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Effective theory analysis of precision electroweak data
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We obtain the bounds on arbitrary linear combinations of operators of dimension 6 in the Standard
Model. We consider a set of 21 flavor and CP conserving operators. Each of our 21 operators is tightly
constrained by the standard set of electroweak measurements. We perform a fit to all relevant precision
electroweak data and include neutrino scattering experiments, atomic parity violation, W mass, LEP1,
SLD, and LEP2 data. Our results provide an efficient way of obtaining bounds on weakly coupled
extensions of the standard model.
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I. INTRODUCTION

Despite the enormous success of the standard model
(SM), we are certain that the SM is an effective theory
with a cutoff that is much smaller than the Planck scale. A
lot of effort is being devoted to constructing and studying
extensions of the SM that predict new particles having TeV
scale masses. An integral part of this effort is constraining
the parameters of new models using experimental data. In
many cases, the constraints are obtained by directly com-
puting the deviations from the SM that are induced by new
particles in a specific model.

An effective field theory approach is a two step process.
First, one integrates out all new heavy states and obtains
effective interactions involving only fields of the SM.
These new effective higher-dimensional operators are
then used to compute the deviations from the SM and
compare with the experimental data. Following this ap-
proach one needs to make contact with experimental data
only once—by computing the effects of higher-
dimensional operators on different experiments and obtain-
ing bounds on the coefficients of such operators using the
data. Once this step is completed, one can constrain any
model just by calculating the coefficients of new effective
operators.

The effective theory approach is by no means new, and
has been applied to the electroweak data many times.
Lucid explanation on applying effective Lagrangians to
precision electroweak measurements can be found, for
example, in Refs. [1,2]. Perhaps the best known example
of the effective approach are the so-called oblique correc-
tions [3,4]. The oblique corrections only modify the SM
gauge boson propagators. The formalism of oblique cor-
rections has been extended in Refs. [5,6]. While in many
models new physics contributions are limited to two point
functions of gauge bosons, it is not always the case.

In this article we study bounds on the coefficients of
effective operators that could be relevant for the physics of
electroweak symmetry breaking. We assume that just
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above the electroweak scale the SU�2�L �U�1�Y gauge
symmetry is linearly realized and therefore the field con-
tent involves a scalar electroweak doublet. This determines
the power counting and our effective Lagrangian

L � LSM � aiOi (1)

contains operators of dimension 6 in addition to the SM
Lagrangian. Therefore each coefficient ai has the dimen-
sion of inverse mass squared and can be conveniently
represented as ai �

1
�2
i
. In our analysis, we include 21

operators—two of which correspond to the S and T pa-
rameters [4]. Our choice of operatorsOi is explained in the
next section. In summary, we choose operators that con-
serveU�3�5 flavor symmetry of the SM, as well as conserve
CP. We also restrict ourselves to operators that are strin-
gently constrained by the usual set of electroweak preci-
sion measurements. There is a number of dimension 6
operators that are flavor and CP conserving but the avail-
able data is not accurate enough to place stringent bounds
on the corresponding �i’s. The bounds on the scales �i of
the 21 individual operators in our basis are all about 1 TeV
or higher. In contrast, the bounds on flavor conserving four-
quark contact interactions or operators involving quarks
and gluons are usually much lower. While it is exciting that
operators suppressed by relatively low scales � are al-
lowed, such operators are not very useful for constraining
new models.

Because of the spectacular agreement between the SM
and precision experiments the allowed deviations from the
SM are small. Therefore, when computing the effects of
operatorsOi in Eq. (1) we can restrict ourselves to comput-
ing only the interference terms between LSM and the
operators Oi. In other words, we work to the linear order
in the coefficients ai. Expansion in powers of ai corre-
sponds to expansion in E2

�2
i

or v
2

�2
i
, where E is the character-

istic energy scale of a given process and v is the Higgs
vacuum expectation value (vev). Given that E; v� �i,
neglecting the terms quadratic in ai is a good approxima-
tion. The SM predictions can be computed to arbitrary
accuracy since they do not depend on ai. We then compare
-1  2005 The American Physical Society
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the results with the experimental data and compute the �2

distribution as a function of ai. Since our results are linear
in the coefficients ai, �2 is quadratic in ai and can be
written as

�2�ai� � �
2
min � �ai � âi�Mij�aj � âj�; (2)

where âi are the values of ai that minimize �2.
The main result of our paper is the matrix Mij and the

vector âi in Eq. (2). We would like to stress an obvious
point here—the coefficients Mij and âi are constants that
we obtain by fitting to experimental data. Given this,
admittedly, large set of numbers one can compute the
bounds on any linear combination of operators Oi in our
basis. Integrating out heavy particles from an extension of
the SM will, in general, lead to a set of operators Oi whose
coefficients are correlated by the underlying theory. Since
we are working in the linear approximation in terms of the
coefficients ai, the effects of correlated operators are also
linear and the analysis of bounds on a new model remains
very simple. Readers interested in applying our work to
their favorite model can use Eq. (2) and skip all the details
on how we obtain the �2 distribution.

An effective Lagrangian analysis has been performed in
many cases in the past. For examples see Refs. [1,2,7–11].
Reference [10] is perhaps the closest to our approach, but it
only includes the operators constrained by the Z-pole
measurements and considers bounds on individual opera-
tors. We focus on a broader set of effective operators and
use the results from LEP1, SLD, LEP2, as well as lower
energy experiments to bound the coefficients of the effec-
tive operators. The most important set of precision elec-
troweak measurements come from LEP and SLD. Since
these experiments no longer collect data, the precision of
the data relevant for our analysis is not going to signifi-
cantly improve in the near future.

