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We consider the effective two-Higgs-doublet potential with complex parameters, when the CP
invariance is broken both explicitly and spontaneously. The diagonal mass term in the local minimum
of the potential is constructed for the physical basis of Higgs fields, keeping explicitly the limiting case of
CP conservation, if the parameters are taken real. For the special case of the two-doublet Higgs sector of
the minimal supersymmetric model, when CP invariance is violated by the Higgs bosons interaction with
scalar quarks of the third generation, we calculate by means of the effective potential method the Higgs
boson masses and evaluate the two-fermion Higgs boson decay widths and the widths of rare one-loop-
mediated decays H ! ��, H ! gg.
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I. INTRODUCTION

It is well known that the Cabibbo-Kobayashi-Maskawa
(CKM) mixing matrix originates from the standard model
(SM) Lagrangian terms, describing the Higgs boson inter-
action with quarks (the Yukawa terms)

L � �guij � i0LHu
j0
R � gdij � i0L ~Hdj0R � H:c:; (1)

where � 10
L � � �u0; �d0�L, � 20

L � � �c0; �s0�L, � 30
L � ��t0; �b0�L, u10

R �
u0R, u20

R � c0R, u30
R � t0R, d10

R � d0R, d20
R � s0R, d30

R � b0R, and
H denotes the scalar complex field doublet, ~Hk � �klH

�
l

and guij, g
d
ij are the 3 	 3 matrices with matrix elements

that are generally speaking complex and defined with an
uncertainty coming from the phases of CP transformation1

for the quark spinor fields and the Higgs boson scalar field.
In order to diagonalize the quark mass term after sponta-
neous symmetry breaking H ! �0; v=

���
2

p
�, the unitary

transformations of the ui0 and di0 quark fields uiL;R �

UL;Rui0L;R, diL;R � DL;Rdi0L;R are needed. After the diagonal-
ization of the quark mass term the unitary matrices UL and
DL do not appear neither in the Yukawa Lagrangian
terms (1) nor in the quark neutral current interactions,
but arise in the quark ui0, di0 charged current interaction
terms g �u0L��d

0
LW

� � g �uL��ULD
y
LdLW

�. The product
VCKM � ULD

y
L defines the complex CKM matrix, which

describes CP violation in the quark charged currents sec-
tor. In the framework of the SM the CP violation takes
place since it is generally speaking not possible to get the
mixing matrix with real matrix elements using CP trans-
formations for six up- and down-quarks.
ind one, for example, that from the definition of the
ion Pa�# � ~p�Py � &#a�# �� ~p�, where the complex
1 contains the P transformation phase, and # � 0
ollows that P'�x�Py � &�

0'�x
0�, P �x�Py �

where x0 � Px.
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There are other sources of CP violation besides the
CKM mechanism. It is possible to introduce explicitly
CP noninvariant Hermitian Lagrangians [1] for the system
of several scalar fields. For example, if we have three
complex scalar fields ’1; ’2; ’3

L � �’1’�
2’

�
3 � ��’�

1’2’3;

CPLPyCy � LCP � �ei ’�
1’2’3 � ��e�i ’1’

�
2’

�
3;

where � is a complex parameter and  is the CP trans-
formation phase, not essential in this case. It can be rotated
away by the phase transformation of the fields, related to
charge conservation. One can see that L and LCP have
different signs of the imaginary part of �. In this simple
example the difference in the sign does not lead to any
observable consequences, because the phase of � can be
also rotated away by the U�1�Q transformation. However
for the system with trilinear interactions of the four com-
plex scalar fields it is generally speaking not possible to
rotate away all phase factors. It is easy to show that the
Lagrangian of such a system will be CP invariant only if
the phases of the four parameters �i respect certain con-
ditions, which ensure the possibility to remove them by
U(1) rotations of the fields ’i. From this point of view the
models with extended Higgs sector, where CP invariance
of the Higgs potential with complex parameters is explic-
itly broken, are of particular interest. The simplest example
is represented by the two-doublet Higgs potential of the
minimal supersymmetric standard model (MSSM), includ-
ing (if the possibility of spontaneousCP violation [2] is not
considered) ten parameters, four of which can be complex.
In the framework of MSSM the dominant loop-mediated
contributions from the third generation scalar quarks could
lead to substantial violation of CP invariance of the two-
doublet effective Higgs potential [3]. Various models with
radiatively induced CP violation in the two-doublet Higgs
sector have been studied [4,5].
-1  2005 The American Physical Society
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In this paper we develop further on our approach to the
Higgs boson phenomenology in the scenario with CP
violation considered in [5]. In Sec. II, after brief introduc-
tory remarks, we calculate the effective �i parameters of
the two-doublet MSSM Higgs potential at themtop scale. In
Sec. III we consider in detail the diagonalization of the
mass term for the two-doublet Higgs potential with CP
invariance broken both explicitly and spontaneously. In the
Appendix some numerical results for the Higgs boson
masses and the two-particle Higgs decay widths are pre-
sented. Our numerical results are compared with the output
of other approaches.

