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We consider the effective two-Higgs-doublet potential with complex parameters, when the CP
invariance is broken both explicitly and spontaneously. The diagonal mass term in the local minimum
of the potential is constructed for the physical basis of Higgs fields, keeping explicitly the limiting case of
CP conservation, if the parameters are taken real. For the special case of the two-doublet Higgs sector of
the minimal supersymmetric model, when CP invariance is violated by the Higgs bosons interaction with
scalar quarks of the third generation, we calculate by means of the effective potential method the Higgs
boson masses and evaluate the two-fermion Higgs boson decay widths and the widths of rare one-loop-

mediated decays H — yy, H — gg.
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I. INTRODUCTION

It is well known that the Cabibbo-Kobayashi-Maskawa
(CKM) mixing matrix originates from the standard model
(SM) Lagrangian terms, describing the Higgs boson inter-
action with quarks (the Yukawa terms)

L = —gtih Hul, — gl Hd} + Hee, (1)

where ' = (&, &)y, §7 = (@, )y, 3 = (@, )y, ulf =
Up, UZ = Ck, uy = ty, d = dy, d = sk, dy = b, and
H denotes the scalar complex field doublet, H; = €,,H;
and gi}, gf.lj are the 3 X 3 matrices with matrix elements
that are generally speaking complex and defined with an
uncertainty coming from the phases of CP transformation'
for the quark spinor fields and the Higgs boson scalar field.
In order to diagonalize the quark mass term after sponta-
neous symmetry breaking H — (0, v/+/2), the unitary
transformations of the u” and d” quark fields u} , =
Upruf g, dj g = Dy rd] g are needed. After the diagonal-
ization of the quark mass term the unitary matrices U; and
D; do not appear neither in the Yukawa Lagrangian
terms (1) nor in the quark neutral current interactions,
but arise in the quark u', d"" charged current interaction
terms gityy,d; Wt = gﬁL'y#ULDZdLWf‘. The product
Vermn = U LDZ defines the complex CKM matrix, which
describes CP violation in the quark charged currents sec-
tor. In the framework of the SM the CP violation takes
place since it is generally speaking not possible to get the
mixing matrix with real matrix elements using CP trans-
formations for six up- and down-quarks.

"Let us remind one, for example, that from the definition of the
P transformation Pa (p)Pt = n,a}(—p), where the complex
factor |n,| = 1 contains the P transformation phase, and o = 0
or 1/2, it follows that P¢(x)PT = n*od(x), Py(x)PT =

1" 127o(x’), where x' = Px.
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There are other sources of CP violation besides the
CKM mechanism. It is possible to introduce explicitly
CP noninvariant Hermitian Lagrangians [1] for the system
of several scalar fields. For example, if we have three
complex scalar fields ¢, ¢, ©3

L= Ao 1@505 T A 010203,
CPLPTCT = L = Ae'“@ior05 + Xe 0 0503,

where A is a complex parameter and « is the CP trans-
formation phase, not essential in this case. It can be rotated
away by the phase transformation of the fields, related to
charge conservation. One can see that L and L’ have
different signs of the imaginary part of A. In this simple
example the difference in the sign does not lead to any
observable consequences, because the phase of A can be
also rotated away by the U(1), transformation. However
for the system with trilinear interactions of the four com-
plex scalar fields it is generally speaking not possible to
rotate away all phase factors. It is easy to show that the
Lagrangian of such a system will be CP invariant only if
the phases of the four parameters A; respect certain con-
ditions, which ensure the possibility to remove them by
U(1) rotations of the fields ¢,. From this point of view the
models with extended Higgs sector, where CP invariance
of the Higgs potential with complex parameters is explic-
itly broken, are of particular interest. The simplest example
is represented by the two-doublet Higgs potential of the
minimal supersymmetric standard model (MSSM)), includ-
ing (if the possibility of spontaneous CP violation [2] is not
considered) ten parameters, four of which can be complex.
In the framework of MSSM the dominant loop-mediated
contributions from the third generation scalar quarks could
lead to substantial violation of CP invariance of the two-
doublet effective Higgs potential [3]. Various models with
radiatively induced CP violation in the two-doublet Higgs
sector have been studied [4,5].
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In this paper we develop further on our approach to the
Higgs boson phenomenology in the scenario with CP
violation considered in [5]. In Sec. II, after brief introduc-
tory remarks, we calculate the effective A; parameters of
the two-doublet MSSM Higgs potential at the m,, scale. In
Sec. III we consider in detail the diagonalization of the
mass term for the two-doublet Higgs potential with CP
invariance broken both explicitly and spontaneously. In the
Appendix some numerical results for the Higgs boson
masses and the two-particle Higgs decay widths are pre-
sented. Our numerical results are compared with the output
of other approaches.

II. THE EFFECTIVE TWO-DOUBLET HIGGS
POTENTIAL WITH CP VIOLATION

In the general two-Higgs-doublet model (THDM) two
SU(2) doublets of complex scalar fields are introduced:

HE) —iwf

* = (G ) - (5( oy + m)) @

—iwT
iw,

_ i P )\ _ .
P2 e §< d’%z)(x) > — ¢ g(ﬁ(vzelg +my +ixa) ) ®)

Their vacuum expectation values (VEV’s)
\
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(@) :%@ )

@2 = % ( Uzoe’z > - % < Uz(lm )

where v; and v, are real. The phases ¢, relative phase of
the VEV’s, and &, relative phase of the SU(2) doublets, are
introduced to consider the general case, their sum 6 will be
used for convenience of notations (Sec. IIIC). For the
special case ¢ = (0 the analysis of the Yukawa sector
with the two-fermion generations can be found in [6],
where a somewhat simpler form without the dimension 2
terms ®Td, + ®Id, and real u2,, A5, parameters of the
THDM potential with spontaneous violation of CP invari-
ance ({ = 0 # 0) has been considered in the context of
superweak (i.e. flavor-changing Higgs boson exchange
mediated) CP violation in meson decays.

The most general renormalizable Hermitian SU(2) X
U(1) invariant Lagrangian for the system of scalar fields
(2) and (3) can be written as

Ly=(D,®)D'®, + (D,d,) D"d,
+ k(D,d) DD, + (D, D, DD,
- U(q)l’ (I)Z)r (5)

“

where

U(®), D) = —pd(D D)) — p2(DId,) — 2y (@TD,) — nH(@Id)) + A (DT D)2 + Ay(DID,)?

/\ *
(DR )(DID,) + Ay (D] Ry) (D] D)) + 2 (P D) (P D) + =2 (DD )(D] D)) + Ag(P] P)(P] D)

+ 6@ D)@ D)) + Ao (@1 D,) (DT D,) + Ay (@} D,) (@I D). ©)

The parameters u?,, As, Ag, and A; are complex. Complex
parameter k could be introduced to describe an interesting
possibility of a mixing in the kinetic term [7]. However,
strong restrictions on the real part of x are imposed by
precise experimental data on the gauge boson masses
my. z. Moreover, mixing in the kinetic term does not allow
one to construct the diagonal 4 X 4 matrix of the Higgs
boson kinetic terms consistently with the diagonal matrix
for their mass terms.” In the following we consider the case
k=0.

The special case of the two-Higgs-doublet potential is
the potential of the MSSM Higgs sector. At the energy
scale Mgygy (i.e. at the energy of the order of the sparticle

2We analyzed these conditions written in the form of ten linear
equations, having the solution practically only in the case k = 0.
The mixed term is not obligatory to ensure the renormalizability.
It is shown below that the contributions of self-energy diagrams
absorbed by the Higgs boson wave-function renormalization to
the effective parameters As¢; are zero; see also [8].

\
masses) the tree-level parameters A; _; are real and can be

expressed through the SU(2) X U(1) gauge couplings g,
and g [9]

1
M (Mgysy) = A (Mgysy) = g(g%(MSUSY) + g1 (Msysy)),
(7

1
A3(Mgysy) = Z(g%(MSUSY) — g1 (Msysy)),

1
A(Mgysy) = — Eg%(MSUSY)’

As(Msysy) = Ag(Msysy) = A7(Mgysy) = 0.

At the scale Mgygy the potential is CP invariant. However,
the potential parameters of any model depend, generally
speaking, on the energy scale where they are fixed or
measured. The dependence is described by the renormal-
ization group equations (RGE). The conditions (7) are the
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boundary conditions for the RGE. At the energies smaller
than Mgy they are affected by large quantum corrections
[10] where the main contribution is coming from the Higgs
bosons—third generation quarks and scalar quarks inter-
action (the interactions with the first and second genera-
tions are suppressed). The potential of the Higgs bosons—
scalar quarks interaction can be written in the form [8]

VO="Vy+ Vr+Vy+ 7V, ®)
where
V= (D)"mofe; + MA(0T0) + MFTU
+ M3D"D, 9)
o~ o~ ~ o~ *D -
Vi =TP(®IQ)D + TV(idT 0, 0)U + T; (O ®,)D*
* - -
—T; (i0t 0, @70, (10)
Vi = AL(@] D) (@] @) + (Pf©)[AL(010)
+ AUUU + APD*D] + A% 0)(01d))
Ljkl=12 (11)

VQ denotes the four scalar quarks interaction terms, Pauli
matrix o, = ( f)i (l)) The Yukawa couplings for the third

generation of scalar quarks are defined in a standard way
h, = 2m,/vsinB, h, = ~/2my,/v cosB. Following [11]:

F{Ul;z} = hy{—n"Au}, Fﬁ;z} = hp{Ap; —u*}, (12)

they are complex in the case under consideration. One can
observe CP violating terms of the structure similar to (1) in
the sector of Higgs—scalar quark interactions, so complex

mixing matrices are expected to appear there. The trilinear
|

PHYSICAL REVIEW D 71, 075008 (2005)

parameters A,, A, and the Higgs mass parameter p should
be taken complex, the imaginary parts of the mixing matrix
elements could be large.