In the next section we enumerate the operators in our
basis. We further explain what motivates our choice of the
21 operators. In Sec. III, we list the experiments that we use
to obtain the bounds on the effective operators. We outline
our calculations of the interference terms between the SM
and the additional operators in Sec. IV, and describe the
numerical analysis in Sec. V. We summarize the results in
Sec. VI. Our numerical results are presented in
Appendix A. We show how to use these results in
Appendix B by reproducing the bounds on the S and T
parameters. Another example is provided in Appendix C,
where we illustrate our procedure on Z0 gauge bosons and
compare our results with Ref. [12]. We performed the
numerical analysis using Mathematica, and we make the
notebooks available online. A few comments about our
code are contained in Appendix D.

II. OPERATORS

We assume that just above the electroweak symmetry
breaking scale, the effective theory is that of the SM with
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one Higgs doublet. In our effective theory the SU�2�L �
U�1�Y symmetry is linearly realized. The assumption of
one Higgs doublet is not at all relevant since it is only the
vev of the Higgs that enters the analysis. Since the elec-
troweak symmetry is linearly realized the physical Higgs
and the electroweak breaking vev are assigned mass di-
mension one. The vev appearing in the Lagrangian is al-
ways raised to positive powers. In case of nonlinearly
realized electroweak symmetry, the expansion parameter
is the momentum divided by the vev times 4�. A number
of authors studied electroweak precision data in nonlinear
realizations of electroweak symmetry, for examples see
Refs. [8,13,14].

A complete set of dimension-6 operators consistent with
the SU�3� � SU�2�L �U�1�Y , baryon and lepton number
conservation and the linearly realized electroweak symme-
try has been presented in Ref. [1]. There are 80 operators in
the basis of Ref. [1] after the leading order equations of
motion are used to obtain an independent set of operators
[15,16].

We are interested in constraining models of new physics
pertinent to the electroweak symmetry breaking. Processes
that contribute to flavor or CP violation have to be sup-
pressed by scales much higher than the electroweak scale.
A typical suppression for four-fermion operators that con-
tribute to the K � �K mass difference is about 103 TeV [1].
The bounds are even more stringent in the lepton sector:
about 104 TeV suppression is required for the electric
dipole moment of the electron [17,18]; the limits on the
�! e� decay also imply 104 TeV suppression for the
contributing operators [1]. Thus it is natural to assume
that the electroweak scale and the scales associated with
flavor and CP violation are well separated. Processes in-
volving the third generation are an obvious exception.
Experiments have limited statistics and new flavor-
dependent physics at TeV scale is possible. It is plausible
that the third generation actively participates in the elec-
troweak symmetry breaking. This interesting case merits a
separate study but is beyond the scope of this article. We
therefore impose U�3�5 flavor symmetry on our operators.
A different U�3� acts on the left-handed quarks and leptons
as well as on the right-handed quarks and leptons.
Consequently, our operators are unchanged when written
in terms of either mass or gauge eigenstates.

Among the 80 operators of dimension 6 listed in
Ref. [1], there are 28 operators that do not conserve CP
or flavor U�3�5, or violate both. Among the remaining 52
operators there are 18 operators that only involve quark
and/or gluon fields. The bounds on such operators are poor
since the precision of hadron experiments is not compa-
rable to that of the e�e� machines. Such operators are
therefore not helpful in constraining models with new
physics at the TeV scale.

Thus, there are 34 operators that conserve flavor and CP
and contain either electroweak gauge bosons or leptons and
-2
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perhaps some quark fields. Six of these 34 operators are not
observable in current experiments: either they contribute to
dimension 4 couplings in the SM Lagrangian or they
involve the Higgs doublet only.

We are finally left with 28 operators. Seven operators in
this set are of the form

OfF � i� �f��D�f�F��; (3)

where f represents a fermion and F�� is the field strength
for the hypercharge or weak gauge bosons. These operators
can only contribute to the Z-pole measurements. At other
energies the interference term between the SM contribu-
tion and the contribution of operators OfF vanishes since
one of the contributions is real and the other is imaginary.
For the same reason the interference term at the Z pole is
suppressed by the ratio of the Z width to the Z mass. We
therefore neglect the operators OfF in our analysis.

We choose the following basis for the remaining 21
operators that are the focus of our work. Our notation is
standard: q and l represent the three families of the left-
handed quark and lepton fields, respectively. The right-
handed fields are labeled u, d, and e. We omit the family
index which is always summed over due to the flavorU�3�5

symmetry. We adopt the notation of Ref. [1] with minor
modifications and in a few cases our operators do differ
from Ref. [1] by a numerical factor.

The operators that contain only the gauge bosons and
Higgs doublets are

OWB � �hy#ah�Wa��B��; Oh � jhyD�hj2; (4)

where Wa�� is the SU�2� field strength, B�� the hyper-
charge field strength, and h represents the Higgs doublet.
There are 11 four-fermion operators. These are

Osll �
1

2
�l��l��l��l�; Otll �

1

2
�l��#al��l��#

al�;

(5)

Oslq � �l��l��q��q�; Otlq � �l��#al��q��#
aq�;

(6)

Ole � �l��l��e��e�; Oqe � �q��q��e��e�; (7)

Olu � �l��l��u��u�; Old � �l��l��d��d�; (8)

Oee �
1

2
�e��e��e��e�; Oeu � �e��e��u��u�;

Oed � �e��e��d��d�:
(9)

The operators in Eqs. (5) and (6) involve only left-handed
fields, in Eqs. (7) and (8) 2 left-handed and 2 right-handed,
while in Eq. (9) all right-handed fields. There are 7 opera-
tors containing 2 fermions that alter the couplings of
fermions to the gauge bosons
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Oshl � i�h
yD�h��l��l� � h:c:;

