
PHYSICAL REVIEW D 71, 076005 (2005)
Interaction of slow J= and  0 with nucleons
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The interaction of the charmonium resonances J= and  0 with nucleons at low energies is considered
using the multipole expansion and low-energy theorems in QCD. A lower bound is established for the
relevant gluonic operator average over the nucleon. As a result we find the discussed interaction to be
significantly stronger than previously estimated in the literature. In particular we conclude that the cross
section of the J= - nucleon elastic scattering at the threshold is very likely to exceed 17 mb and that
existence of bound states of the J= in light nuclei is possible. For the  0 resonance we estimate even
larger elastic scattering cross section and also a very large cross section of the process  0 � N !  � N
giving rise to the decay width of tens of MeV for the  0 resonance in heavy nuclei.
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I. INTRODUCTION

Understanding the charmonium interaction with nuclear
matter is important for description of the photo- and hadro-
production of charmonium and charmed hadrons on the
nuclear targets as well as for diagnostics of the hadronic
final states in heavy-ion collisions and search for Quark
Gluon Plasma. Such interaction has been a subject of
numerous studies with a broad range of theoretical
predictions.

First perturbative QCD calculations [1,2] predicted very
small J= dissociation cross section by hadrons, on the
order of few �barn. Such small dissociation cross section
supports the prediction [3–5] that a strong J= suppression
is generated by the QGP formation. Indeed, a strong J= 
suppression was observed later in relativistic heavy-ion
collisions [6]. On the contrary, an alternative explanation
[7–11] of the suppression requires a substantial strength of
the hadronic interaction of J= , corresponding to a scat-
tering cross section on the order of few millibarn. With all
the great interest to the problem of charmonium interaction
with nucleons and nuclear matter and its practical impor-
tance, the discussion of this interaction is still wide open.
In particular, the estimates of the strength of the interaction
of J= and  0 with the nucleon range, in terms of the
scattering cross section at low energy, from a fraction of
millibarn [4,12] up to 10 mb or more [13–15]. Recent
reviews of the subject and further references can be found
in the Refs. [16–18].

In many of these applications the most interesting en-
ergy region is usually well above the threshold, where the
complexity of the problem becomes more confounding due
to the multitude of possible inelastic processes contributing
to charmonium scattering on nuclear matter. However the
strength of the interaction at energy close to the threshold
is also measurable [13] and its reliable estimate can serve
as a useful reference point for analyses of the behavior of
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the interaction at higher energies. Furthermore, the J= 
and  0 interactions at low energies are of explicit impor-
tance for high energy heavy-ion collisions since the rela-
tive motion between the comoving charmonium and
nuclear matter is rather slow. In that case the charmonium
scattering in hadronic gas is given by the strength of the
J= and  0 elastic interactions and might be related to the
transverse momentum component of the charmonium
spectra. Moreover the forward elastic scattering amplitude
can be related to J= and  0 mass shift in matter predicted
by a number of models [19–22].

Here we consider the interaction of the J= and  0

resonances with nucleons and the nuclear matter at ener-
gies where the fewest inelastic processes are kinematically
allowed. For the J= interaction with a nucleon in this
region only the elastic scattering contributes below the
threshold of the lowest essential inelastic charm-exchange
channel J= � N ! �c � �D at

���
s

p
� 4:15 GeV. The sub-

threshold process J= � N ! 
c � N should be signifi-
cantly suppressed due to the heavy quark spin-flip, and is
entirely neglected in this study. For the  0 scattering, in
addition to the elastic and the charm-exchange processes,
there always is the essential subthreshold process  0 �
N ! J= � N, which is included in our discussion here.