In the framework of the effective field theory approach
[8] the MSSM potential (8) which explicitly describes
sparticle interactions at the energy scale above Mgygy is
matched to an effective standard model-like Lagrangian at
the energy scale below Mgygy, where the sparticles de-
couple. So the MSSM effective Higgs potential at the
energy scale m,,, much smaller than Mgygy, is represented
by the general two-Higgs-doublet model potential (6), the
parameters of the latter are expressed by means of the
Higgs bosons—scalar quarks interaction parameters (12)
and the scalar quark masses, playing the role of ultraviolet
Pauli-Villars regulators. The RGE boundary conditions (7)
modified by the interactions of the third generation squarks
with the Higgs bosons (these modifications are sometimes
called the “threshold” effects, since the stops decouple at
the Mgygy scale) are imposed at the energy scale Mgygy.
They affect the evolution of A; parameters, the Yukawa
couplings 4, ,, and the gauge couplings g, ,. We calculated
radiative corrections to the boundary conditions (7) for A;
parameters at the scale my,, using the effective potential

method [12]. The squark mass matrices (M%()ab =

92 Vy/30,00; defined by (8) were calculated and then
substituted to the one-loop effective potential

Ne ol (M2 3
522 M [m( 02> 2}

decomposed in the inverse powers of Mgygy. Taking into
account the one-loop wave-function renormalization terms
(i.e. terms introduced to absorb the contributions of self-
energy diagrams to the Higgs bosons kinetic term, which
are beyond the calculation by means of the effective po-
tential method), the effective parameters can be evaluated
as follows:

V=V0+

2 4 g2 3 14,2 14, |2 ME 2 4 52
e [h‘; o <2 —ap ) = i i 2+ 2SR P — R34, )] + A
m Susy Susy SUsY Susy
+ W(llgi1 + 9g‘21 - 36(g% + g%)h[z})l, (13)
/\2 = )\l(t « b)’
1 —gr, 3 3 1 3 luP A, 14,
A =%[1 = 2(ht2+h%)l}+—2h?h%[l+§Xﬂ,}+ - [h;‘<3— i >+h;§<3— i )}
167 8 967" Msysy Msysy Msysy
2 V20wl = 1A 1) + R2(lwl? — A2 ' 4 1104
3068 = DURRP ~ AP+ WP = AP g, 983 gt "
12872 M2y 3847

3For the case of CP conservation, considered in [8], the trilinear parameters in (10) are real. Then Tﬁ,z} = hy{—u; Ayl Fﬁ 2 =

hp{Ap; —u}.
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2 3 3 I 3 |l Al A2
A4=—&[1— (h%+h§)l}—ﬁh$hﬁ[l+§X,b}+ Ll [h;‘(?s— 14, >+h;§(3— 14, )}

2 167° 967 Miysy Miysy M3ysy
2M02(1 112 — 2y 4 22(lwl? — AR ‘ 4
_ 3g2[hb(|ﬂl |Ab|2) i hi (|l 1A,17)] + A/\ffeld _ 3g22 i (15)
64 Mgy 64
where
_ |At|2 + |Ab|2 + ZRC(AZA[) |,LL|2 | |,LL|2 - AZAtlz
X, = 5 - 1 . (16)
2Mgysy Mgysy 6Mgysy
The effective complex parameters As g ;
3 A, \2 A, \2
A= —Ads = — 2<h§<‘§f> +h;§<‘§b)>, (17)
967 Mgysy Mgysy
3 ZuA A Apl? 3 z2+ g2
Ag = —Adg = z[hfl“t“ R (6— l;' >+(h§A,,—h%A,) R B T8 gl} (18)
96 Mgusy Mgysy Mgusy Mgysy 4
3 2 A A Al 3 z24+ g2
A= —AA, = 2[;;;1 |“|4“ b Lo (6 - '2’| > + (W24, — 3A,) —— 82 g‘} (19)
96 Mgysy Mgysy Mgysy Mgysy 4

Some details of the calculation can be found in [13]. The one-loop wave-function renormalization terms in (13)—(15) are

_ 1 ) 1
A/\?eld — 5(g% + g%)A’”’ A/\gleld — 5(g% + g%)Alzz, (20)

i 1 ' 1
AN = = (6}~ DAL AR, AN = =g+ A
A/\gield — 0’
- 1 ' 1
AN = 263+ AT, = AL) =0, AATN = S (g} + (A}, — Ap,) = 0.

They are similar to the case of CP conservation [8] containing the logarithmic contributions and imaginary parameters as a
consequence of (12), and can be written as

3 | |2 _ *A* |A |2 _ *A* 1
Al = —_— > 2 M L % b M2 (1 —_z) 21
y 96w2M§USY[ f[—uAt a2 T —pa, P > @b

Here and in the formulas given below [ = In(M3ygy/0?), where o = my, is the renormalization scale. The one-loop
wave-function renormalization does not yield a CP violating contribution to A;. For convenience we introduce the notation
for the deviations of effective parameters A; from A?YSY = \;(Mgygy) following [5]:

Ao = A5 — AX /2, 34 = B3P — Ay, Ase7 = —Adse, (22)
where
_ ff. pot. - {eff.pot:field} _ 4 ,1 -
AN = AXTPO — Apfield A NIERPORTEE = A 08 4 A pfinite (23)
AN, =0, AXEd =0 (24)

|
At the end of this section we would like to make some  standard scheme of leading logarithmic terms resumma-

general comments as well as some comments in connec-  tion by means of RGE, additionally taking into account in
tion with results obtained by other authors. Like in the  the boundary conditions at the scale Mgygy the effects of
existing effective field theory approach [8] we are using the =~ Higgs bosons—the third generation of scalar quarks inter-
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TABLE I.  Numerical comparison of various corrections to the A; parameters at the scale m,,. For convenience of the following
Higgs boson masses comparison, the same parameter values as in the package CPsuperH [15] are chosen here: m; = 91.19 GeV,
m, =3 GeV, m, =175 GeV, my = 79.96 GeV, g, =0.6517, g, =0.3573, v =2454GeV, Gp=1.174 X 1075 GeV 2,
ag(m,) = 0.1072, tanB = 5, Mgysy = 500 GeV, o = m,, my= = 300, |A,] = |A,] = A = 1000 GeV, |u| = 2000 GeV, and ¢ =

PHYSICAL REVIEW D 71, 075008 (2005)

arg(uA; ;) = 0. The abbreviation “wfr” stands for the “wave-function renormalization.”

i 1 2 3 4 5 6 7
Only O(h}) terms [12] 0907  —0.203 0.057 0.057 0227  —0.453 0.057
AA; 0.860  —0.182 0.054 0.072 0227  —0.442 0.046
1-loop [3] 0907  —0.191 0.064 0.043 0227  —0.453 0.057
1-loop + 2-loop [3] 0761  —0.152 0.052 0.032 0135  —0.371 0.044
2-loop [3] —0.146 0039  —0012  —0.011  —0.092 0082  —0.013
1-loop (D + wir) —0.047 0.009  —0.010 0.028 0 0.011 —0.011
T 032 023 0.83 -2.55 0 0.13 0.85
1-loop + 2-loop + I-loop (D + wir) 0715 —0.143 0.042 0.061 0135  —0.360 0.033

action. The one-loop effective parameters (13)—(19) satisfy
the boundary conditions defined by (7) and modified by the
soft supersymmetry breaking potential terms (8) (”thresh-
old effects”). The terms with the logarithmic factor /
describe the parameters evolution from the energy scale
Mgysy down to the scale o = my,,. Finite power term
threshold corrections to A _; appear from the so-called
F terms [the trilinear interaction terms in (10)] and D terms
[contained in (11)]. The corrections to A5 come from the F
terms only. Radiative corrections to the parameters A; 7
of the effective two-Higgs-doublet potential have been
considered earlier in [3] for the case of broken CP invari-
ance and in [8,14] for the case of CP conservation.
Phenomenological consequences of the two-doublet
system are usually analyzed assuming for simplicity A; =
A, and introducing the universal phase arg(uA,;), so
that As = |As| expli2arg(uA)], As = |Ag| expliarg(nA)],
A7 = |Aq] expliarg(nA)].

Only the leading D-term contributions were calculated
in [3,14]. In our expressions for the effective parameters
(13)—(19) the nonleading D-term contributions are repre-
sented by the power terms containing gauge couplings g7,
g3- The one-loop contributions of the wave-function renor-
malization AAT!Y, are neglected in [3,14]. However, the
QCD and weak corrections to Yukawa couplings up to two
loops, not calculated in our case, have been included there.
The expressions for A; 534 (13)—(19) do not contain imagi-
nary parts up to the two-loop approximation and coincide
with the results of [3,14] if we omit the contributions of
nonleading D terms and AA{®!, terms. If u and A are real,
the expressions (13)—(19) are consistent with the results of
[8], where the D-term contribution was calculated.” Let us
note that it is not possible to generalize the expressions for
real Asq; in the case of CP violating potential by the
straightforward replacement of the real wu, A parameters
to the complex ones.