II. THE EFFECTIVE TWO-DOUBLET HIGGS
POTENTIAL WITH CP VIOLATION

In the general two-Higgs-doublet model (THDM) two
SU(2) doublets of complex scalar fields are introduced:

�1 �
'�

1 �x�
'0

1�x�

� �
�

�i!�
1

1��
2

p �v1 � &1 � i+1�

 !
; (2)

�2 � ei,
'�

2 �x�
'0

2�x�

� �
� ei,

�i!�
2

1��
2

p �v2ei- � &2 � i+2�

 !
: (3)

Their vacuum expectation values (VEV’s)
2We analyzed these conditions written in the form of ten linear
equations, having the solution practically only in the case 0 � 0.
The mixed term is not obligatory to ensure the renormalizability.
It is shown below that the contributions of self-energy diagrams
absorbed by the Higgs boson wave-function renormalization to
the effective parameters �5;6;7 are zero; see also [8].
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h�1i �
1���
2

p
0
v1

� �
;

h�2i �
ei,���

2
p

0
v2ei-

� �
�

1���
2

p
0

v2ei.

� �
;

(4)

where v1 and v2 are real. The phases - , relative phase of
the VEV’s, and ,, relative phase of the SU(2) doublets, are
introduced to consider the general case, their sum . will be
used for convenience of notations (Sec. III C). For the
special case , � 0 the analysis of the Yukawa sector
with the two-fermion generations can be found in [6],
where a somewhat simpler form without the dimension 2
terms �y

1 �2 � �y
2 �1 and real�2

12, �5;6;7 parameters of the
THDM potential with spontaneous violation of CP invari-
ance (- � . � 0) has been considered in the context of
superweak (i.e. flavor-changing Higgs boson exchange
mediated) CP violation in meson decays.

The most general renormalizable Hermitian SU�2� 	
U�1� invariant Lagrangian for the system of scalar fields
(2) and (3) can be written as

L H � �D/�1�
yD/�1 � �D/�2�

yD/�2

� 0�D/�1�
yD/�2 � 0

�
�D/�2�

yD/�1

�U��1;�2�; (5)

where
�

U��1;�2� � ��2
1��

y
1 �1� ��2

2��
y
2 �2� ��2

12��
y
1 �2� ��

� 2
12��

y
2 �1� � �1��

y
1 �1�

2 � �2��
y
2 �2�

2

� �3��
y
1 �1���

y
2 �2� � �4��

y
1 �2���

y
2 �1� �

�5

2
��y

1 �2���
y
1 �2� �

��
5

2
��y

2 �1���
y
2 �1� � �6��

y
1 �1���

y
1 �2

� �
�

6��
y
1 �1���

y
2 �1� � �7��

y
2 �2���

y
1 �2� � �

�

7��
y
2 �2���

y
2 �1�: (6)
The parameters �2
12, �5, �6, and �7 are complex. Complex

parameter 0 could be introduced to describe an interesting
possibility of a mixing in the kinetic term [7]. However,
strong restrictions on the real part of 0 are imposed by
precise experimental data on the gauge boson masses
mW;Z. Moreover, mixing in the kinetic term does not allow
one to construct the diagonal 4 	 4 matrix of the Higgs
boson kinetic terms consistently with the diagonal matrix
for their mass terms.2 In the following we consider the case
0 � 0.