The low-energy interaction of a heavy quarkonium with
soft hadrons is mediated by soft gluonic field, which should
be treated nonperturbatively. In this situation a use is made
of the fact that the charmonium is a relatively compact
object in the scale set by �QCD, so that its interaction with
soft gluons can be expanded in multipoles [23,24]. The
leading term in this expansion arises from the double E1
interaction with the chromo-electric component of the
gluonic field, and the heavy quarkonium part of this inter-
action can be parametrized in terms of the quarkonium
chromo-polarizability. The coupling of the soft gluonic
fields to light hadrons, specifically to the nucleons, at a
low momentum transfer is determined by the low-energy
-1  2005 The American Physical Society



A. SIBIRTSEV AND M. B. VOLOSHIN PHYSICAL REVIEW D 71, 076005 (2005)
theorem in QCD based on the anomaly in the trace of the
energy- momentum tensor. Using this approach we find a
lower bound for the average value over the nucleon of the
square of the chromo-electric field, and we also argue that
the actual average value should be close to the lower
bound. It can be mentioned that an application of a similar
approach[25,26] to hadronic transitions in charmonium
 0 ! J= �� and bottomonium �0 ! ��� is known to
be in a good agreement with the data [27].

The paper is organized as follows. In Sec. II we discuss
the chromo-polarizability of the charmonium states, which
arises within the multipole expansion in QCD used for
description of the properties of heavy quarkonium states
and transitions between them. In Sec. III we relate the
discussed scattering amplitudes to the chromo-
polarizability and to the matrix element of the square of
the chromo-electric field over nucleon. The latter matrix
element is described by the low-energy theorem following
from the conformal anomaly in QCD. In Sec. IV the
threshold limit of the J= - nucleon scattering amplitude
is considered and estimated in terms of the scattering
length, the cross section, and the average potential energy
of J= in nuclear matter. The same characteristics are
considered in Sec. V for the  0 - nucleon interaction,
with the addition of the inelastic subthreshold process  0 �
N ! J= � N, which also contributes to decay of the  0 in
nuclear matter. Finally, Sec. VI contains our concluding
remarks.
II. CHARMONIUM CHROMO-POLARIZABILITY

The leading E1 term in the multipole expansion for the
interaction of a heavy quarkonium with soft gluon field has
the form [23,24]

HE1 � �
1

2
�a ~r � ~Ea	0
; (1)

where �a � ta1 � ta2 is the difference of the color generators
acting on the quark and antiquark, e.g. ta1 � �a=2 with �a

being the Gell-Mann matrices, and ~r is the vector for
relative position of the quark and the antiquark. We use
here the normalization for the gluon field where the QCD
coupling g is included in the definition of the field, so that
e.g. the gluon field Lagrangean reads as L �

�	Fa��

2=	4g2
. The amplitude of the transition between

S-wave states A and B of the heavy quarkonium in the
second order in HE1 can then be written in terms of the
effective operator

hBjHeffjAi � �
1

2
�AB ~E

a � ~Ea; (2)

where the nonrelativistic normalization is used for the
quarkonium states, and �AB is the chromo-polarizability,
which can be found as

�AB �
1

48
hBj�ariGAri�

ajAi: (3)
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Here GA is the Green’s function for a heavy quark pair in
color-octet (adjoint) state. This Green’s function is not well
understood presently, therefore a theoretical calculation of
the chromo-polarizability is at least highly model-
dependent. In the rest of the paper a slightly simplified
notation is used, where the diagonal amplitudes are written
with a single rather than a double subscript, i.e. �A instead
of �AA.

The value of the chromo-polarizability for the transition
 0 ! J= , namely � 0J= , determines the amplitude of the
decay  0 ! J= �� [25], and can thus be found [28] from
the known decay rate: j� 0J= j � 2 GeV�3.

The diagonal values �J= and � 0 are presently un-
known These can be measured experimentally in the de-
cays J= ! ‘�‘����� and  0 ! ‘�‘����� with soft
pions [28]. It is however natural to expect that each of the
diagonal amplitudes should be somewhat larger than the
transition amplitude. Since the polarizability grows with
the spatial size of the system, it is also natural to expect that
this parameter is larger for  0 than for the J= , j� 0 j>
j�J= j. The general restrictions on the diagonal amplitudes
arise from the fact that in the Green’s function in Eq. (3)
there are no intermediate states with mass below  0, so that
both �J= and � 0 are real and positive, and their values
satisfy the inequality:

� 0�J= � j� 0J= j
2: (4)

Naturally, this inequality implies that at least one of the
diagonal amplitudes is larger than the transition one,
although this statement is of course weaker than the natural
expectation that each of the discussed diagonal chromo-
polarizabilities exceeds the known value of j� 0J= j.