“In (13)=(15) we kept the terms of the order of g?)z.

If we neglect the contributions of D terms, the wave-
function renormalization terms AATY, “and the terms of
the order of /2 for the b-quark couplings, only the one-loop
corrections of the order of @(h}) remain. This approxima-
tion was discussed in [12,14]. For example, A, is given by

2 + 2 3 A 2 A 2
A, =527 81, Z[hj‘ |2| <2— |2| )
8 32 Mgysy 6M5ysy

+ 2htl } (25)
The beta function for A, contains large negative contribu-
tion —6Ah} [8], or equivalently, A, (13) contains the large
logarithmic term 6h¢1/(327r%) which was observed in the
first calculations [10]. In the following the negative AA,
defined by (22) gives a large positive contribution to the
light Higgs boson mass in (38).

Numerical comparison of the A; parameters evaluated
using different approximations is presented in Table I,
where for our case in the second line of the Table

AA; = {one-loop contribution} + {one-loop(D terms
+ wave-func. renormalization)}.

One can conclude that the one-loop corrections from D
terms and wave-function renormalization can be of the
order of the leading two-loop corrections. The difference
of the effective A; of the order of 10~! may result in the
deviation of Higgs boson masses around 5 GeV and even
more.

I11. DIAGONALIZATION OF THE EFFECTIVE
POTENTIAL MASS TERM IN THE
LOCAL MINIMUM

A. Complex u3,, As¢7 parameters, =0

The components w;, ;, x; of the SU(2) doublets (2) and
(3) are not a physical Higgs fields (mass eigenstates). In
order to extract the Higgs boson masses and the self-
interaction of the physical fields from the potential (6) it
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is necessary to diagonalize the mass term of the latter in the h = —n, sina + 7, cosa, (26)
local minimum. This problem has been considered in [5]
for the case of complex u?,, As¢7 parameters and the zero

phase of the ®, VEV 6 = 0. As an example we derive an H = mycosa+ 1, sina, @D
explicit representation for the triple Higgs boson vertex
H™" H™ h;, where the h; mass eigenstates are defined by the A= —x;sinB + x,cosp, (28)
formula (44) below, in the Appendix, see also Fig. 1. The
diagonalization of the mass term is performed in two G® = y, cosf + y,sing, (29)

stages. First the CP-even fields h,H, the CP-odd field A
(“pseudoscalar’”)’, and the Goldstone field G° are defined ~ where tg8 = v,/v; and (introducing compact notations

by the linear transformation sina = s,, cosf3 = cg, etc.)
|
sap(mi + m%) + v2((Ad; + Ady)syp + 2c% ReA g + 2s% ReA ;)
tg2a = 5 5 5 5 5 . (30)
CZB(mA - mZ) + v (A)l]CB - AAZSB - RCA)l5C2ﬁ + (RCA/\6 - RCA/\7)S25)
|
Here the relations g2 + g5 = gim%/m3,, g3 — g% = v2
g3(2 — m%/m?%,) are used. Then we substitute to the effec- p3 = Avs+ (A3 + Ay + Re/\5)7 — Reuf, ctgp
tive potential the real parameters t,, Aj ;34 and the real 222
parts Re,u%z, ReAs 7, which are related by linear trans- + P (Rea sctgB + 3ReA, tgf). (37)
formation [5,16,17]: 2
_ L Sa 2m2 4 (Ca 2m2 _58 Reu? At the purely real parameters (in the following we shall
502 e s cp H C,38 K12 name this case of ¢ =0 as the CP-conserving limit,

| ReA; = |A;], ReAA; = [AA;]) the relations (36) and (37)
+ —(ReA; tg* B — 3ReAq tgf), (31)  setto zero the potential terms which are linear in the fields,
4 so they are the minimization conditions. It follows from
1 2 5 \2 cp Egs. (31)—(35) that in the CP-conserving limit the
[(—a> mi + (—“) m% — = Re,u,%z} CP-even Higgs boson masses and the real part of the u,

2753
2v7 [ \sp Sp B parameter can be expressed as
1
+ —(ReAg ctg® B — 3ReA; ctgf), (32)
4 m; = si+ﬁm% + ci,ﬁmi - vz(A/\ls%,c% + A)tzctzxs%
1 Reu?, i, — 2(AA5 + AAy)c cpsyass + ReAAs(sss
/\3=¥|:2m§{:——s C”—i—%(m%,—m%} L, pRach B
BCB 28 + cacp) = 2¢445(ReAAgs,cp — ReAdsc,sp)),
ReA ReA
- g -~ gp, (33) (38)
2 2
1 /R ReA
Ay = ¥< sel;m +mj — meit) - 62 6 ctgB m} = ciﬂgm% + si_ﬁmi - vz(A)t,c%,c% + AAQS%ZS%
BB
ReA, s o +2(AA3 + Ady)cacpsasg + ReAAs(casy
2 B + sic%) + 254+ 5(ReAAsc,cp + ReAAss,sp)),
(39)
1 (Reul, Relg ReA,
ReAs = — -m3) - tgB — tgf3,
€As Uz( Sps mA) 7 ¢ gB > gB
(35) v?
mip = m%v + mi - 7(R€A/\5 - A)\4),

2

2 2 2 _ 2 2
pd = 2wl + (A + Ay + Reds) 52 — Repd, tgB Repu?, = sﬁcﬁ[mg\ _ %(2ReA)\5 +ReAAgctgB  (40)

v2s2

+ Tﬁ (3ReAgctgB + ReAstgB), (36) + ReA), tgﬁ)}
SThe fields h, H, and A are the physical fields at ¢ = After the substitution of (31)—(37) to (6) we find the mass
arg(uA,,) =0, na. term of the effective potential
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2
Uno(h Hy A HY) = coA + c1hA + c,HA + %hz

2 2
My 0 M4 40 2 g+ -

+—H"+—=A“+m;-H H".
2 2 H=

(41)

The minimization condition ¢y = 0 fixes the imaginary
part of the ,u,%z parameter

2

v
Impul, = j(sﬂcﬂ ImAs + ¢ ImAg + s51ImA;),  (42)
and the factors in front of the nondiagonal terms hA and

HA in the local minimum ¢y = 0 have the form

2
c, = %(sasﬁ — coCp)ImAs + v (s, 05 ImAg

— co8551ImA7),
. 43)

) = —%(sacﬁ + caSp)ImAs — vz(cacﬁ ImAg
+ 5455 ImA;).

They include only the imaginary parts of the parameters
Imu3,, ImAs ¢ 7. The nondiagonal term AH does not appear
in (41), so in the mixing matrix (45) M, = M,; = 0.

At the second stage in order to remove the nondiagonal
terms hA and HA we perform the orthogonal transforma-
tion in the h, H, A sector

h hy
(l’l, H, A)M2<H> = (l’l], h2, h3)ag;cM%lalj<h2>, (44)
A hy

where the mass matrix is

m% 0 ¢
0 my ¢ | (45)
ci ¢ mi

and get the physical Higgs bosons hy, h,, h; without a
definite CP parity.® The eigenvalues of the M2 matrix
define their masses squared and the components of nor-
malized eigenvectors are the matrix elements in the rows of

the mixing matrix a;;. The squared masses of Higgs bosons

are (m; =m; =mj )

Note that this picture is different from the well-known de-
scription of weak CP violation in meson decays, when the mass
splitting Am of the states is given by 2ReM,,, M, the off-
diagonal elements of the complex 2 X 2 mass matrix, and the
meson mixing e parameter is InM,,/(~/2Am). The meson decay
formalism uses the non-Hermitian effective Hamiltonian and not
precisely orthogonal mass “eigenstates.”
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FIG. 1. Triple Higgs boson interaction vertex gy+y-;, (GeV)

calculated with the one-loop effective parameters A; vs the phase
arg(uA) at the parameter values Mgygy = 500 GeV, tgB = 5,
A,, = 1000 GeV, and u = 2000 GeV. Dashed line my: =
300 GeV; solid line my= = 200 GeV.

+
m%ll =2./(—q) cos(—® 277) _%

3 3’
®+4
mj, = 2/(=q) cos(Tﬂ) - % (46)

where
r 1 3
® = arccos , r=—0aja, — 27ay — 2a3),
[(—4°) 54
q
1
2
- § (3611 a2)7
a; = mim¥ + mimi + mym; — ¢} — c3,
a, = —mj — m3 — m3,

= (22 2,02 22 2
ap = cymy + comy — mymymy.

The normalized eigenvector components (4, H, A) =

ajjh;, a;j = aj;/n; are given by
ayy = ((mf — mf,l)(mﬁ - mﬁl) - c3), ay, = cicy,
s = —cy(my — mj), al, = —cjcy,
aby = —((mj, — mj )(mj — mj ) = ci),

ay, = c(mj, — m%lz)’
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FIG. 2 (color online).

Neutral Higgs boson masses h, H, A versus my= and the trilinear parameters A,, A, in the CP-conserving limit.

Solid line denotes the m; mass; short-dashed line m; long-dashed line my. (a) tgB8 = 5, Mgysy = 0.5 TeV,and A, = A, = u = 0.
b)tgB =15, Mgysy = 0.5 TeV,A, = A, = 0.9 TeV,and u = —1.5 TeV. (c) tgB = 5, Mgysy = 0.5 TeV, my= = 220 GeV, u = 0,
and A, = A,. (d) tgB =5, Mgysy = 0.5 TeV, my= = 220 GeV, u = —2 TeV, and A, = A,,.