The special case of the two-Higgs-doublet potential is
the potential of the MSSM Higgs sector. At the energy
scale MSUSY (i.e. at the energy of the order of the sparticle
masses) the tree-level parameters �1;...;7 are real and can be
expressed through the SU�2� 	 U�1� gauge couplings g1

and g2 [9]

�1�MSUSY� � �2�MSUSY� �
1

8
�g2

2�MSUSY� � g2
1�MSUSY��;

(7)

�3�MSUSY� �
1

4
�g2

2�MSUSY� � g2
1�MSUSY��;

�4�MSUSY� � �
1

2
g2

2�MSUSY�;

�5�MSUSY� � �6�MSUSY� � �7�MSUSY� � 0:

At the scale MSUSY the potential is CP invariant. However,
the potential parameters of any model depend, generally
speaking, on the energy scale where they are fixed or
measured. The dependence is described by the renormal-
ization group equations (RGE). The conditions (7) are the
-2
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boundary conditions for the RGE. At the energies smaller
than MSUSY they are affected by large quantum corrections
[10] where the main contribution is coming from the Higgs
bosons—third generation quarks and scalar quarks inter-
action (the interactions with the first and second genera-
tions are suppressed). The potential of the Higgs bosons—
scalar quarks interaction can be written in the form [8]

V 0 � VM �V � �V� �V ~Q; (8)

where

V M � ��1�i�jm2
ij�

y
i �j �M2

~Q
� ~Qy ~Q� �M2

~U
~U� ~U

�M2
~D

~D� ~D; (9)

V � � �Di ��
y
i

~Q� ~D� �Ui �i�
T
i #2

~Q� ~U� �
�D

i � ~Qy�i� ~D�

� �
�U

i �i ~Qy#2�
�
i � ~U�; (10)

V� � �jl
ik��

y
i �j���

y
k�l� � ��y

i �j���
Q
ij�

~Qy ~Q�

� �U
ij

~U� ~U� �D
ij

~D� ~D� � �Q
ij��

y
i

~Q�� ~Qy�j�

�
1

2
���ij�i�

T
i #2�j� ~D� ~U� H:c:�;

i; j; k; l � 1; 2; (11)

V ~Q denotes the four scalar quarks interaction terms, Pauli

matrix #2 � �
0 i
�i 0

�. The Yukawa couplings for the third

generation of scalar quarks are defined in a standard way
ht �

���
2

p
mt=v sin5, hb �

���
2

p
mb=v cos5. Following [11]:3

�U
f1;2g � hUf���;AUg; �D

f1;2g � hDfAD;���g; (12)

they are complex in the case under consideration. One can
observe CP violating terms of the structure similar to (1) in
the sector of Higgs—scalar quark interactions, so complex
mixing matrices are expected to appear there. The trilinear
3For the case of CP conservation, considered in [8], the trilinear
hDfAD;��g.
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parameters At, Ab and the Higgs mass parameter � should
be taken complex, the imaginary parts of the mixing matrix
elements could be large.

In the framework of the effective field theory approach
[8] the MSSM potential (8) which explicitly describes
sparticle interactions at the energy scale above MSUSY is
matched to an effective standard model-like Lagrangian at
the energy scale below MSUSY, where the sparticles de-
couple. So the MSSM effective Higgs potential at the
energy scalemtop, much smaller thanMSUSY, is represented
by the general two-Higgs-doublet model potential (6), the
parameters of the latter are expressed by means of the
Higgs bosons—scalar quarks interaction parameters (12)
and the scalar quark masses, playing the role of ultraviolet
Pauli-Villars regulators. The RGE boundary conditions (7)
modified by the interactions of the third generation squarks
with the Higgs bosons (these modifications are sometimes
called the ‘‘threshold’’ effects, since the stops decouple at
the MSUSY scale) are imposed at the energy scale MSUSY.
They affect the evolution of �i parameters, the Yukawa
couplings ht;b, and the gauge couplings g1;2. We calculated
radiative corrections to the boundary conditions (7) for �i
parameters at the scale mtop using the effective potential
method [12]. The squark mass matrices �M2

X�ab �

@2V X=@ ~Qa@ ~Q�
b defined by (8) were calculated and then

substituted to the one-loop effective potential

V � V 0 �
NC

32:2 trM4

�
ln
�
M2

#2

�
�

3

2

�
;

decomposed in the inverse powers of MSUSY. Taking into
account the one-loop wave-function renormalization terms
(i.e. terms introduced to absorb the contributions of self-
energy diagrams to the Higgs bosons kinetic term, which
are beyond the calculation by means of the effective po-
tential method), the effective parameters can be evaluated
as follows:
�1 �
g2