Othl � i�h
y#aD�h��l��#

al� � h:c:;
(10)

Oshq � i�h
yD�h��q��q� � h:c:;

Othq � i�h
y#aD�h��q��#

aq� � h:c:;
(11)

Ohu � i�h
yD�h��u��u� � h:c:;

Ohd � i�hyD�h��d��d� � h:c:;
(12)

Ohe � i�hyD�h��e��e� � h:c:: (13)

Finally, there is an operator that modifies the triple gauge
boson interactions

OW � 'abcWa�� Wb*� W
c�
* : (14)

Eqs. (4) through (14) define our basis of the 21 operators.
We denote the coefficients ai in the Lagrangian in

Eq. (1) using the same indices as the corresponding opera-
tors, so that the effective Lagrangian is

L � LSM � aWBOWB � ahOh � . . .� aWOW: (15)

Note that the first two operators in our basis, OWB and Oh,
are in a one-to-one relation with the S and T parameters
[4]. The correspondence is

aWB �
1

4sc
+

v2
S; ah � �2

+

v2
T; (16)

where hhi � �
0

v=
���
2

p �, + is the fine-structure constant, s

and c are the sine and cosine of the weak mixing angle,
respectively. The U parameter is related to a dimension-8
operator in our power counting scheme and therefore does
not appear in our analysis.
III. EXPERIMENTS

The three most precisely measured electroweak sector
observables: +, GF, and MZ are taken to be the input
parameters, from which the SM gauge couplings and the
Higgs vev are inferred. Predictions for experiments are
computed in terms of the inputs and the coefficients of
the new operators. The experimental quantities we use to
constrain the coefficients of operators are listed in Table I.
Detailed descriptions and references for individual experi-
ments can be found in many reviews, for example, in
Refs. [26,30].

The list of experiments in Table I does not include the
anomalous magnetic moment of the muon [31], one of the
most precisely measured electroweak quantities. The op-
erators that contribute directly to �g� 2� involve left and
right-handed fields and are not U�3�5 invariant. There are
also loop contributions from operators like OWB, OW , and
many four-fermion operators. Such loop contributions are
-3



TABLE I. Relevant measurements

Standard Notation Measurement Reference

Atomic parity violation QW�Cs� Weak charge in Cs [19]
QW�Tl� Weak charge in Tl [20]

DIS g2L; g
2
R ��-nucleon scattering from NuTeV [21]

R� ��-nucleon scattering from CDHS and CHARM [22,23]
1 ��-nucleon scattering from CCFR [24]

g�eV ; g
�e
A �-e scattering from CHARM II [25]

Z-pole �Z Total Z width [26]
#0
h e�e� hadronic cross section at Z pole [26]

R0
f�f � e;�; 4; b; c� Ratios of decay rates [26]

A0;fFB�f � e;�; 4; b; c� Forward-backward asymmetries [26]
sin25lepteff �QFB� Hadronic charge asymmetry [26]

Af�f � e;�; 4; b; c� Polarized asymmetries [26]

Fermion pair #f�f � q;�; 4� Total cross sections for e�e� ! ff [26]
production at AfFB�f � �; 4� Forward-backward asymmetries for e�e� ! ff [26]
LEP2 d#e=d cos5 Differential cross section for e�e� ! e�e� [27]

W pair d#W=d cos5 Differential cross section for e�e� ! W�W� [28]
MW W mass [26,29]
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divergent and require introducing counterterms in the form
of operators excluded from our analysis due to their lack of
U�3�5 invariance. An operator analysis of contributions to
the muon �g� 2� can be found in Ref. [32].

For a given observable X, our prediction can be written
as:

Xth � XSM �
X
i

aiXi; (17)

where Xth is the prediction in the presence of additional
operators, XSM is the standard model prediction andP
iaiXi are corrections from our new operators. In practice,

the SM predictions are computed to the required accuracy
in perturbation theory and are well known for all the
measurements we use. Note that the corrections Xi arise
in two different ways. First, an operator can generate a new
TABLE II. Measurements influenced by differ
direct corrections only. When an operator cont
corresponding shift of the input parameter does a

Operator(s) shift MW Z-pole DIS

OWB +;MZ
p p

Oh MZ
Otll GF

p

Osll, Ole
p

Oee
Oslq; O

t
lq; Olu; Old

p

Oeq;Oeu; Oed
Othl GF

p p

Oshl; Ohe
p p

Ohu;Ohd;O
s
hq;O

t
hq

p p

OW
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Feynman diagram contributing to a given physical process.
For example, a four-fermion operator Ole enters the
e�e� ! ���� process as a new diagram, in addition to
the Z and � exchange diagrams. We call this ‘‘direct’’
correction. Second, some operators can shift the input
parameters, because they add new diagrams to the physical
processes based on which +, GF, and MZ are measured.
Thus, the input parameters determined from these observ-
ables are different from their SM values. Since all the other
observables are calculated from these input parameters,
they will inevitably receive indirect corrections from the
shifts. We summarize the direct and indirect effects of our
operators in Table II.

Because of their high statistics, the Z-pole data and
several best measured low-energy observables dominate
the bounds on the coefficients ai whenever such measure-
ent operators. The check marks,
p

, indicate
ributes to one of the input parameters, the
ffect all measurements.