/

!
asz

n; = *,/(a} + a% + a%). The Higgs boson masses m; ,

my,,, m,, and the mixing matrix elements a;

ap =

—cy(mpy — mi3),

I 2 _
dhyy = —cy(mj my,,

= (mj, — mj )(mg — mj,),

2

),

Jo

which de-
scribe the mixed states, are shown in Figs. 2—4 as a

function of the A,,, u parameters and/or the universal
phase ¢ = arg(uA,,). Different from the figures in [5],
the my=, tg3 parametrization is used for the convenience
of comparison with [15,18]. The parameters c¢; and ¢, can
change a sign with the variation of the phase ¢; the ranges
of positively or negatively defined ¢ and ¢, depend on the
primary choice of the my=, tg83, A, u, and Mgysy in the
CP-conserving limit. When we pass the zeros of ¢; and ¢,
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(a) Neutral Higgs boson masses; (b)—(d) the matrix elements a;; versus the phase ¢ = arg(uA) at the

parameter values tgB8 = 5, my+ = 180 GeV, Mqygy = 0.5 TeV, A, = A, = 1 TeV, and u = 2 TeV. Solid line denotes i = 1; long-

dashed line i = 2; and short-dashed line i = 3.

the matrix elements a;; are expected to change their signs
respecting the requirement of the left orthonormal basis for
the eigenvectors. It is essential that m,, , m,,,, and m,,, are
positioned in the mass matrix along the diagonal from the
upper left to the lower right corner, satisfying in the limit-
ing case ¢y =c, =0 the correspondences m;, —
min(my, my, my), my, — max(my,, my, m,) (”the mass or-
dering””). Note also that as A A; increases, the denominator
of (30) can change sign, so for the mass ordering one must
define the angle a(¢) consistently with the boundary con-

dition at the scale Mgygy, which has the known form m?% +
m% = — sin2a/ sin2B(m2, — m?), following from (31)—
(35) and (7).

Some numerical values for the Higgs boson masses m;, ,
my,,, my,, as a function of the phase ¢ in our approach, and
masses of the states H;, H,, and H; evaluated by means of
CPsuperH [15] and FeynHiggs [18] packages are shown in
Table II. These packages are using the renormalization
group improved diagrammatic calculation that includes
radiative corrections to Yukawa couplings up to two loops.
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PHYSICAL REVIEW D 71, 075008 (2005)
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(a) Neutral Higgs boson masses; (b)—(d) the matrix elements a;; versus the phase ¢ = arg(uA) at the

t

parameter values tgB = 5, my= = 300 GeV, Mgygy = 0.5 TeV, A, = A, = 1 TeV, and u = 2 TeV. Solid line denotes i = 1; long-

dashed line i = 2; and short-dashed line i = 3.

A detailed general discussion on the conciliation of results
obtained in the frameworks of the diagrammatic and the
effective field theory approaches can be found in [19].
Different renormalization schemes in which calculations
in the two approaches are performed may lead to the
deviations of results evaluated with parameters taken at
different renormalization scales, so the nontrivial reevalu-
ation of parameters is needed for consistency. Besides this
it is important to notice that in the CPsuperH and
FeynHiggs packages the SU(2) eigenstates 7, and &,

are directly transformed to the Higgs boson mass eigen-
states, which is different from our procedure, when we first
transform to the states of the CP-conserving limit and then
rotate to fy,3. The “intermediate” Higgs boson states
(h, H, A) of the CP-conserving limit are not used, so the
71, M, mixing angle « is not introduced there. For this
reason at ¢ = 0 the analog of the mixing matrix a;;, see
(44), has nonzero off-diagonal matrix elements a;, =
ap; # 0, and in the analog of the mass matrix (45) M,
and M, (the hH mixing terms in our notation) are also
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TABLE II. The Higgs boson masses (GeV) in our case at the
one-loop level and calculated by the packages CPsuperH [15] (at
the two-loop) and FeynHiggs [18] (in the one-loop regime). See
the Appendix for a more detailed comparison. The same pa-
rameter values were used: apy(my) = 0.7812 X 1072,
ag(my) = 01172, Gp=1.174 X107 GeV~2, tan8 =35,
Mgysy = 500 GeV, |A,| = |A,] = A, |u| = 2000 GeV, A =
1000 GeV, and my= = 300 GeV.

o=0 w/6 @/3 w/2 2w/3 5w/6
my, 1154 1187 1259 1314 130.7 1252 122.0
mpy, [15] 106.8 109.0 1139 1174 1149 1057 994
my, [18] 1158 1188 1255 1302 1232 982 78.0
my, 2955 289.6 279.7 2693 2622 259.8 259.6
my, [15] 3022 297.8 2909 2822 2739 2683 2644
my, [18] 2956 290.0 279.1 2643 2492 239.7 2369
mp, 297.1 299.5 3004 299.9 2988 297.6 297.1
my, [15] 3023 3044 3050 3045 3035 3024 302.0
my, [18] 297.6 300.0 301.1 301.3 300.9 3004 300.2

nonzero. In the framework of the “direct’” diagonalization
procedure the matrix elements of (45) have the form

My = mjisp + v>Redssy + v*Redgsyg + 207 A cp,

My, = mich + vPRedscy + v2 Redgsyg + 2074553,

M12 = ‘U2 RCA6C'%; + SB(U2 RE/\7S'3 + CB(_mi + 'U2/\3
+ v2)y)),
1
M13 = _EUZ(Z Im)\6cﬂ + Im/\5SB),

1
My, = —Evz(lm/\Sc'g +2ImA;sp), Ms3 = m3,
and the parameters a, a;, a, in (46) should be redefined as
follows:

ay = M2,My3 + M3M | + MMy — 2M ;MM 5
— M MMz,

ay =M My, + My Ms; + My,Ms; — M3, — M,
o M%y

a, = —My — My — Ms;.

We checked that both the “two-step” and the direct diag-
onalization methods lead within our procedure, as ex-
pected, to the same masses of Higgs states my, , my,, and
my,, (see Table II). For the parameter values in the com-
parison, Table II, the benchmark point of the maximal CP
violation “CPX scenario” [20] at Msysy = 500 GeV was
used. An extended list of numbers (Table V) including also
the rare one-loop-mediated decay widths h; — yy, h; —
gg and the tree-level two-particle decays /; — ff can be
found in the Appendix. Good qualitative agreement of
results is observed, but diversity of approaches to the

PHYSICAL REVIEW D 71, 075008 (2005)

calculation of radiative corrections makes precise numeri-
cal comparisons difficult.

B. Real u},, A5q7 parameters, 670

If the parameters w2, and As 6,7 of the effective potential
(6) are real, the latter is CP invariant. It is easy to show
[3,5,17] that the phases of complex parameters ,u,%z, As,67
can be rotated away by the U(1)y hypercharge transforma-
tion if the conditions

m(uhds) =0, Im(udde) =0,

* (47)
Im(ﬂ%z)‘ﬁ =0

are satisfied. Insofar as the physical motivation of these
“fine-tuning” conditions is not available, the case of real
parameters and nonzero phase 6 of the VEV, when CP is
broken spontaneously, looks rather artificial. The local
minimum of the effective potential (6) occurs at A5 >0
[i.e. purely imaginary pA, see (17)] and

2 -2
cosH='M12 270 277 (48)
/\5U1U2

Combining this equation with the diagonalization condi-
tion (35) we get

2

m
A+,
1%

cosf = (49)

so there is no minimum if mi > 0. In the case A5 < 0 (48)
corresponds to the maximum, the absolute minimum is
achieved at the end points cosf = *=1. For example, the
absolute minimum at # = 0 [taking into account again the
diagonalization condition (35)] is absent if

m% > 2|As|v? (50)
and it follows that for the case of real u?,, As¢7, and CP
broken spontaneously there are no mass eigenstates in the

framework of our diagonalization procedure, at least if m,
is not extremely small.