Given these estimates, we use the value 2 GeV�3 as a
reference for the discussed parameters �J= and � 0 , keep-
ing in mind that their actual values can be somewhat larger,
especially that of � 0 .

It should be noted that our ‘‘reference‘‘ value signifi-
cantly exceeds the estimate of �J= by Kaidalov and
Volkovitsky [12]. In that estimate they used the approach
[2] based on essentially a Coulomb-like model for char-
monium wave functions, and their result can be written as
�J= � 28

81�a
3, where a is the size parameter for charmo-

nium (the Bohr radius in the Coulomb-like model), for
which they used a � 0:8 GeV�1. Numerically, their esti-
mate corresponds to �J= � 0:6 GeV�3, which we believe
is too low, given the arguments presented above and the
known value of the transition amplitude � 0J= .

III. THE NUCLEON MATRIX ELEMENT

The effective operator in Eq. (2) can be directly used for
calculating the amplitude of the scattering of the heavy
quarkonium on a nucleon A� N ! B� N in terms of the
matrix element of the gluon operator ~Ea � ~Ea over the
nucleon:
-2
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T AB � 2
��������������
MAMB

p
�ABhNj

1

2
~Ea � ~EajNi; (5)

where the factor 2
��������������
MAMB

p
appears due to the relativistic

normalization of the scattering amplitude T , which nor-
malization is used in the rest of this paper in order to
facilitate direct comparison with Ref. [12].

The matrix element over the nucleon can be evaluated
following the approach [26] used for estimating similar
matrix element over pions. Namely, one writes

1

2
~Ea � ~Ea�

1

4
	 ~Ea � ~Ea� ~Ba � ~Ba
�

1

4
	 ~Ea � ~Ea� ~Ba � ~Ba


��
1

8
	Fa��


2�2��s$
00
G ; (6)

where $��G is the energy-momentum tensor of the gluon
field, and relates the term with 	Fa��
2 to the expression for
the anomalous trace of the full energy-momentum tensor in
QCD in the chiral limit:

�
b

32�2 	F
a
��


2 � $��; (7)

with b � 9 being the first coefficient in the QCD beta
function with three light (massless in the chiral limit)
quarks. Using these relations the matrix element over the
nucleon entering Eq. (5) can be written as

hNj
1

2
~Ea � ~EajNi �

4�2

b
hNj$��jNi � 2��shNj$

00
G jNi;

(8)

where �s � g2=4� is the QCD coupling constant. The first
term in the right-hand-side of Eq. (8) can be found at a
small momentum transfer q � p1 � p2 using

4�2

b
hN	p2
j$

�
�jN	p1
i �

4�2

b
mN

�N	p2
N	p1
: (9)

The only approximation made here is in neglecting the
difference between the actual mass of the nucleon mN and
its value in the chiral limit. Although the correction for this
difference can be taken into account, we neglect it, since
this correction is likely to be less than other uncertainties in
our estimates.

The last term in Eq. (8) is formally of higher order in the
QCD coupling �s, and it has been neglected in Ref. [12] in
comparison with the anomalous contribution. We argue
here however, that in the amplitude under discussion the
contribution of this term is at least as large as that of the
anomalous one. Indeed, consider the discussed matrix
element at zero momentum transfer q for the nucleon being
at rest. The Eq. (7) can then be written as the diagonal
average of the gluonic operator

hNj
1

4
	 ~Ea � ~Ea � ~Ba � ~Ba
jNi �

4�2

b
2m2

N: (10)

On the other hand the diagonal average (over a nonvacuum
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state) of the manifestly quadratic operator ~Ba � ~Ba has to be
non-negative. Thus one arrives at the inequality

hNj
1

2
~Ea � ~EajNi �

8�2

b
2m2

N; (11)

which corresponds to that for a static nucleon the second
term in the final expression in Eq. (8) is at least as large as
the first term. It can be noticed in connection with the
discussed bound that these two terms are of the same order
in Nc in the large Nc counting. It is reasonable to expect
that the chromo-magnetic average over the nucleon,
although non-negative, is substantially smaller than the
chromo-electric one, so that the actual chromo-electric
amplitude is close to the lower bound required by Eq. (11).