QW e�e� ! ff (LEP2) e�e� ! W�W�

p p p

p

p

p

p p

p p

p p p

p p p

p p

p
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ments constrain an operator. This is the case for the opera-
tors that shift the input parameters and the operators of the
form Ohf, which change the couplings between the Z
boson and the fermions. The four-fermion operators do
not contribute to the Z-pole measurements at the linear
order, that is the interference term between the SM con-
tribution and the four-fermion operators vanishes at the Z
pole. Therefore, to constrain four-fermion operators we
have to include the cross sections for fermion-pair produc-
tion at LEP2. We also include the differential cross sections
for the W pair production to constrain the operator OW .
There are several operators, in addition toOW , that alter the
cross section for W pair production. However, these op-
erators are well bounded by other measurements and theW
pair production does not contribute significantly to the
bounds on their coefficients.
IV. CALCULATIONS

In this section we describe the computation of the effects
of dimension-6 operators. Since a lot of work on this topic
is already available in the literature, we quote the results
whenever available. We have independently verified all the
quoted results.

We work in the linear approximation in terms of the
coefficients ai. As we indicated in the previous section,
there are two ways that terms linear in ai arise. First, as a
result of additional Feynman diagrams due to the
dimension-6 operators. In this case we simply compute
the interference terms between the new operators and the
tree-level contribution in the SM. Second, a few of our
operators redefine the input parameters inferred from the
measurements of +,MZ, and GF. We use the tree-level SM
results and expand to the linear order in the deviations
induced by the coefficients ai. One of the most transparent
ways of dealing with the shifts of the input parameters is
described in Ref. [9].

To track down all the shifts, we find it convenient to use
the following parameters in the SM Lagrangian: e, s, and
MZ; or equivalently g, g0, and MZ. They are related to the
input parameters and the new operators as

e2 � e20�1� 2v2scaWB�; (18)

M2
Z � M

2
Z0

�
1� 2v2scaWB �

v2

2
ah

�
; (19)

1

v2
�

1

v20
� 2athl � a

t
ll; (20)

where

+ �
e20
4�
; GF �

1���
2

p
v20

�
e20

4
���
2

p
s20c

2
0M

2
Z0

: (21)

Parameters with subscripts 0 are the values derived in the
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absence of any additional operators. Equations (18) and
(19) are the shifts due to the S and T parameters.

The corrections induced by S and T are given in Ref. [4],
and can be easily translated to our notation using Eq. (16).
Reference [4] does not provide formulas for LEP2, but the
extension to LEP2 is simple. The operator OWB also con-
tains a triple gauge boson coupling, which contributes to
the e�e� ! W�W� process. We discuss this at the end of
this section.

The operators with 2 Higgs doublets and 2 fermions,
Ohf, alter the couplings between gauge bosons and fermi-

ons. The changes to the Z-fermion couplings, gfV and gfA,
are given in Ref. [10]. (The v2 in Ref. [10] is defined as one
half of our value.) These changes affect all measurements
involving a Z-exchange diagram. We have calculated the
SM tree-level predictions in terms of arbitrary gfV and gfA,
so it is easy to obtain the corrections induced by Ohf. In
addition, the operators Othl and Othq change the couplings
of the W boson to the leptons and quarks:

g! g�1� v2athl� �W � leptons coupling�; (22)

g! g�1� v2athq� �W � quarks coupling�: (23)

These changes enter, besides the shift to GF, the calcula-
tions of the e�e� ! W�W� cross section in the � ex-
change channel, and the �-nucleon scattering charged
current cross sections.

The operator Otll shifts the value of the input parameter
inferred from GF. All other four-fermion operators do not
contribute to the Z-pole measurements. However, they
contribute to the low-energy measurements and LEP2
measurements. We now enumerate the effects of four-
fermion operators on the relevant observables:
(1) T
-5
he weak charges measured in atomic parity viola-
tion experiments

QW�Z;N� � �2��2Z� N�C1u � �Z� 2N�C1d�:

(24)

C1u and C1d receive corrections

!C1u �

���
2

p

4GF
��aslq � a

t
lq � aeu � aqe � alu�;

(25)

!C1d �

���
2

p

4GF
��aslq � a

t
lq � aed � aqe � ald�:

(26)
(2) �
-nucleon scattering. The 4-fermion operators af-
fect both the neutral current and the charged current
cross sections. The corrections to the couplings
guL; g

d
L; g

u
R; g

d
R are
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!guL;eff �
1

2
���
2

p
GF

��aslq � �2guL � 1�atlq�; (27)

!gdL;eff �
1

2
���
2

p
GF

��aslq � �2gdL � 1�atlq�; (28)

!guR;eff �
1

2
���
2

p
GF

��aslu � 2guRa
t
lq�; (29)

!gdR;eff �
1

2
���
2

p
GF

��asld � 2gdRa
t
lq�: (30)

These corrections are ‘‘effective’’ in the sense that
they are not corrections to the Z-fermion couplings
and thus the formulas above only apply to the
�-nucleon scattering. The corrections to the mea-
sured quantities can be easily calculated from the
above equations, for example, g2L � �guL�

2 � �gdL�
2

measured at NuTeV receive the correction

!�g2L� � 2guL!g
u
L;eff � 2gdL!g

d
L;eff : (31)
(3) �
-e scattering. The corrections to the coupling g�eV
and g�eA are

!g�eV;eff �
1

2
���
2

p
GF

��asll � a
t
ll � ale�; (32)

!g�eA;eff �
1

2
���
2

p
GF

��asll � a
t
ll � ale�: (33)

Again, these corrections are effective that is only
apply to the �-e scattering process.
(4) F
ermion-pair production at LEP2 energies. The dif-
ferential cross sections in the presence of the contact
operators are given, for example, in Ref. [33].
Finally, the operators OW and OWB alter the triple gauge
boson couplings. After substituting the vev for the Higgs
doublet, the two operators yield the following couplings