2 � g2
1

8
�

3

32:2

�
h4
b

jAbj2

M2
SUSY

�
2 �

jAbj2

6M2
SUSY

�
� h4

t
j�j4

6M4
SUSY

� 2h4
bl�

g2
2 � g2

1

4M2
SUSY

�h2
t j�j

2 � h2
bjAbj

2�� � !�field
1

�
1

768:2 �11g4
1 � 9g4

2 � 36�g2
1 � g2

2�h
2
b�l;

�2 � �1�t$ b�;

(13)

�3 �
g2

2 � g2
1

4

�
1 �

3

16:2 �h
2
t � h2

b�l
�
�

3

8:2 h
2
t h2

b

�
l�

1

2
Xtb

�
�

3

96:2

j�j2

M2
SUSY

�
h4
t

�
3 �

jAtj
2

M2
SUSY

�
� h4

b

�
3 �

jAbj
2

M2
SUSY

��

�
3�g2

2 � g2
1��h

2
b�j�j

2 � jAbj
2� � h2

t �j�j
2 � jAtj

2��

128:2M2
SUSY

� !�field
3 �

9g4
2 � 11g4

1

384:2 l; (14)
parameters in (10) are real. Then �U
f1;2g � hUf��;AUg, �D

f1;2g �

-3
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�4 � �
g2

2

2

�
1 �

3

16:2 �h
2
t � h2

b�l
�
�

3

8:2 h
2
t h

2
b

�
l�

1

2
Xtb

�
�

3

96:2

j�j2

M2
SUSY

�
h4
t

�
3 �

jAtj2

M2
SUSY

�
� h4

b

�
3 �

jAbj2

M2
SUSY

��

�
3g2

2�h
2
b�j�j

2 � jAbj2� � h2
t �j�j2 � jAtj2��

64:2M2
SUSY

� !�field
4 �

3g4
2

64:2 l; (15)

where

Xtb �
jAtj

2 � jAbj
2 � 2 Re�A�

bAt�

2M2
SUSY

�
j�j2

M2
SUSY

�
j j�j2 � A�

bAtj
2

6M4
SUSY

: (16)

The effective complex parameters �5;6;7

�5 � �!�5 � �
3

96:2

�
h4
t

�
�At
M2

SUSY

�
2
� h4

b

�
�Ab
M2

SUSY

�
2
�
; (17)

�6 � �!�6 �
3

96:2

�
h4
t
j�j2�At
M4

SUSY

� h4
b

�Ab
M2

SUSY

�
6 �

jAbj2

M2
SUSY

�
� �h2

bAb � h2
t At�

3�

M2
SUSY

g2
2 � g2

1

4

�
; (18)

�7 � �!�7 �
3

96:2

�
h4
b

j�j2�Ab
M4

SUSY

� h4
t
�At
M2

SUSY

�
6 �

jAtj2

M2
SUSY

�
� �h2

t At � h2
bAb�

3�

M2
SUSY

g2
2 � g2

1

4

�
: (19)

Some details of the calculation can be found in [13]. The one-loop wave-function renormalization terms in (13)–(15) are

!�field
1 �

1

2
�g2

1 � g2
2�A

0
11; !�field

2 �
1

2
�g2

1 � g2
2�A

0
22; (20)

!�field
3 � �

1

4
�g2

1 � g2
2��A

0
11 � A0

22�; !�field
4 � �

1

2
g2

2�A
0
11 � A0

22�;

!�field
5 � 0;

!�field
6 �

1

8
�g2

1 � g2
2��A

0
12 � A0

21� � 0; !�field
7 �

1

8
�g2

1 � g2
2��A

0
21 � A0

12� � 0:

They are similar to the case of CP conservation [8] containing the logarithmic contributions and imaginary parameters as a
consequence of (12), and can be written as

A0
ij � �

3

96:2M2
SUSY

�
h2
t

j�j2 ���A�
t

��At jAtj
2

� �
� h2

b
jAbj2 ���A�

b
��Ab j�j2

� ��
1 �

1

2
l
�
: (21)