It is also instructive to analyze the matrix element in
Eq. (8) within the approach used by Novikov and Shifman
[26] for an estimate of a similar amplitude for dipion
production by gluonic field in the transition  0 !
J= ��, where it has been found that the contribution of
the gluonic part of the energy-momentum tensor is indeed
small in comparison with that of the anomalous term in the
relevant kinematics. According to this approach the matrix
element of the gluonic part of the energy-momentum ten-
sor is parametrized in terms of the fraction )G of the
nucleon energy and momentum carried by gluons, and
the discussed term can be written as

2��shN	p2
j$
00
G jN	p1
i � ��s)G	p

0
1

� p0
2
N

y	p2
N	p1
; (12)

where p0
1 (p0

2) is the energy of the initial (final) nucleon.
The appropriate normalization scale for the product �s)G
is the characteristic size of the heavy quarkonium. Novikov
and Shifman estimate for the case of the dipion transition
in charmonium �s)G � 0:7. By writing the expression
(12) in the static limit, one finds that in the case of the
nucleon amplitude discussed here, the inequality (11) in
fact requires the relevant parameter �s)G for the nucleon
to be at least as large as estimated in Ref. [26] for the pions:
�s)G � 0:7.

The discussed here low-energy static limit for the
nucleon matrix element in the amplitude T in Eq. (5)
is sufficient for considering the threshold limit of the
elastic J= -nucleon interaction. However in the
subthreshold process  0 � N ! J= � N with slow  0

the momentum transfer is quite substantial: �q2 � 	M2
 0 �

M2
J= 
mN=	M 0 �mN
 � 0:82 GeV2, where MJ= (M 0)

stands for the mass of the J= ( 0) resonance. The form
factor, describing the deviation of the discussed nucleon
matrix element from its value at q2 � 0 is presently un-
known. However, for the case of the similar matrix element
over pions it is known from the study of the shape of the
dipion spectrum in the transition �0 ! ��� that this
deviation is rather small. Namely, if the form factor
F	q2
 at small q2 is parametrized as F � 1� q2=M2 �
-3
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. . . , the coefficient of the q2 term corresponds to M>
1GeV (a discussion of this topic can be found in the review
[27]). The relatively large mass scale in this form factor
agrees well with the general arguments [29] for the pres-
ence of a large mass scale in the 0�� flavor-singlet had-
ronic channel. In what follows, we use the simple
parametrization of the nucleon matrix element in terms
of its value at q2 � 0 and one common form factor:

hN	p2
j
1

2
~Ea � ~EajN	p1
i �

4�2

b

�
mN

�N	p2
N	p1


� C
p0
1 � p0

2

2
Ny	p2
N	p1


�
F	q

(13)

where the constant C describes the second term in Eq. (8)
relative to the first one, and is bound by the inequality (11)
as C � 1. The form factor is normalized as F	0
 � 1,
which point is relevant for the low-energy J= -nucleon
scattering and for the real part of the elastic  0-nucleon
scattering amplitude, while for the subthreshold process
 0 � N ! J= � N one inevitably has to make assump-
tions about the behavior of the form factor. In the subse-
quent numerical estimates we use the simple pole
expression: F	q2
 � 	1� q2=M2
�1 with M� 1 GeV.
Although this assumption, when applied to the similar
form factor for the pions, would be in agreement with the
data on the dipion transitions in heavy quarkonia, we fully
acknowledge that the behavior of the nucleon matrix ele-
ment in Eq. (13) can be different, so that our estimates for
the inelastic process  0 � N ! J= � N suffer the largest
uncertainty.
TABLE I. The mass shift �MJ= and elastic J= � N cross
section predicted by different models.

Ref. ��MJ= (MeV) +J= N (mb)

[12] 3 0.3
[14] 1.5
[18] 10� 5
[19] 7� 4
[20] 4
[29] 11� 8
[30] 5
[31] 8
[32] 5
this * 21 * 17
IV. THE J= -NUCLEON INTERACTION AT THE
THRESHOLD

The expression (5) can now be applied to evaluating the
threshold amplitude of the J= -nucleon scattering:

T J= �
16�2

9
	1� C
�J= MJ= m

2
N: (14)

The corresponding scattering length is then found as

aJ= �
T J= 

8�	MJ= �mN

� 0:37 fm

�
1� C
2

�J= 
2 GeV�3

�
;

(15)

where the term in brackets indicates potential uncertainties
due to our present knowledge of the parameters C and
�J= . Accordingly, the J= N elastic scattering cross sec-
tion is estimated as

+J= N � 4�a2J= � 17 mb
�
1� C
2

�J= 
2 GeV�3

�
2
: (16)

We find that our estimate of the scattering length exceeds
076005
;

the previous one [12] by at least 7 times, and consequently
the estimated cross section is also at least 50 times larger.