C. Complex M%Z, As 7 parameters, 60

In the case of complex parameters and the nonzero phase
of ®@, vacuum expectation value,’ the CP invariance of the
potential is broken both explicitly and spontaneously. The
condition to set to zero the derivative 9 U/ 6 includes both
the real and the imaginary parts of u?, and As¢7:

"The upper component of (®,) in (4) is taken to be zero.
Otherwise additional constraint for the VEV components should
be imposed to ensure the existence of the massless gauge field
(photon) [21].
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[see (3) and (4)] of the SU(2) doublets. At the real ,u%z,
) As7 and @ # 0 the Eq. (51) is reduced to (48).
+ sinf(2Reu?, — viReAg — v3ReA,) For convenience we present the extremum conditions
—vv; ReAssin20 = 0. (51) aU/dn =0, 0U/d& = 0in the cases of zero and nonzero
6 in the form of Tables III and IV, where the factors in front
of the potential parameters are shown. The bulky condition
The condition of the extremum for Imu?, depends on the  for the real part of u?, to define the pseudoscalar mass 4
phase between the VEV’s 6, while the diagonalization  for the general case of nonzero phases can explicitly be
condition for Reu?, depends also on the relative phase §| evaluated as follows:

cosf(2Imu?, — viImAg — v3ImA;) — v v, ImAs cos26

Re u2, — — A v? cos@ sin®(28)sin%(0 + &)

12 23+ (1 — cosf cosé)(cos* B — 2 sin?(2B)) + sin*B + cosf cosé(1 — sin*B)
v?(cos* B cos?é + cos? sin* B + cosB cos(f — &) sinfBsin(23))

cos?BctgBsech + cosé sin(28) + sech sin’BtgS
v2(sin?(2B) sin(f — &) + sin*B(sin(20) + tgh) + cos*B(tgh — sin(2£))) + ReA lvz cos? B
2(cos?B ctgBsech + cosé sin(28) + sech sin® B tgB) 62
v? cos’ B sinfB siné
% cos? B ctg B sech + cosé sin(2B8) + secfsin B tg
v2 cos*B(4 cos(6 + 2&) — 2 cos(20) sech)tgB

4(cos® B ctgB sech + cosé sin(28) + sech sin’ B tgB)
v2(2sin%(28) cosé + 2 sech sin* B — cos(26 + §)sin2(2,8))tg,8)

4(cos? B ctgB sech + cosé sin(2B) + sech sin’ B tgB)

v?sin(2B8)(2 cos? B cosé sin(f + &) + sin?>B(2siné + sin(260 + £)))

+ Re/\s

- Im)\5

+ ImA

+ Re/\7<

+ ImA
iz 2(cos? B ctgB sech + cosé sin(2B8) + sech sin’ B tg3)
5 sin(2B8) siné
—Impy, — : )
cos®BctgBsech + cosé sin(2B) + sech sin” Btg B
1
7 (52)

+ .
4 cos?BctgBsech + cosé sin(28) + sech sin’Btg8

If we set § = 0 and ¢ = 0, the formulas coincide with the special case of only the explicit CP violation (35) and (42).
The substitution of the extremum conditions corresponding to Tables III and IV to (51) gives an identity independently on
the expression (52) for Reu?,. The extremum is a minimum if the second derivative in 6 is positively defined

TABLE III.  The factors of the extremum conditions for u? and w3 at zero and nonzero 6.
2

mi #

6 +0 6=0 0 +0 6=0
A v? v? 0 0
A 0 0 v} v3
0 7o) 721
Re/\5 151)22 E'Uz 151121 51)1
Im)\s -3 vztgﬁ 0 —3 Ultgﬁ 0
ReAg Fv1v,(2 + cos26) secd viv, v secd ctg jvictgB
ImAg — vV, sinf 0 0 0
ReA, % v3secltgf %v% tgB %vl v,(2 + cos20) sech %vl v,
Im)\7 0 0 A% sind 0
Reu?, —tgBsecd —tgp —ctgB secl —ctgB
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TABLE IV. The factors of the extremum condition for Re ,u%z
at & = 0 and for Imu?, for zero and nonzero 6.

Reut, Imui,

0=0&(=0 6 +#0 0=0
Ay 0 0 0
Ay 0 0 0
A3 0 0 0
Ay 0 0 0
ReAs v U, vV, sinf 0
ImAs 0 1vv, c0s26 secd tviv,
ReAg tvi Tvitgd 0
ImAg 0 %v% %v%
Re; jv3 Tv3tgl 0
ImA; 0 1v3 jv3
m% sinf3 cosB 0 0
Re,u%2 e —tgf 0

—sinf(2Imu?, — v3ImAg — v3ImA,)
+2v,v, ImAs sin26 + cos#(2Reu?, — v3 Relq
—v3ReA;) — 2v,v, ReAscos26 > 0. (53)

Numerical investigation shows that this condition is ful-
filled in a rather wide range of the MSSM parameter space.
If for simplicity we set & = 0 then the second derivative is
positively defined in any region of the parameter space, so
no restrictions on the phase of spontaneous CP breaking
appear in this special case from the minimization.

The diagonalization of the effective potential mass term
in the local minimum for the general case # # 0 and & # 0
is performed analogously to the procedure described in
Sec. IIT A using the following scheme: (1) we define the
four i, H, A, G° linear combinations of independent fields
71, M2, X1, X» that are contained in the two-doublet system
(2) and (3), where for the Goldstone field G* we define a
zero row of matrix elements and a zero column of matrix
elements in the symmetric mass matrix 4 X 4. In other
words, the Goldstone mode is introduced as the linear
combination, orthogonal to the plane defined by the “di-
rections’ in the complex scalar fields space, parallel to the
VEV’s v, and v, exp{i(¢ + {)}. Then the mass matrix 4 X
4 includes the symmetric 3 X 3 block with zero matrix
elements in the power of the extremum conditions from
Tables III and IV; (2) we define an orthogonal transforma-
tion for the 3 X 3 submatrix fixing the mixing angle & in
the sector i — H to set to zero the 7 H nondiagonal term. In
the framework of this procedure for the case of nonzero
phases ¢ # 0, & # 0 (when the fields are denoted by the
symbol ~) the limiting cases of zero phases £ =6 =0
(when the notation for the fields does not contain the
symbol ~) and also the CP-conserving limit in the mass
basis i, H, A, are clearly seen. For the physical Higgs fields
in the case £ = 0, # # 0 we finally obtain the representa-
tion

PHYSICAL REVIEW D 71, 075008 (2005)
h = —n,sin@ + (x, sinf + 7, cosb) cosd,

H = 7, cos@ + (x, sinf + 7, cosd) sind,

Y 54
A = —x;sinB + (y, cosd — 1, sinf) cosB, (54)

G® = x, cosPB + (x,cosf — x, sind) sinB.

We checked explicitly, using the symbolic calculation
packages, that direct substitution of these fields to the
potential (6) gives the symmetric 4 X 4 squared mass
matrix with zero row and column, corresponding to the
Goldstone mode. The nondiagonal matrix elements of the
3 X 3 block, corresponding to the nondiagonal terms 7 A
H A in the local minimum, can be written in the form

o
I

‘U2
_ 7(Cos(ay + B) cos(26)ImAs

— 2sin& cosB cosf ImAg + 2 cosé sinfB cosd ImA,

— cos(a@ + B) sin(20)Re s

— 2 sin@ cosB sinf Re g + 2 cos@ sinB sinf Re ),
(35)

2
Cp=— %(sin(d + ) cos(20)ImAs

— 2cosacosBcosf ImAg + 2sind sinS cosd ImA,
+ cos(a + B) sin(20)Re s
— 2cos@ cosBsinf ReAs + 2 siné sinB sinf ReA).
(56)
In the case & = 0 they coincide with (43).
The same scheme is suitable for the case & # 0, 6 # 0
when the relative phase ¢ between the SU(2) doublets

appears in the mass eigenstates, which are obtained by
the replacement § — 6 — ¢:

=S4

= —q,sin@ + (x, sin(@ — &) + n, cos(f — &)) cosa,
H = n, cos@ + (x,sin(0 — &) + n,cos(f — &)) sing,
= —xisinB + (xacos(6 — &) — mysin(6 — £)) cosB,
= x1c08B + (xocos(6 — &) — x,sin(6 — £)) sinB.
(57)

(=] :>l

G

IV. SUMMARY

The potential of a two-Higgs-doublet model in the gen-
eral case is not CP invariant and the parameters w3, and
As67 of the two-doublet MSSM Higgs sector should be
taken complex. The choice of purely real parameters im-
plicitly assumes that the fine-tuning conditions (47) are
additionally imposed without clear physical motivation. In
the MSSM the complex parameters naturally appear if we
allow the CP invariance violating mixings in the squark-
Higgs boson sector of the MSSM, analogous to the CKM
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mixings for the three quark generations in the charged
current sector of the standard model. If these mixings
lead to a strong CP parity violation® and the scalar sector
of the MSSM is coupled strongly enough (i.e. large imagi-
nary parts of the parameters w3, and As¢; appear), the
deviations of the observable effects in the scenario with CP
violation from the phenomenology of the standard scenario
can be substantial. The deviations are particularly strong if
the power terms A, ,/Mgsysy, s#/Msysy are large and the
charged Higgs boson mass does not exceed 150-200 GeV,
being rather weakly dependent on the value of tg. Such
models could lead in principle to a reconsideration of the
experimental priorities [23] for the signals of Higgs bosons
production in the channels yvy, bb,W*W~,ZZ, ttH, bbH,
etc. at the CERN LHC. The scenario with light Higgs
boson m,, ~ 70-80 GeV that could escape the detection
at CERN LEP2 [24], the analysis of the h; signal at
Tevatron, and the high-luminosity linear colliders [25]
demonstrate that physical possibilities in the framework
of CP violating scenarios could be considerably modified
in comparison with the traditional CP-conserving limit.

The comparison of our results for the masses of scalars
my, , my,, and my,, and their two-particle decay widths with
outputs of the CPsuperH [15] and the FeynHiggs [18]
packages demonstrates rather good qualitative agreement.
However, in some cases high sensitivity of the observables
to the magnitude of radiatively induced correction terms in
the effective two-Higgs-doublet potential shows up, so
careful complementary analysis of the theoretical uncer-
tainties is appropriate.