!L � iaWBv
2gW�

�W
�
� �cA

�� � sZ���

� 6iaWW
��
� W�*

� �sA�* � cZ
�
*�: (34)

The tree-level e�e� ! W�W� differential cross section is
calculated in Ref. [34] for arbitrary triple gauge boson
couplings. Our effective couplings, Eq. (34), correspond
to the terms multiplying 1V and *V in Eq. (2.1) in Ref. [34].
To obtain the cross section we substitute

!1� �
v2c
s
aWB; (35)

!1Z � �
v2s
c
aWB; (36)
075009
!*� � !*Z �
3v2g
2
aW: (37)

where !’s denote the deviations from the SM values.
V. TOTAL �2 DISTRIBUTION

In the previous section, we described how to compute
the changes of observable quantities induced by the opera-
tors. Given theses results we calculate the total �2 distri-
bution. For noncorrelated measurements,

�2�ai� �
X
X

�Xth�ai� � X exp�2

#2
X

; (38)

where Xexp is the experimental value for observable X and
#X is the total error both experimental and theoretical. The
experimental values for the observables are obtained from
the references cited in Table I. The input parameters and
the SM predictions, except those for LEP2, are obtained
from Ref. [30], where the following input parameters are
used:

mHiggs � 113 GeV; mtop � 176:9 GeV;

+s�MZ� � 0:1213
(39)

in addition toMZ, +, and GF. The uncertainty in the values
of the input parameters are incorporated as theory errors on
the SM predictions and combined later with experimental
errors. For the DIS measurements of CDHS, CHARM and
CCFR, we use the SM predictions in Ref. [35], but have
corrected them for the small differences of input parame-
ters [36]. The sensitivities of the SM predictions for the
e�e� ! f�f��f � e� cross sections at LEP2 and the
e�e� ! W�W� cross section to small changes of the
input parameters are negligible compared to experimental
errors, as we have verified using ZFITTER [37] and
RacoonWW [38]. Therefore, we use the SM predictions
provided in the corresponding experimental references.
The SM prediction for the e�e� ! e�e� (LEP2) differ-
ential cross section is calculated using the program
BHWIDE [39], assuming the same input parameters as in
Eq. (39).

The SM predictions agree with the experimental values
well, except for a significant discrepancy for g2L obtained
by the NuTeV collaboration [21]. We include the NuTeV
result in our calculation, but one could easily omit this
result from the �2 calculation. We also note that the LEP2
results for the e�e� ! qq total cross sections are larger
than the SM predictions fairly consistently across different
energies probed by LEP2. If we tried to constrain the
coefficients of four-fermion operators with two leptons
and two quarks using only the e�e� ! qq total cross
sections, we would get relatively weak bounds on the
coefficients ai of such operators. Weak bounds mean that
the contributions quadratic in the corrections in ai’s should
not be neglected, contrary to what we do. However, this
-6
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discrepancy is not supported by other data that also con-
strains the same operators. A combined fit to all observ-
ables does not yield any coefficients ai large enough to
invalidate the linear approximation. Therefore we suspect
this pattern is caused by a systematic error.

Higher order terms in perturbation theory alter our tree-
level calculation of the interference terms between the SM
and the additional operators. The most important effect in
electron-positron scattering is the initial-state QED radia-
tion. In order to assess the effect of the radiative correc-
tions, we compare the bounds on the 4-fermion contact
operators for the e�e� ! l�l��l � e� and e�e� ! qq
channels with the results given in Ref. [26], Table 8.13.
In Ref. [26], the e�e� ! qq channel is constrained using
the inclusive hadronic total cross sections. The e�e� !
l�l��l � e� channel is constrained using the total cross
sections and asymmetries for l � �; 4 and assuming equal
coefficients for the contact terms with � and 4. For the
purpose of comparison we use the same data sets and carry
out the same fits. In our final results, of course, all the data
is taken into account to obtain the bounds on contact
operators.

The comparison was carried out for different contact
interactions. (The coefficients of 4-fermion operators in
Ref. [26] differ from our coefficients ai by a factor of 4�.)
Several radiative corrections and second order terms in ai
are considered when obtaining bounds on these coeffi-
cients1. We have obtained bounds for the coefficients of
operators neglecting radiative corrections but including
second order terms in ai. Except for one case, the differ-
ences between our bounds and the bounds in Ref. [26] for
errors on ai are less than 20%, and for centra values of ai
are less than 0:2#. When translated to the scale �, the
difference is less than 10%, which is satisfactory for our
purposes. The exception is the bound for the ‘‘LR’’ inter-
action for e�e� ! qq channel, which corresponds to alu
and ald in our notation, in which case the errors quoted in
Ref. [26] are much more asymmetric than our estimate of
errors. However, the central value of the coefficients differs
less than 0:2#. Since the contact terms with two leptons
and two quarks can be constrained much more stringently
by the low-energy measurements, this discrepancy cannot
significantly affect our global fit.

For e�e� ! f�f� �f � e� channels, we have also
implemented the initial-state photonic correction to the
order O�+�, which includes initial-state soft photon expo-
nentiation and hard photon emission [37]. This correction
is the largest radiative correction and we have obtained
better agreement with Ref. [26] by including it. Except for
the LR interaction in the e�e� ! qq channel mentioned
previously, the discrepancies between our errors and cen-
1The radiative corrections are not mentioned in Ref. [26], but
are described in results of individual experiments at LEP2. See,
for example, Refs. [27,40].
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tral values of ai and the results of [26] are within 10% and
0:1#, respectively. The remaining discrepancy likely arises
from the final state radiative correction, pair production
correction and higher order corrections, that we have not
implemented.