Within the low density theorem the result for the elastic
scattering amplitude can be converted into an estimate of
the J= potential in nuclear matter with the density of
nucleons )N � 0:16 fm�3:

VJ= � �
T J= )N
4MJ= mN

� �21 MeV
�
1� C
2

�J= 
2 GeV�3

�
;

(17)

which can be compared with the previous estimates given
in Table I. Note that in our notation the J= mass shift
�MJ= equals to the real part of the potential [20,34,35].
Table I also shows the elastic J= � N cross section.
Moreover we do not indicate the elastic cross section
evaluated [15,36] from J= photoproduction off proton,
since there are no available data close to the threshold [37].

The significant increase in the estimated potential also
changes the conclusion about the possibility of existence of
bound states of J= in light nuclei. Indeed, the condition
for existence of a bound state in the approximation, where
a nucleus is considered as being of a uniform density )N up
to the sharp boundary at the radius RA reads as

R2
A >

�2

8MJ= 	�VJ= 

: (18)

With the minimal estimate of the binding potential in
Eq. (17) this condition is satisfied already at RA >
0:9 fm, which points to a relevance of the problem of
bound states to light nuclei. Although the criterion in
Eq. (18) is not directly applicable for light nuclei, the
resulting estimate gives credibility to the claims [13,38]
that bound states of the J= resonance in nuclei do exist
starting from light nuclei.

With regards to existence of a near-threshold bound or
resonant state of the J= and a single nucleon, the pre-
sented here consideration is generally insufficient for arriv-
ing at a definite conclusion. It should be noted, however,
that if such near-threshold singularity exists, it would
-4



TABLE II. The mass shift �M 0 predicted by different mod-
els.

Ref. ��M 0 (MeV)

[29] 700
[32] 130
this >21
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require a substantial modification of the presented here
estimates for the scattering amplitude. The estimate of
the amplitude in Eq. (14) by itself, although larger than
previously thought, generally does not require a unitary
modification. Indeed, the estimated amplitude is still below
the unitarity limit as long as the c.m. momentum satisfies
the condition p < a�1

J= � 530 MeV, so that at such mo-
menta the unitarity corrections are relatively small.
V. THE  0 INTERACTION WITH NUCLEONS

The formulas of the previous section for the interaction
of a slow J= with nucleons and nuclei can be directly
applied to calculation of the real part of the  0-nucleon
scattering amplitude, and of the energy shift of the  0 in
nuclear matter, by the obvious replacement MJ= ! M 0

and �J= ! � 0 . In interpreting the resulting formulas in
numerical terms one should keep in mind that the expected
chromo-polarizability � 0 is very likely to substantially
exceed the ‘‘reference‘‘ value 2GeV�3. In particular this
implies that the binding energy of the  0 in heavy nuclei,

V 0 � �21 MeV�

�
1� C
2

� 0

2 GeV�3

�
; (19)

should be significantly larger than the numerical value
21 MeV, which can be compared with other estimates, as
shown in Table II. This shift in the energy of the  0 can be
important for the estimates of the decay  0 ! D �D, which
becomes possible in nuclear matter due to the shifts in the
masses of the D and �D mesons [39–44].

The main difference between the nuclear interactions of
slow J= and  0 is that for the latter there exist subthres-
hold scattering processes: the charm-exchange process
 0 � N ! �c � �D, the charmonium transition scattering
 0 � N ! J= � N, and generally additional channels
where in the latter process instead of a single nucleon
excited states are being produced such as N�, ��, etc.
The processes other than  0 � N ! J= � N are beyond
the scope of the present paper. We can only comment here
that due to the discussed relation of the relevant gluonic
matrix element to the energy-momentum tensor in QCD,
the processes with nondiagonal transitions, such as N !
N�, should be suppressed with respect to the diagonal one
N ! N. It can be also noted that similar transitions from  0

to lower charmonium states other than J= should also be
suppressed in comparison with  0 ! J= , since those
076005
other states cannot be produced in the second order in
the leading E1 term of the multipole expansion.