The relative phase of the SU(2) scalar doublet { and the
VEV phase &, see (4), could be constrained on the basis of
the conditions for the mass term diagonalization and the
potential minimization (Sec. III C). In principle these con-
ditions could lead to some nontrivial relations between the
{, & and the variables of the MSSM parameter space.
However, at the first sight it is questionable to expect
some direct relations of this type connecting the CKM
phase and the , ¢ phases of the THDM, which seem to
describe the CP violation of a different origin. Returning to
the notations of the Introduction, we can write the THDM
type II Yukawa term as

—L = nty Ol + Ly '®,dlf + He., (58)

where 7}, and fd are nondiagonal complex 3 X 3 matrices
i,j=1, 2 3). As mentioned in the Introduction, in order
to define the quark fields mass eigenstates the unitary
mixing matrix V, , should be introduced in the
Lagrangian terms of the charged Higgs boson interaction
with quarks

8Recent discussion of the weak CP violation scenarios can be
found in [22].
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MytgB_, ; M, —.
TV gdihHY + ——"— @i Vi ulH™. (59
\/iv L ,d'%R ( )

V2vutgB Vit

If we extract the universal phase factor from the mixing
matrix elements V,i s — €'?|V,i 4l, VM ¥ e Vi 4il,
the Yukawa interaction terms take the form

M, th_,

V2v

l"DIVu dfld]

fM ’BdLe_’ |V gilupg H, (60)
so we can identify the universal phase ¢ as the relative
phase ¢ of the SU(2) doublets. The structure of this sort,
however, does not look like the weak charged current
sector mixing matrix, where the universal complex factor
is not suitable to describe the effects of CP violation in
meson decays.
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APPENDIX
The decay width #; — 7, see Table V, can be written as
3 2
T(h; — vy) = e [IS7 (M, 2 + [P (M) 2],
(h = ¥7) = 5 18T (My)P + 1P (M, )P

(AD

where the scalar and the pseudoscalar factors are given by
[15,26]

S} (M,,) =2 Z Nchgh e sf(Tzf)

f=bt.x7. %5

2 v?
- Z Nchgh,f;fjm—%Fo(T,fj)
fi=t1,15,b1,b5, 71,7, fi (A2)
v

- gh,»VVFl(TiW) T 8mHYH 520 2M2 Fo(Tig=),
P!(M),) =2 Z Nchgh e Fo (7).

f=btxi.x;

Tix = M%i /4m?, No = 3 for squarks and N = 1 for stau
and chargino, respectively. The vertex factors g, .7 can be
easily extracted from Table VI, where we list also the triple
vertices with /; and gauge bosons. The threshold correc-
tions induced by the exchanges of gluinos and charginos
[24,28] are not included in the following calculation.
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TABLE V. Higgs boson masses and their two-particle decay widths calculated in our approach and by means of CPsuperH and
FeynHiggs packages. The parameter set apy(my) = 0.7812 X 1072, ag(m;) = 0.1172, Gy = 1.174 X 1075 GeV 2, m;, = 3 GeV,
tgB = 5, Mgysy = 500 GeV, |A,| = |A,] = A = 1000 GeV, |u| = 2000 GeV, and my= = 300 GeV. Our results are calculated with
m; = 175 GeV. The choice of A, ;,, u, and Mgygy respects the constraints of the CPX scenario [20]. Our results at the one-loop, m;, ,
and with the two-loop QCD corrections to Yukawa terms [3], mﬁ, are shown together with CPsuperH [15] and FeynHiggs [18] results.
While the CPsuperH masses are calculated at the two-loop only, the one-loop FeynHiggs 2.2beta regime (program options 20030111)
and the two-loop FeynHiggs 2.2beta regime (program options 20030211) are used. Higgs boson masses calculated in our approach at
the two-loop omitting the nonleading D terms and the wave-function renormalization (wfr) in the effective A; are separately shown. In
the calculation of decay widths I, denotes our results with the A; taken at one-loop, sparticles contribution not included, F;n denotes
our results with the two-loop terms [3] introduced to A;, sparticles contribution again not included, F;” denotes the decay widths in our
case at the one-loop when sparticles contribution is included. The one-loop regime of FeynHiggs is used, while the CPsuperH numbers
are at the two-loop.

=0 /6 /3 /2 2m/3 57/6 T
my, , one-loop 115.4 118.7 125.9 1314 130.7 125.2 122.0
m;”, two-loop 111.8 113.9 1184 121.8 121.4 118.3 116.5
mﬁll, two-loop, no D and wfr 112.1 114.4 119.7 124.2 125.0 123.0 121.6
my, [18], one-loop 115.8 118.8 125.5 130.2 123.2 98.2 78.0
my, [18], two-loop 111.4 113.7 118.3 119.2 103.6 s <o
my, [15], two-loop 106.8 109.0 113.9 1174 114.9 105.7 99.4
my,, one-loop 295.5 289.6 279.7 269.3 262.2 259.8 259.6
mzz, two-loop 293.0 289.3 282.4 275.1 269.9 267.8 267.4
mzz, two-loop, no D and wfr 294.4 291.0 283.9 276.2 270.6 268.1 267.6
mpy, [18], one-loop 295.6 290.0 279.1 264.3 249.2 239.7 236.9
my, [18], two-loop 290.4 286.5 275.8 260.7 246.1 <o ce-
my, [15], two-loop 302.2 297.8 290.9 282.2 273.9 268.3 264.4
m,,, one-loop 297.1 299.5 300.4 299.9 298.8 297.6 297.1
m§13, two-loop 296.1 297.3 297.5 296.7 295.2 293.6 293.0
m;l}, two-loop, no D and wfr 208.2 299.1 299.2 298.2 296.7 295.1 294.4
my,, one-loop [18] 297.6 300.0 301.1 301.3 300.9 300.4 300.2
my,, two-loop [18] 293.9 295.9 296.9 297.8 298.3 s s
my, [15], two-loop 302.3 304.4 305.0 304.5 303.5 3024 302.0
[jmge X 10* 1.378 1.529 1.907 2.220 2.101 1.707 1.516
F;’u—’gg X 10* 1.283 1.381 1.624 1.841 1.846 1.687 1.597
F;lll—vgg X 10* 2.103 2.355 3.024 3.643 3.397 2412 1.889
Thyge X 10* [18] 2.040 2.187 2.462 2.225 0.863 0.037 0.110
Fpmge X 10* [15] 1.878 1.964 2.107 1.961 1.262 0.503 0.263
Ly X 109 7.703 8.593 10.981 13.313 12.953 10.645 9.508
F;zl—*w X 100 6.887 7.447 8.896 10.369 10.683 9.935 9.460
1";1’1_,77 X 10° 7.470 8.371 10.832 13.321 12.945 10.274 8.887
Cpmyy X 100 [18] 6.373 7.058 9.038 11.217 9.983 5.336 3.021
Chypmyy X 109 [15] 5.796 6.287 7.605 8.996 8.969 7.223 6.101
Tpmpp X 10° 0.212 0.204 0.179 0.166 0.218 0.304 0.341
Th—pp X 10° [15] 0.157 0.152 0.141 0.137 0.175 0.240 0.269
Lo X 103 0.591 0.567 0.498 0.461 0.607 0.848 0.950
Tp—rs X 103 [15] 0.435 0.423 0.391 0.382 0.485 0.668 0.746
Fhﬁd‘; X 1077 0.202 0.194 0.170 0.158 0.208 0.290 0.325
I‘Hl_,dg X 107 [15] 0.193 0.187 0.171 0.167 0.212 0.297 0.335
[p—gs X 10° 0.744 0.713 0.626 0.580 0.764 1.066 1.195
Fp—ss X 10° [15] 0.709 0.687 0.629 0.612 0.780 1.089 1.230
[p—ee X 103 0.083 0.086 0.093 0.097 0.095 0.088 0.083
Lz X 103 [15] 0.101 0.103 0.108 0.111 0.107 0.096 0.089
l"hl_,b,; X 102 0.504 0.483 0.424 0.393 0.518 0.724 0.810
FHI_,bg X 10% [15] 0.481 0.469 0.426 0414 0.528 0.737 0.832
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TABLE VI. Vertex factors of &, h,, and hs. This is a part of the complete set of vertices generated by LANHEP package [27].

Fields in the vertex Vertex factor
b_up bbq hl - c]Z[bu 6pq(c ab — So a1 5ab —Sg i asy ° ’yfzb)
bap by hy _(»A:_.bvépq(ca Ay By~ Sq Arat gy — Sg it azn Yl
byp byg hs - CA:”,, 8pg(Co vty 8up = 5o 13 Oup — g i az -y,
fap bbq H* —-L \3/2— ‘;tb 6pq(sﬁ ' Mb : (1 + ys)ab + C%; : Mt : (1 - 75)ab)
fap thg 1 - YIZIU 8pg(Sa a1+ Oup + Coayy  Bup —Cpritaz V)
fap Ipq hy 3/3” pq(S 22'5ab+Ca'“12'5ab_Cﬁ'i'asz"}’zb)
tap thg 3 Aﬁu pq(s a3 - 84+ Cq 'a13'5ab*0ﬁ'i‘a33‘73b)
H* W, h _%ﬁ(aﬁ "y Py tcpgitay Py = Se_pgritay py —cp_givay - pl t+ascpy —asy - py)
H" W, hy _%ﬁ(aﬁ “ay - py teggitan py —Sepgritancpl —cgotivappl tan-py —an-pl)
H™ W, Iy _%ﬁ(aﬁ Gy P g itany py = Se_pgritanpy —cpggtitapnpl tascph —ay - py)
— 2
W;Z W, h le Ug’w(c/z a2l T Sa— ﬁal])
W, W, hy 2 sng (cp—atn — Su—parn)
Wi W, hy : 23 gM(Cp-ulz — Su—pais)
ZyZy, hy ggﬂ (cg-alai = Sq—pgair)
Z,Z, hy "Z—‘"g“”(cﬁ-aazz — Sa-pain)
ZI-’« ZV h3 26 - Sa_ﬁa13)
The factors Fyf, Fr, Fy, and lf«“l [29] are expressed by gi]f;{ = V5, UGS + VyUy GS,,
means of the dimensionless function f(7) 2 (A7)
S = V2UnGP + VU GPy,
Fy(r)=7""1+0—7Yf(7)] P
(7) = 7L f(r) for h; we have GS| = —sinaa;; + cosaay;, GS, =
f (A3) cosaaqy + Sil’laazl, GPI = Sil’lBaf}l’ GP2 = COSB(I31,
Fo(r) =77 [—1+ 771 f(7)], and the matrix elements U;;