We can safely neglect effects that contribute at a 10%
level to our estimates of the coefficients ai, we have never-
theless included the first order initial-state QED correc-
tions to e�e� ! f�f� �f � e� channels in our
calculation of �2. A factor of �1� +s=�� is also used to
account for the QCD corrections for the hadronic final
states [41].

Equation (38) must be modified to account for the
correlations between different measurements. There are
three categories of data for which the correlations between
measurements cannot be neglected. These are the correla-
tions between Z-pole observables [26], the experimental
error correlations for the hadronic total cross sections at
LEP2 energies [26]; and the theoretical and experimental
error correlations for e�e� ! e�e� differential cross sec-
tions [42]. Including correlations,

�2�ai� �
X
p;q

�Xpth�ai� � X
p
exp��#2��1

pq �X
q
th�ai� � X

q
exp�; (40)

where the error matrix #2 is related to the standard devia-
tions #p and the correlation matrix 9pq as follows

#2
pq � #p9pq#q: (41)

Note that often the correlations for the theoretical, statis-
tical and systematic errors are different, and one should
take this into account when computing the final error
matrix.

Numerical results for the �2 distribution are presented in
Appendix A.

VI. SUMMARY

We have obtained bounds on the coefficients of 21
dimension 6 operators in the SM. Our analysis is linear
in the coefficients of these operators. Therefore, the devia-
tions from the SM predictions arise as interference terms
between the SM and the dimension 6 operators. As is often
the case, integrating out heavy particles leads not to just
one but to several operators whose coefficients are related
in terms of the masses and coupling constants of the heavy
states. A global analysis of precision electroweak measure-
ments must take into account all new operators induced by
integrating out heavy states and account for relations be-
tween the coefficients of such operators. Our analysis
allows obtaining bounds not just on each individual opera-
tor, but on their linear combinations as well. Doing so, in
the linear approximation, does not require complicated
numerical analysis, and can be done efficiently using our
results. Of course, if the new physics contributions are
‘‘oblique’’ or ‘‘universal’’ only, [4,6], one does not need
the whole set of 21 operators. A subset of our operators that
-7



ZHENYU HAN AND WITOLD SKIBA PHYSICAL REVIEW D 71, 075009 (2005)
only modify SM gauge boson propagators has already been
considered in Refs. [4,6]

Our analysis is accomplished by computing the �2

distribution as a function of the coefficients ai. In the linear
approximation, �2 takes the form shown in Eqs. (2) and
(A1). We concentrated on flavor and CP conserving op-
erators. Such operators are allowed in the SM when sup-
pressed by scales of the order of a few TeV. Generic flavor
and CP violating operators must be suppressed by much
higher scales. This wide separation of characteristic scales
suggests that the electroweak symmetry breaking and the
flavor and CP violating sectors can be analyzed indepen-
dently of one another. We excluded from our analysis
operators that are not tightly constrained by the data, for
example, operators involving only quarks and gluons. Such
operators are not helpful in constraining extensions of the
SM.

The bounds on the coefficients of individual operators,
by which we mean that the SM Lagrangian is amended by
only one operator at a time, can be easily obtained from

Eq. (2). The 1# bound on a coefficient ak is âk �
������������
M�1

kk

q
,

where Mkk indicates a diagonal element of M and is not
summed over k. The fourth roots of the diagonal elements,��
�

p
4�Mkk, vary from 1:3 TeV to 17 TeV, which is a mea-

sure of how rapidly �2 changes as a function of ak �
1
�2
k
.

What is interesting is that the eigenvalues of M vary
over a much wider range, their fourth roots span from
100 GeV to 21 TeV. In particular, the fourth roots of the
four smallest eigenvalues are 100, 290, 380 and 520 GeV.
This means that four linear combinations of the operators
are much more weakly constrained than the individual
operators. The emergence of these ‘‘weakly bounded di-
rections’’ in the operator space is an interesting byproduct
of our analysis. Of course, one can not trust the exact
bounds on the ‘‘weakly bounded’’ operators. The linear
analysis is not applicable when the suppression scales are
so low. One needs to work to the quadratic order in the
coefficients to reliably determine the bounds. However, it
is clear that the bounds on such linear combinations of
operators are quite weak and below 1 TeV. It is interesting
to find out if there are heavy particles that yield one of the
weakly constrained combination of operators when inte-
grated out. This possibility is currently being investigated.
TABLE III. Coefficients âi and v̂i described in Eq. (A1). To obtain
10�8 �GeV��2 and to obtain v̂i multiply times 106 �GeV�2.

ai aWB ah asll atll aslq

âi 4:1102 �9:3102 �5:0 �5:8 1:7102 �1
v̂i 2:2102 19: 49: 76: �1:1102 �2
ai aeu aed ashl athl ashq

âi 7:5102 1:0103 2:3102 19: �77: 14
v̂i 1:0102 15: �6:4102 �88: 1:0102 1
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APPENDIX A: THE MATRIX

Our main result can be presented in two alternative ways

�2 � �2
min � �ai � âi�Mij�aj � âj�

� �2
SM � aiv̂i � aiMijaj: (A1)

In the equation above, �2
min is the minimum of �2 in the

presence of dimension 6 operators, and �2
SM is the value of

�2 when all coefficients ai are zero. The matrix M is
symmetric and positive definite. The first equation makes
apparent the values of coefficients ai that minimize �2,
which we call âi. The second equation is more convenient
to use if only a few coefficients ai are not equal to zero.

