
Wilson loop, which is given by a ratio of Euclidean path
integrals

h�; t � �1jÔ�U�j�; t � �1i

�

R
�dU�Ô�U�� exp��S�U�= �h�R

�dU� exp��S�U��= �h�
: (1)

Here �dU� denotes the Haar measure of the group of gauge
symmetry, as for example, U(1), SU(2), SU(3), and U
denotes the link variables, being elements of such a group.
The state � denotes the vacuum. The reason why it is
customary to compute such a ratio of path integrals is due
to the Monte Carlo method with importance sampling (like
Metropolis) which works only for such a ratio. In contrast,
let us consider a single transition amplitude, like

hUfi; t � TjUin; t � 0i �
Z
�dU� exp��S�U�= �h�jUfi;T

Uin;0
:

(2)
ding author.
dress: hkroger@phy.ulaval.ca

05=71(7)=077502(4)$23.00 077502
The states jUini, jUfii denote Bargmann link states, which
are defined by assigning a value Uij to each link ij on the
lattice in a fixed time slice. Now the measure �dU� is no
longer given by the Haar measure only, but there is a factor
ZN involved for a lattice of N � 1 intermediate time slices.
It is the objective of this article to construct such a measure.
Physical scenarios which require the calculation of single
amplitudes are: amplitudes of decay reactions, the partition
function Z
��, the free energy F
�� given in terms of the
partition function, or matrix elements involved in the con-
struction of the Monte Carlo Hamiltonian [1,2].
II. MEASURE IN 1D QUANTUM MECHANICS

Consider a Lagrangian of the form

L
x; _x� �
1

2
m _x2 � V
x�: (3)

The transition amplitude in imaginary time, expressed as a
path integral over N � 1 intermediate time slices is given
by
hxfij exp��HT= �h�jxini � lim
N!1

Z �1

�1
dx1    dxN�1

� ��������������
m

2� �ha0

s �
N
exp

"
�

1

�h

XN�1

j�0

a0

	
m
2

�xj�1 � xj
a0

�
2
� V
xj�


#
;

xin � x0; xfi � xN; a0 � T=N:

(4)
The measure

d� � dx1    dxN�1

� ��������������
m

2� �ha0

s �
N

(5)

contains the physical parameters of mass m, Planck’s
constant �h, and the length of a time slice a0, but is inde-
pendent of the potential. It can be obtained by computing
the propagator of the kinetic term for a single time slice

�
xfi

exp
	
�
P̂2a0
2m �h


xin
�
�

� ��������������
m

2� �ha0

s �

� exp
	
�

m
2a0 �h


xfi � xin�2


:

(6)
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This propagator has the following properties. First, when
a0 goes to zero, the propagator goes over to �
xfi � xin�.
The right-hand side actually is a representation of the �
function by a Gaussian. Second, for any value of a0 and xin
one has

Z �1

�1
dxfi

� ��������������
m

2� �ha0

s �
exp

	
�

m
2a0 �h


xfi � xin�
2



� 1: (7)

Its interpretation is that the free propagator is the solution
of a stochastic process (diffusion), and represents the
probability for a random walker starting at xin at t � 0 to
arrive at xfi at time t � a0. Summed over all possible final
destinations, the probability must be one. The solution of
the diffusion equation has a probability density interpreta-
tion in the continuum case as well as in the discrete case
[3]. More generally, in the presence of a potential, the
Feynman-Kac theorem states that the Wiener path integral
(path integral in imaginary time) has as solution
W
xt; tjx0; 0�, which has an interpretation as probability
density. This function is also a solution of the Bloch
equation (analogue of Schrödinger equation in imaginary
time) [4]. In the absence of a potential, the Bloch equation
becomes the diffusion equation.

III. MEASURE IN LATTICE GAUGE THEORY

Let us consider QED on the lattice without fermions.
The group of gauge symmetry is U(1). We keep in mind
077502
how to construct a lattice Hamiltonian (see, e.g, Creutz [5],
Rothe [6]) via the transfer matrix, by splitting the lattice
action into terms of timelike and spacelike plaquettes:

S�U� �
1

g2
a
a0

X
�timelike

�1� Re
U���

�
1

g2
a0
a

X
�spacelike

�1� Re
U���

� Skin�U� � Spot�U�: (8)

As in quantum mechanics, the extra factor in the measure is
determined solely by the kinetic term. Thus we consider
the single transition amplitude

hUfij exp��H
kinT= �h�jUini; (9)

where Hkin denotes the kinetic term of the Kogut-Susskind
lattice Hamiltonian [6], given by

H �
g2 �h2

2a

X
hiji

l̂2ij �
1

g2a

X
�spacelike

�1� Re
U���

� Hkin �Hpot: (10)

The Hamiltonian requires choosing a gauge and the Kogut-
Susskind Hamiltonian has been obtained using the tempo-
ral gauge (Utimelike � 1). The propagator, Eq. (9), ex-
pressed as a path integral reads
hUfij exp��H
kinT= �h�jUini �

Z
Z�dU� exp

	
�

1

�h
Skin�U�


Ufi;t�T

Uin;t�0

� lim
N!1

Z "Y
hiji

ZNij
YN�1

k�1

dU
k�
ij

#
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"
�

a

�hg2a0

XN�1
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X
hiji

�1� Re
U
k�
ij 
U


k�1�
ij �y��

#
Ufi;t�T

Uin;t�0

�
Y
hiji

 
lim
N!1

Z "
ZNij

YN�1

k�1

dU
k�
ij

#
exp

"
�

a

�hg2a0

XN�1

k�0

�1� Re
U
k�
ij 
U


k�1�
ij �y��

#
Ufi
ij;t�T

Uin
ij ;t�0

!
: (11)

The amplitude factorizes into independent amplitudes for each spatial link ij. In order to compute the factor Z, let us
consider a single link and its time evolution for a single time step (T � a0).

hUfij exp��H
kina0= �h�jUini � Z exp

	
�

a

�hg2a0
�1� cos
�fi � �in��



: (12)

As in quantum mechanics and also in lattice gauge theory, the Euclidean propagator has a probabilistic interpretation, and
the analogue of Eq. (7) holds:

Z
dUfihUfij exp��Hkina0= �h�jUini �

Z ��

��

d�fi

2�
Z exp

	
�

a

�hg2a0
�1� cos
�fi � �in��



� 1: (13)

Defining A � a=
 �hg2a0�, and using the Bessel function of imaginary argument [7],

I0
z� �
1

�

Z �

0
d# exp�z cos
#��; (14)

Eq. (13) yields
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Z
A� �
exp
A�
I0
A�

: (15)

We keep T fixed, and let limN!1 which means a0 ! 0 and
A! 1, which is the continuum limit in time direction.
However, in the space direction we have kept a � 1. The
result for Z given by Eq. (15) holds for any a0, while the
asymptotic behavior when a0 goes to zero is given by

Z
A� �
����������
2�A

p 	
1�

1

8
A�1 �

7

128
A�2 �O
A�3�



: (16)

In the limit a0 ! 0, the leading term Z
A� �
����������
2�A

p
is

sufficient to guarantee that the amplitude in Eq. (12) goes
over to �
Ufi �Uin�, as it should be. In quantum mechan-
ics the leading term Z
A� �

����������������
A=
2��

p
with A � m=
 �ha0� is

BRIEF REPORTS
FIG. 1. Transition amplitude for the single link state as a
function of initial and final links, Uin � exp
i�in� and Ufi �
exp
i�fi�. Transition time T � 1, lattice spacing a � 1.
Comparison of Hamiltonian time evolution, Eq. (18) (bold
line) with path integral, Eq. (17) (thin lines, number of time
slices N � 8; 16; 32; . . . ; 256).
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the exact result [see Eq. (5)]. However, in lattice gauge
theory, the subleading terms are important and cannot be
neglected. This has been confirmed by a numerical simu-
lation discussed below.

IV. COMPARISON OF PROPAGATOR FROM PATH
INTEGRAL AND HAMILTONIAN TIME

EVOLUTION—A NUMERICAL SIMULATION

Let us consider a lattice which in the spatial direction
has a single link ij and in the time direction has N time
slices. We compare the propagator expressed via
Hamiltonian time evolution with the path integral, using
the measure of the group integral taking into account the
previously calculated factor Z:
hUfij exp��H
kinT= �h�jUini � ZN

Z ��

��

"YN�1

k�1

d�
k�

2�

#
exp

"
�

a

�hg2a0

XN
k�0

�1� cos
�
k� � �
k�1���

#
�
N���fi

�
0���in

: (17)

The propagator expressed by Hamiltonian time evolution is given by

hUfij exp��H
kinT= �h�jUini �

X
n�0;�1;�2;...

exp
	
�
g2 �hT
2a

n2


cos�n
�in � �fi��: (18)
This has been calculated using the basis of eigenstates of
the electric field operator

l̂ ijj%iji � %ijj%iji; %ij � 0;�1;�2; . . . (19)

and the connection from the Bargmann link basis to the
electric field string basis given by the scalar product

h%jUi � 
U�%: (20)
In the numerical simulations we kept a � 1 and varied a0.
Choosing the transition time T � 1 increasing the number
N of time slices means a0 ! 0. We computed the path
integral given by Eq. (17) with Z given by Eq. (16). The
path integral has been evaluated by numerical integration
using 10000 mesh points in each time slice. The results as a
function of the angle �fi � �in (the curve is symmetric
under global change �! ��) and of the number of time
slices N is shown in Fig. 1. One observes convergence
when increasing N � 8; 16; 32; . . . ; 256. Figure 2 shows
the relative error as function of �fi � �in. The analytic
FIG. 2. Relative error of transition amplitude shown as a
function of N � 2; 4; 8; . . . ; 256 and �fi � �in.
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result, Eq. (18), gives a normalized curve, due toR
dU0hU0j exp��HkinT= �h�jUi � 1. The numerical results

from the path integral are also normalized. Hence, in the
relative error occurs the subtraction of two normalized
curves, which will cross at some point, which in a loga-
rithmic plot gives (downward) spikes. The relative error
varies between 10�2 and 10�3 depending on the angle and
decreases monotonically when increasing N � 2; 4; 8;
. . . ; 256. On the other hand, when taking into account
077502
only the leading term in Eq. (16) the relative error was
found to be in the order of 10%–20%.
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