Fi(r)=2+371+37712 = 7Y f(7),

1 M3 — u? — 2m3, cos2
U12=Uzl=ﬁ\/1+ 2T 2y OB (g

with an integral representation w
1 (idy
fm) = -3 f D lnf1 — 47y(1 — )] ey | M 2 — 2ml co2
0 y U22— U]] —\/_ 1_ W y (A9)
2
arcsin?(4/7): T=1, A4
_{ G — i =1 AV p—
Vo= —v \/ M; + 2m3, 0052,8
2= "V =—F%
QCD corrections in the large mass limit can be found in w
[30] (A10)
a,(M}) 8a,(Mj,)
e SR Wt kL LY
V2 w ’
Chargino contributions depend on the couplings where

aree = VnUnGS, + Vi UnGSy, W= JOR + 12+ 2m2 ) — 4M, - o — m? sin2§)?
(A6) 3+ u my 2 © M — my, sin2B)”,
= VUpGPy + VU GPy, (A12)
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= sgn(M, sinB + w cosB),
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1 T 7 F. F
= T
gngig, = 5 T D pyaa Ug; Uy

(A13) j
g = sgn(M, cosB + wsinB).
. . a=(1,2,a), B,y=LR, i=hyh, h)=I(1273),
Chargino masses are given by k=12,
1 :
mf.(r = zl\/(M% — u? + 2m3,(1 + sin2B) UF = ( costi; _ Singfei¢f-> Al6)
| sinfre "¢ cosf 7 ’
— O3 + w27+ 2m (1 —sin2B)l,  (Al4) / /
[7 = —T4/ sina + %77 cosa
m~+ = —(\/(M2 2+ 2m3,(1 + sin2B) ’
+ O3 + 20 + 2m, (1 — sin2B)).  (ALS) [%'7 =T477 cosa + I/ f sina,
Sfermion contributions depend on the couplings where
b _ 1 0 ihy(sgAy + cpu)
\/- _lhb(sﬁAb + CB/.,L ) 0 ’
[0 _ _lhblzvcﬁ + z(gz 581)1)% - ﬁhZAZ
_%thb —|hb|zvclg +%g%UC'B
[6:55 — _}T(g% 381)US5 %
Hhou' —581vsp
[ari _ b 0 ihi(cgAy + sgu)
2\ —ih(cgA, + sgu™) 0 '
_ 1,2 _ 1,2 1 g%
[T _ z(gz §gl)vc,8 ﬁhzﬂ
Lo 1.2 ) (A17)
okl 381VCp
R A L R I R
—%h,A, —|hPvsg + Lglusg )
]__‘ﬂf'*f' _ i 0 lhj(SBAj + CBM)
\/5 _ihT(SBAT + CB,LL*) 0 '
i —lh Pvcg +1(83 — gDveg — AT
—%hTAT —|h,Pveg + 3 giveg
_1(s2 —_ 5,2 1 g
F¢27~'*7~' _ 4(g2 gl)vsﬁ \/zhrlu .
%hﬂrl’"”>k - %g%USB
In these formulas £, ;, , are real variables. Sfermion masses are given by
1
2 2 2 = 2 _
M, = 5 M Mo ¥ \/ (m g — mype) + Haga?mgy), (Al8)

where

méL = MZQ3 + m?] + czﬂm%(Tf -

045,
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2 2 2 209 (2
Mmzp = Mﬁ,3 + my + copmz Qi

a

gMg = hgvg(Ay — I"“*Rq)/\/i
= M%S + m2 + coypmi(sy, — 1/2),
mlgR = M%3 + m? — cogmisy,

aim; = thl(AT - IL’L* tanﬁ)/\/—i
Here the Yukawa couplings of quarks h,, g =t,b, R=U,D, T: = —T; =1/2, 0, =2/3, 0, = —1/3, R, = tgB =
v,/vy, R, = ctgB, the mixing angles are

2 — m2
_laq(l)lmq(l) m‘-Z'( mq(l)l ) (A19)

HL
s
2 _ .72 2 2.7 aa) 2 2
VO = mi, )+ lagoPmgy, Oz, = meg )P+ lagoPey,

A charged Higgs boson contribution depends on the effective triple self-couplings g+ -, which can be written as

costqp =

1
S8H*H by, — ) o 2. (4(S P+, S53)S25mH26121 - 80323ﬁ+aa21 Re#%z - 85/3+as,g46121 Reﬂ%z
2[3
—8cgiacg’an Repty = 8cgyasgta Repd; — c5°s,57°5 g1 a0 ReAGU® + 4cp%s, gy ReAgu?
+deghs,sgian ReAgu? +degcg’s glay ReAgu? + deg?s,spar Redgv? + deqcp’ay Redgy?
tAca g’ = 5o 550 )508m,7a11 — 8,575 g1 a8 g7 a1 ReA VP — 45, gs g2ar Redyv® + dcgs,s goay Redyv?
—dcqepsgian ReAdsv? — ds,s .3ay ReAdsv? — degep’sghay Redsv® +deg o5,57my. 2ay
—A5)575 0 pMy=2a11 — S35 S pralMy Aa) — CpiaSyp My a1 = Sy5°S grala REAsV? = gy o8, 5°a1 ReAsv?
+8cg7s glaz ImAsv® — 8cg?s gtaz ImAgv® — 8cgs g7 as ImAv2),
__ L1 3 2 2 2 4 2
8H H h, = ) o 2. v(4(S P+, *Sg )Szﬁmy Az — 85;; Sgradrn Reut; — 8sﬁ+as/3 anReut,
2B
- 8c5+acﬂza12 Re,u,%2 - 8cﬁ+asﬁ4a12 Re,u,%2 - cﬂ2szﬁzsﬁ+aa22 ReAgv? + 4032%—/3022 ReAgv?
+ 4cﬂ4sasﬂ3a12 ReAgv? + 4cac'33sﬁ4a12 ReAqv? + 4cﬂzsas3a12 ReAqv? + 4cacB5a12 ReAqv?
+ 4(c, cﬁ3 — Sy sB3)s25mh2a12 - szﬁzsﬁmsﬂzazz ReA;v? — 4sa,ﬁsﬁ,2a22 ReA;v? + 4c32sas35a12 ReA;v?
—dcqepsgtapReAdv? — ds,s .l ap Redv? — degep’sgtapn Redsv® +deg o5,57my - 2a
- 4s2ﬁ2sa_BmHi2a12 - s253sl3+amA2022 — cﬁmsz[fmAzaIZ - s253sﬁ+aazz ReAsv? — c3+as2,83a12 ReAsv?
+ 8CB3Sﬂ3a32 Im/\5v2 - 8CB2SB4(132 Im)l6v2 - 8C'34S'32(132 Im)\7v2),
_ 1 3 2 2 2 4 2
8H H h; = ) P U(4(S 3+ ¢, "Sg )Sz,emH azs — SCﬂ Sg+ad3Reut; — Ss[Hasﬁ apReut,
2,3

- 8cﬁ+ac,32a13 Reu?, — 8cB+asﬁ4a13 Reu?, — cﬁzszﬁzsﬂ+aa23 ReAgv? + 4C,82sa—ﬁa23 ReAqv?
+acghs,sglazReAgu® +degcp’s gasReAgu? +deg?s s gayRedgv? + 4eqcp’ar3 Redgr?

tAca g’ = 5q 557 )50pm, a13 = 8,575 g1 a8 gR a3 ReATV? — 45, ps g2ars Redv? +4cg?s,s g a3 Redv?
—dcqcpsgtaizReAdv> —dsys glaizReAv> —degep’sgtaizReAsv® +deg o5,5°myan;

- 4s252sa_BmH12a13 - s2B3sﬁ+amA2(123 — cﬁ+aszﬁ3mA2a13 - s2,83sﬁ+aa23 ReAsv? — cﬂ+as2[33a13 ReAsv?