The two equivalent sets of coefficients âi and v̂i are
presented in Table III. The elements of matrix M are listed
in Table IV. The dimensions of these elements are easy to
read off Eq. (A1) since �2 is dimensionless and ai’s have
dimension inverse mass squared.

The numerical values of the coefficients âi and Mij

depend on both the experimental values and the SM pre-
dictions. Should any of the SM input parameters change in
the future, this affects the best fit values âi in Eq. (A1), but
not the matrix M. The matrix Mij only depends on the
sizes of errors for different measurements. Thus, M would
change if experimental precision improves in the future.
The central, or best fit, values âi depend on all quantities:
central values of experiments, the errors, and the SM
predictions.

At tree-level, SM predictions depend on well-measured
quantities. However the strong coupling constant, the top
mass and the Higgs mass all enter at one-loop order. The
least known of the three is the Higgs mass and it is
interesting to know how the predictions change as the
Higgs mass is varied. It is very easy to incorporate changes
values of âi one needs to multiply the numbers in the table times

atlq ale aqe alu ald aee

:1102 �0:3 �3:7102 2:5102 4:3102 7:5
:4102 29: 1:4102 �36: �68: 44:
athq ahu ahd ahe aW

: �3:0102 98: 4:6102 �4:4102

:7102 71: 63: 1:8102 1:0
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TABLE IV. The elements of the matrix M. Since it is a symmetric matrix we do not list the redundant elements. The matrix is equal to the numbers listed times 1012�GeV�4.
We abbreviate the powers 10n as en to save space.

aWB 9:0e4
ah 2:3e4 7:5e3
asll �78: �51: 5:8e2
atll �3:9e4 �1:2e4 6:7e2 2:2e4
aslq �1:3e3 �1:2e2 0: 1:5e2 2:7e3
atlq �6:8e2 �2:2e2 0: 5:9e2 4:6e2 2:9e3
ale �56: �9:7 2:8e2 3:0e2 0: 0: 1:3e3
aqe 1:3e3 72: 0: �1:4e2 �2:7e3 �7:4e2 0: 2:8e3
alu �3:6e2 28: 0: �1:1e2 1:2e3 �2:5e2 0: �1:2e3 7:1e2
ald �7:1e2 �20: 0: 66: 1:4e3 3:3e2 0: �1:4e3 5:8e2 7:8e2
aee �59: �42: 5:3e2 6:1e2 0: 0: 2:6e2 0: 0: 0: 4:8e2
aeu 7:8e2 1:1e2 0: �2:1e2 �1:3e3 �9:1e2 0: 1:4e3 �4:8e2 �7:3e2 0: 8:4e2
aed 4:2e2 �83: 0: 1:7e2 �1:3e3 5:5e2 0: 1:3e3 �7:3e2 �6:8e2 0: 4:7e2 8:8e2
ashl �1:7e4 �4:5e3 1:5e2 9:7e3 �5:9e2 8:3e2 17: 3:7e2 �3:9e2 �1:6e2 1:3e2 66: 3:8e2 5:5e4
athl 5:9e4 1:7e4 �43: �3:0e4 �7:1e2 �6:6e2 �31: 6:6e2 �82: �3:4e2 �32: 4:9e2 47: 1:5e4 6:3e4
ashq �1:8e3 �1:4e3 0: 2:7e3 �2:6e3 �72: 0: 2:6e3 �1:2e3 �1:4e3 0: 1:2e3 1:4e3 �6:6e3 �8:7e3 6:0e3
athq �9:2e3 �4:4e3 0: 8:7e3 �49: 3:5e2 0: 56: �1:4e2 �36: 0: �64: 1:8e2 �2:4e4 �3:1e4 7:7e3 2:6e4
ahu �5:7e2 �6:4e2 0: 1:2e3 �1:2e3 �4:0 0: 1:2e3 �5:1e2 �6:9e2 0: 5:7e2 6:7e2 �3:7e3 �4:4e3 2:2e3 4:1e3 1:4e3
ahd 1:2e3 4:2e2 0: �8:1e2 �1:4e3 �1:3e2 0: 1:4e3 �6:9e2 �7:2e2 0: 6:7e2 7:3e2 3:3e3 3:6e3 4:2e2 �2:9e3 1:6e2 1:1e3
ahe �2:8e4 �4:6e3 �1:1e2 9:0e3 4:6e2 �1:6e2 23: �4:5e2 2:5e2 2:4e2 �96: �1:7e2 �3:0e2 �2:5e4 �3:2e4 4:5e3 1:7e4 2:3e3 �2:1e3 3:2e4
aW 7:7 4:5 0: �4:2 0: 0: 0: 0: 0: 0: 0: 0: 0: 6:3 �1:7 0: 0:8 0: 0: 1:4 2:6

aWB ah asll atll aslq atlq ale aqe alu ald aee aeu aed ashl athl ashq athq ahu ahd ahe aW
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FIG. 1. Allowed region for S and T at 90% confidence level
obtained using Eq. (B1).
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of the Higgs mass with respect to the assumed reference
value of 113 GeV in Ref. [30], which we use for the SM
predictions. The dominant contribution from the Higgs are
corrections to gauge boson propagators and can be incor-
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porated by shifting the S and T parameters [4]. Higgs mass
different than its reference value shifts the best fit value âi
as follows

<âWB �
+

48�scv2
log

�
m2
h

m2
h;ref

�
;

<âh �
3+

8�c2v2
log

�
m2
h

m2
h;ref

�
;

(A2)

where only the leading logarithm in the Higgs mass is kept
[4]. This is a good approximation as can be verified by
comparing with the exact one-loop result given in
Ref. [43].
APPENDIX B: S AND T PARAMETERS