The scattering amplitude for the process  0 � N !
J= � N with slow  0 is found from the Eqs. (5) and
(13), where in the latter equation the momentum transfer
is fixed at �q2 � 0:82 GeV2. Clearly, at such momentum
the form factor F	q2
 can be significantly different from
one. The present poor knowledge of this form factor results
in the largest uncertainty in estimating the scattering am-
plitude. In view of this uncertainty we simplify the rest of
the matrix element in Eq. (13) by neglecting the kinetic
energy of the final nucleon, thus writing the scattering
amplitude in the form

T  0J= �
16�2

9
	1� C
� 0J= 

�������������������
MJ= M 0

q
m2
NF	q

2
:

(20)

Using this amplitude one readily finds the scattering cross
section near the  0 � N threshold at the c.m. momentum pi
of the initial particles:

+	 0 � N ! J= � N
 �
1

pi

jT  0J= j
2pf

16�	M 0 �mN

2

� 16 mb
�
1GeV

pi

��
1� C
2

�
2

� jF	q2
j2; (21)

where pf � 1:0 GeV is the c.m. momentum in the final
state. The inverse-velocity, 1=pi, behavior of the cross
section is due the subthreshold kinematics of the process.
Assuming, conservatively, that the form factor jF	q2
j
suppresses the amplitude by not more than a factor of 2,
one comes to the conclusion that the cross section of the
considered process can reach tens of millibarn at rather
moderately low values of the initial momentum pi.

Furthermore, the unitarity relation implies that the am-
plitude of the considered inelastic process contributes to
the imaginary part of the amplitude T  0 of the elastic  0 �

N scattering near threshold:

ImT  0 � jT  0J= j
2

pf
8�	M 0 �mN


: (22)

Using the formula in Eq. (5) for the real part of T  0 and the
approximation in Eq. (20) for the amplitude T  0J= one
arrives at the following estimate of the significance of this
effect in terms of the ratio of the imaginary to the real part
of the elastic scattering amplitude:

ImT  0

ReT  0

�
2�
9

	1� C

j� 0J= j

2

� 0

MJ= m2
Npf

M 0 �mN
jF	q2
j2

� 1:6�
1� C
2

�
�2 GeV�3

� 0

�
jF	q2
j2: (23)

Given the expected form factor suppression, and that, as
-5
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discussed, � 0 should be larger than 2 GeV�3, one can
conclude from this estimate that the contribution of the
discussed inelastic channel to the imaginary part of the
elastic scattering amplitude is still somewhat smaller than
the real part.

The effect of the discussed imaginary part of the ampli-
tude, although relatively moderate in the scattering cross
section, gives rise to a potentially interesting effect when
considered in terms of the imaginary part of the average
potential energy V 0 of  0 in nuclear medium with the
nucleon density )N . The imaginary part of the binding
energy corresponds to the decay rate � 0 � �2 ImV 0 ,
and the contribution of the process  0 � N ! J= � N
to � 0 can be directly estimated from Eq. (20) as

� 0J= � jT  0J= j
2

pf
32�	M 0 �mN
M 0mN

)N

� 70 MeV
�
1� C
2

�
2 �� 0

2 GeV�3�
2jF	q2
j2; (24)

and is likely reaching tens of MeV at the average nuclear
density )N � 0:16 fm�3.

VI. CONCLUDING REMARKS

The approach used here to calculation of the interaction
of the J= and  0 resonances with nucleons is based on the
notion that the heavy quarkonium is a compact object and
its interaction with soft gluon field can be expanded in
multipoles. For the discussed processes such approxima-
tion should work best for the elastic J= - nucleon inter-
action at energy close to the threshold. For this reason we
believe that the estimates for this process suffer from the
least uncertainty. The largest uncertainty in the numerical
estimates for this case arises from the presently unknown
chromo-polarizability of the J= state of charmonium.
This parameter however can be measured in the decay
J= ! ‘�‘�����, thus eliminating the largest source
of uncertainty. The other unknown involved in our esti-
mates is the coefficient C for the ratio of the nonanomalous
to the anomalous part of the gluonic matrix element in
Eq. (8). The inequality (11) bounds the value of this
coefficient as C � 1, and it can be reasonably argued that
the actual value should be close to this bound. However at
present we cannot suggest a way of an independent deter-
mination of this coefficient.