+8cy’s g azs ImAsv? — 8cp?s gt azs ImAgu? — 8¢ p*s g7 az; ImA;v?).
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FIG. 5 (color online). Light Higgs boson mass m (¢) (GeV) vs arg(uA) in various regions of the MSSM parameter space.
Horizontal dotted lines indicate the h; mass in the CP-conserving limit (m;, = m,). (a) tgB8 =35, Mgysy = 0.5 TeV, A, = A, =
1 TeV, and u = 2 TeV. Solid line my= = 180 GeV; dashed line my= = 250 GeV. Thin solid line denotes m;(¢). (b) tgB = 5,

my+= = 300 GeV, and u = 2 TeV; solid line A, = A, = —1.2 TeV; dashed line A,

=A, = 1.3 TeV.(c)tgB =5, myg= = 300 GeV,

and A, = A, = 1 TeV; solid line w = —1.6 TeV; dashed line u = 0.7 TeV. (d) u =2 TeV, my= =300 GeV, and A, = A, =

1 TeV; solid line tgB8 = 5; dashed line tgB = 40.

This representation uses the mass basis for CP-even/odd
Higgs fields (h, H, A), then rotated by matrix a;; in the
three-dimensional (A, H, A) isospace, and for this reason
includes m,,, my, my, and my= of the CP-conserving limit,
calculated with one-loop MSSM corrections from the
squark sector. In this sense the vertices above are MSSM
effective one-loop Higgs self-interaction vertices. If the
imaginary parts in these vertices are set to zero they are
reduced to the self-interaction vertices of the
CP-conserving limit, when my, my, my, and my. are

the masses of physical states. Various extremal cases (de-
coupling limits) are clearly seen. Equivalent representation
of the triple couplings can be written in the A; basis (see
details on the representations in mass and A; basis in [5]).
For example,

3
EmHtH" = TV Z Aa18aH H >
a=1

where
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FIG. 6 (color online). The decay width I'(h; — gg) X 10* (GeV) at Mqygy = 500 GeV. Dotted lines show I'j, in the CP-conserving
limit ¢ = 0. Thin solid or dashed lines are only for SM contributions, thick solid or dashed lines show SM and sparticle contributions
with the K factor included. (a) tgB8 =15, A, = A, = 1TeV, and u = 2 TeV; solid line my= = 190 GeV; dashed line my= =
300 GeV. (b) tgB =15, my- =300 GeV, and p =2 TeV; solid line A, = A, = —1.1 TeV; dashed line A, = A, = 1.1 TeV.
(©)tgB =75, my= =300 GeV, and A, = A, = 1 TeV; solid line u = 0.2 TeV; dashed line u = 1.2 TeV. (d) u =2 TeV, my= =

300 GeV, and A, = A, = 1 TeV; solid line tg8 = 5; dashed line tg = 40.

gin+n- =ReAAssgcgeaip —ReA)\6cas%cﬁ +ReA)\6sas% &ontn- = ReAAssgepsaip + 2ReA)16(:0(sﬁcfg

+ReAAcp(sospep — calcy —25%))
—ReAgs,525¢5 — 2sas%cﬂ)tl + 2casﬁc%)x2

— CSaA3 Tt CaSA3 — CoCpS ALt CpSaspAs,
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The decay width I'(h, — gg) X 10* (GeV) at Mgysy = 500 GeV. Dotted lines show I'; in the CP-conserving

limit ¢ = 0. Thin solid or dashed lines are only for SM contributions, thick solid or dashed lines show SM and sparticle contributions

with the K factor included. (a) tgB8 = 5, A,

= A, = 1TeV, and u = 2 TeV; solid line ¢ = 77/2; dashed line ¢ = 7. (b) tgB8 = 5,

mpy= = 300 GeV, and u = 2 TeV; solid line ¢ = 77/2; dashed line ¢ = 7. (¢c) tgB = 5, my= = 300 GeV, and A, = A, = 1 TeV,
solid line ¢ = 7/2; dashed line ¢ = 7. (d) u = 2 TeV, my= = 300 GeV, and A, = A, = 1 TeV; solid line ¢ = 7/2; dashed line

¢ =

83g+H- = C% ImA/\7 - SBCB ImA/\S + S% ImA/\6

In this representation the scalar masses of the

CP-conserving limit do not explicitly participate. The

magnitude of the coupling g+, is shown in Fig. 1.
The decay width h; — gg has the form

M?t,-aé |8 2 g\ pg 2
Db = gg) = 5505 s [KEISHM,,)P + KE1PE ()],
(A20)
where

v
Sig(Mh,-) = Z gi_ffist(Tif)
f=pe My

-y ’

v
g g Folmip ) (a2

fj:;])fz’hl)l;2 f]
v
P?(Mhi) = Z g;_szm—prf(Tif)
f=b,t .

and QCD K factors are

M? 7
KS =1+ s( hQ(% Nr)
(:42) (A22)
as(M?) 97 7
Ki - > i (9 7NF>:
T 4 6
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FIG. 8 (color online). The decay width I'(h; — yvy) X 106 (GeV) at Mgysy = 500 GeV. Dotted lines show I}, in the CP-conserving
limit ¢ = 0. Thin solid or dashed lines are only for SM contributions, thick solid or dashed lines show SM and sparticle contributions
with the J factor included. (a) tgB8 =15, A, = A, =1 TeV, and u = 2 TeV; solid line my= = 190 GeV; dashed line my= =
300 GeV. (b) tgB =15, my= =300 GeV, and p =2 TeV; solid line A, = A, = —1.1 TeV; dashed line A, = A, = 1.1 TeV.
(c) tgB =15, my= =300 GeV, and A, = A, = 1 TeV; solid line u = 0.2 TeV; dashed line uw = 1.2 TeV. (d) u = 2 TeV, my= =
300 GeV, and A, = A, = 1 TeV; solid line tg8 = 5; dashed line tg = 40.

Np =5 is the number of quark flavors with masses less than m,, .
The decay width of Higgs boson to the two fermions #; — ff can be written as

r Ncgjzfmh]ﬁi/z (Sata) — cqan)* & +ctg’Ba3, f=uc1, A23)
m=ff 8 (cpar — saa“)zé +1g’Bd3, f=bdseur,

Iparameters (13)—(19), Sec. 11, and the mass term diagonal-
ization method described in Sec. IIl A. The decay widths
[, —gg» I'n,—yy (unprimed) include only the leading one-
loop contributions of ¢, b quarks and W= bosons. For an

where B =1 — 4k, k =m3/mj , g = gmy/2my, and
Nc = 3 (1) for quarks (leptons).

In the following Table V we list the Higgs boson masses
my, , my,, m;, which are calculated using the effective A;
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The decay width I'(h; — yvy) X 10° (GeV) at Mgysy = 500 GeV. Dotted lines show I';, in the CP-conserving

limit ¢ = 0. Thin solid or dashed lines denote the SM contributions, thick solid or dashed lines show SM and sparticle contributions
with the J factor included. (a) tgB8 =5, A, = A, = 1 TeV, and u = 2 TeV, solid line ¢ = 7/2; dashed line ¢ = 7. (b) tgB = 5,
my= = 300 GeV, and u = 2 TeV; solid line ¢ = 77/2; dashed line ¢ = 7. (¢c) tgB = 5, my= = 300 GeV, and A, = A, = 1 TeV,
solid line ¢ = 7/2; dashed line ¢ = 7. (d) u = 2 TeV, my= = 300 GeV, and A, = A, = 1 TeV; solid line ¢ = 7/2; dashed line

¢ =

illustration of the sensitivity of m, , my,, m;, and their
decay widths to the values of A; we computed Higgs boson
masses mj, , , and the leading one-loop decay widths
F;n—'gg’ Fén—»w
using the effective potential parametrization with both the
one-loop and two-loop contributions to A; from the paper

[3]. Finally, the decay widths I} _ ., I') _ . are found

using the effective parameters (13)—(19) and taking into
account all possible one-loop fermion (¢, b), gauge boson

(include ¢, b and W contributions only)

W=, sfermion (7, b), chargino, and charged Higgs boson
contributions, with K factors introduced in the expressions
for decay widths.

Table V contains also the output of the CPsuperH [15]
package and the FeynHiggs [18] package with the input

parameter values taken the same as used in our parameter
set. The two-loop evaluation in the CPsuperH and the one-
loop evaluation in the FeynHiggs 2.1beta has been per-
formed. Note that physical Higgs bosons H;, H,, and H; of
the CPsuperH and FeynHiggs are evaluated in the way that
is technically different from the construction of our mixed
states iy, h,, hz, however a difference of numbers (which is
from several percent to 40% in the majority of cases) is
caused mainly by theoretical uncertainties of the effective
two-doublet potential representation, not by different defi-
nitions of the Higgs boson eigenstates in the generic basis
of scalar doublets, as demonstrated explicitly in Sec. IIT A.

In Figs. 5-9 we show the variation of the light Higgs
boson mass and the variations of I'(h; — gg), I'(h; — v7y)
decay widths in different regions of the parameter space
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(@, mg=, A;p, 1, tgB). At the parameter set (0, 300 GeV,
1000 GeV, 2000 GeV, 5) the decay widths of 4 to yy and
gg are not far from the decay widths of the SM Higgs
boson with my = 120 GeV. The largest sensitivity of the
widths to the charged Higgs mass is observed. At mpy=
around 200 GeV [Figs. 6(a) and 8(a)] we observe the
suppression of the branchings of #; to gg and yy of
more than 10 times at ¢ ~ 7, which takes place in

PHYSICAL REVIEW D 71, 075008 (2005)

CPsuperH and FeynHiggs at higher masses of my= around
300 GeV.

Our approach is algorithmized in the form of the model
in CompHEP 41.10 format [31], where the symbolic ex-
pressions for vertices are a starting level for the calculation
of the complete tree-level sets of diagrams with the follow-
ing cross section/decay width calculations and the genera-
tion of unweighted events.
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