In our procedure, the S and T parameters correspond to
aWB and ah as

S �
4scv2aWB
+

; T � �
v2

2+
ah:

Setting all ai, but aWB and ah, to zero in Eq. (A1), we get
�2 � �2
0 � �aWB ah�

�
9:01016 2:31016

2:31016 7:51015

��aWB
ah

�
� 2:2108aWB � 1:9107ah

� �2
0 � �S T�

�
5:3102 �4:6102

4:6102 5:0102

�� S
T

�
� 17:S� 4:9T: (B1)
A simultaneous fit to S and T using the above equation
gives
S � �0:05� 0:10; T � �0:04� 0:10:
The 1# error quoted above is obtained by projecting the
!�2 � 1 ellipse onto the corresponding axis. The plot of
the 90% confidence level contour is presented in Fig. 1.
Comparing our results with the result in Ref. [30],
Figure 10.3, shows good agreement. The results for S and
T in Ref. [30] do not include LEP2 measurements, which
indicates that LEP2 results do not significantly affect the
bounds on the S and T parameters.
APPENDIX C: BOUNDS ON Z0 BOSONS

Theoretical and experimental constraints on a color
singlet neutral gauge boson are discussed in Ref. [12].
The SM gauge group is extended to include a U�1�Z factor
with Z0 its corresponding gauge boson. If the Z0 is heavier
than the electroweak breaking scale, we can integrate it out
and obtain the following effective Lagrangian:
!L � �
1

2M2
Z0
g2Zz

2
Hj?

yD�?j2

�
X
ff0

1

4M2
Z0

1

1� <ff0
g2Zzfzf0 � �f�

�f�� �f0��f0�

�
X
f

�
i

4M2
Z0
g2ZzfzH� �f�

� �f��?yD�?� � h:c:
	
; (C1)

whereMZ0 is the mass of Z0, gZ is the coupling constant for
U�1�Z, and zH and zf are the U�1�Z charges for the Higgs
doublet and fermions. These charges satisfy [12]

zl � �3zq; ze � �3zq � zH;

zu � zH � zq; zd � zq � zH:
(C2)

Assuming electromagnetic strength for the Higgs-Z0 and
fermions-Z0 couplings one obtains

zHgZ � gs; zqgZ � �gs=3: (C3)

The authors of Ref. [12] considered three experimental
constraints onMZ0 : the bound on the T parameter implies a
bound MZ0 > 0:9 TeV; the total decay width of the Z
boson, �Z, gives a bound MZ0 > 1:2 TeV for the zqgZ �
�gs=3 case; and the left-right asymmetry of the electron,
-10
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Ae, gives a bound MZ0 > 1:0 TeV for the zqgZ � �gs=3
case. All the above bounds are given at 95% confidence
level.

The T parameter corresponds to the coefficient of the
first term in Eq. (C1):

T �
v2

4+M2
Z0
z2Hg

2
Z: (C4)

If we use the same value as in Ref. [12], T � �0:02�
0:13, we get the same bound for MZ0 . If we consider
individual measurements �Z and Ae, and use the results
described in Sec. IV, we reproduce the other two bounds.

It is interesting to compare these bounds with a global fit
to all data. Using our formula Eq. (A1), it takes little effort
to obtain a constraint that incorporates simultaneously all
operators in the effective Lagrangian (C1). Using Eqs. (C1)
and (C2) we obtain all the nonzero coefficients ai:

ah � �2z2HA; ahf � �zHzfA; aff0 � �zfzf0A;

(C5)

where A � g2Z=�4M
2
Z0 �. (Cases such as hf � hq are under-

stood to be ashq and so on.) Substituting these coefficients in
Eq. (A1) and imposing Eq. (C3), we obtain �2 as a function
ofMZ0 . We then find the bounds forMZ0 at 95% confidence
level:

MZ0 > 2:1 TeV
�
zqgZ �

gs
3

�
; (C6)

MZ0 > 2:3 TeV
�
zqgZ � �

gs
3

�
; (C7)

which are about twice as large as the bounds given in
Ref. [12].
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APPENDIX D: A BRIEF INTRODUCTION TO
MATHEMATICA PACKAGES.

Numerical calculation of �2 was done using
Mathematica [44]. Our code can be obtained at http://
pantheon.yale.edu/~zh22/ew.html or from the authors. We
provide two Mathematica no tebooks: ew_chi2_calcula-
tions.nb and ew_chi2_results.nb. The second notebook
spares readers from retyping our results by giving the �2

distribution in the form in Eq. (A1). It also gives the
corresponding errors and the correlation matrix for the
coefficients of operators. For those who want to customize
our calculation to better suit their purposes, the first note-
book contains all the inputs, formulas, and calculations.
We briefly describe the structure of the program below.
More details are supplied in the comments inside the
program.

The notebook ew_chi2_calculations.nb is coded in the
following order: options, input parameters, measurements,
theoretical predictions, and the calculation of �2.

Three options have been implemented. First option turns
on or off the initial-state radiative corrections for fermion-
pair production at LEP2. (The radiative corrections for
e�e� ! e�e� channel have not been incorporated so
far.) Second option toggles if the NuTeV result is included
in the calculation of �2. The last one controls the presence
of second order terms in the coefficients of four-fermion
operators at LEP2, see Sec. V.

The input parameters, experimental values, and SM
predictions are given next. Should any of these numbers
change in the future, one needs to modify the program
accordingly.

Next, the deviations from the SM are calculated. All
formulas discussed in Sec. IV can be found there. The
predictions are presented as the SM values plus corrections
proportional to ai. These predictions are then used to
calculate the �2 distribution. We have split the total �2 to
track the contributions from different measurements.
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