The accuracy of the considered approach becomes
worse with increasing energy in the J= - nucleon system,
since the gluonic fields mediating the interaction become
less soft, thus worsening the applicability of the multipole
expansion. For this reason it is troublesome at present to
interpolate between our estimates in the near-threshold
region and other theoretical approaches to the interaction
at higher energies. For both charmonium resonances we
find the scattering cross section on a nucleon at threshold to
be quite large. For the J= � N elastic scattering the
estimated cross section near threshold is 17 mb. A com-
076005
parison of our estimates with the only available experi-
mental value [45] for the J= - nucleon total cross section:
+J= N � 3:8� 0:8��0:5 mb at

���
s

p
� 5:7 GeV suggests

a noticeable rise of the cross section toward the threshold.
At present we are not aware of any arguments that would
exclude a considerable decrease of the cross section away
from the threshold.

The issue of applicability of the multipole expansion is
still more sensitive for the case of the  0 resonance, which
naturally has larger characteristic size than the J= state.
An application of the expansion in this case is to a certain
extent justified by the very good agreement of the data on
the charmonium dipion transition  0 ! J= �� with the
description based on the same approach. However the
departure of the interaction from the considered low-
energy limit at higher energies should be more rapid than
for the case of J= . The signature of such departure is in
fact relevant already in the threshold limit for the inelastic
process  0 � N ! J= � N where the momentum trans-
fer is non-negligible. In the presented here calculation the
effect of the deviation from the strictly static limit is
encoded in the form factor F	q2
, which inevitably adds
to the uncertainty of the presented estimates. According to
the presented estimates the  0 � N elastic scattering cross
section should be still bigger than +J= N due to a larger
than for the J= chromo-polarizability of the  0 charmo-
nium state and also due to an additional contribution of the
absorptive part of the elastic scattering amplitude, arising
from the inelastic process  0 � N ! J= � N. The cross
section of the latter inelastic scattering rises toward the
threshold according to the inverse-velocity behavior and is
also expected to be large.

We believe that even with a rather conservative assump-
tion about the form factor F at the actual value of the
momentum transfer, one can conclude that the inelastic
process gives a large contribution to the decay width of the
 0 resonance in heavy nuclei. Furthermore, it should be
noted that the process  0 � N ! J= � N is not the only
one contributing to the decay. Another potentially large
contribution can come from the charm-transfer process
 0 � N ! �c � �D, which is entirely different from the
type of processes considered in this paper, hence we do
not present here any further discussion of this process.

The substantial modification of the J= and  0 proper-
ties in nuclear medium can be studied experimentally. It is
a challenge for the future Facility for Antiproton and Ion
Research (FAIR) at GSI [46–49] to provide valuable data
for further progress in understanding the QCD dynamics in
hadronic matter. To make specific quantitative predictions
for observables one should perform explicit model calcu-
lations similar to those considered in Ref. [8–10,40]. Here
we list some qualitative predictions.

The mass shift of J= and  0 can be observed through
the spectrum of the dilepton pairs emerging from the decay
of the produced charmonium resonances. It is clear that
-6
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only the J= and  0 mesons that decay inside the region of
interaction with hadronic gas have their mass shifted. If
this shift is small, i.e. few MeV, there should be only little
difference between the invariant mass of the lepton pairs
emerging from the decays inside and outside the nuclear
matter. Following our prediction the J= and  0 mass shift
is large and might be observed.

Moreover the  0 ! J= transition can be studied ex-
perimentally through a measurement of the A-dependence
of the relative yield of the J= and  0 in nuclear collisions.
Clearly in the absence of such transition the  0=J= ratio
would depend only weakly on the effective number of
nuclear nucleons involved in the interaction.
076005
Finally, a strong J= rescattering in the hadronic gas due
to a large elastic J= � N cross section should result in a
transverse component of the charmonium momentum,
which definitely can be measured.
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