Here and in the formulas given below l � ln�M2
SUSY=#

2�, where # � mtop is the renormalization scale. The one-loop
wave-function renormalization does not yield a CP violating contribution to �i. For convenience we introduce the notation
for the deviations of effective parameters �i from �SUSY

i � �i�MSUSY� following [5]:

�1;2 � �SUSY
1;2 � !�1;2=2; �3;4 � �SUSY

3;4 � !�3;4; �5;6;7 � �!�5;6;7; (22)

where

!�i � !�eff:pot:
i � !�field

i ; !�feff:pot:;fieldg
i � !�log

i � !�finite
i ; (23)

!�log
5;6;7 � 0; !�field

5;6;7 � 0: (24)
At the end of this section we would like to make some
general comments as well as some comments in connec-
tion with results obtained by other authors. Like in the
existing effective field theory approach [8] we are using the
075008
standard scheme of leading logarithmic terms resumma-
tion by means of RGE, additionally taking into account in
the boundary conditions at the scale MSUSY the effects of
Higgs bosons—the third generation of scalar quarks inter-
-4



TABLE I. Numerical comparison of various corrections to the �i parameters at the scale mtop. For convenience of the following
Higgs boson masses comparison, the same parameter values as in the package CPsuperH [15] are chosen here: mZ � 91:19 GeV,
mb � 3 GeV, mt � 175 GeV, mW � 79:96 GeV, g2 � 0:6517, g1 � 0:3573, v � 245:4 GeV, GF � 1:174 	 10�5 GeV�2,
 S�mt� � 0:1072, tan5 � 5, MSUSY � 500 GeV, # � mt, mH� � 300, jAtj � jAbj � A � 1000 GeV, j�j � 2000 GeV, and ’ �

arg��At;b� � 0. The abbreviation ‘‘wfr’’ stands for the ‘‘wave-function renormalization.’’

i 1 2 3 4 5 6 7

Only O�h4
t � terms [12] 0.907 �0:203 0.057 0.057 0.227 �0:453 0.057
!�i 0.860 �0:182 0.054 0.072 0.227 �0:442 0.046

1-loop [3] 0.907 �0:191 0.064 0.043 0.227 �0:453 0.057
1-loop � 2-loop [3] 0.761 �0:152 0.052 0.032 0.135 �0:371 0.044

2-loop [3] �0:146 0.039 �0:012 �0:011 �0:092 0.082 �0:013
1-loop (D� wfr) �0:047 0.009 �0:010 0.028 0 0.011 �0:011

!��D�
!��2-loop� 0.32 0.23 0.83 �2:55 0 0.13 0.85

1-loop � 2-loop � 1-loop (D� wfr) 0.715 �0:143 0.042 0.061 0.135 �0:360 0.033
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action. The one-loop effective parameters (13)–(19) satisfy
the boundary conditions defined by (7) and modified by the
soft supersymmetry breaking potential terms (8) (’’thresh-
old effects’’). The terms with the logarithmic factor l
describe the parameters evolution from the energy scale
MSUSY down to the scale # � mtop. Finite power term
threshold corrections to �1;...;7 appear from the so-called
F terms [the trilinear interaction terms in (10)] andD terms
[contained in (11)]. The corrections to �5 come from the F
terms only. Radiative corrections to the parameters �1;...;7

of the effective two-Higgs-doublet potential have been
considered earlier in [3] for the case of broken CP invari-
ance and in [8,14] for the case of CP conservation.
Phenomenological consequences of the two-doublet
system are usually analyzed assuming for simplicity At �
Ab and introducing the universal phase arg��At;b�, so
that �5 � j�5j exp�i2 arg��A��, �6 � j�6j exp�i arg��A��,
�7 � j�7j exp�i arg��A��.

Only the leading D-term contributions were calculated
in [3,14]. In our expressions for the effective parameters
(13)–(19) the nonleading D-term contributions are repre-
sented by the power terms containing gauge couplings g2

1,
g2

2. The one-loop contributions of the wave-function renor-
malization !�field

1;...;4 are neglected in [3,14]. However, the
QCD and weak corrections to Yukawa couplings up to two
loops, not calculated in our case, have been included there.
The expressions for �1;2;3;4 (13)–(19) do not contain imagi-
nary parts up to the two-loop approximation and coincide
with the results of [3,14] if we omit the contributions of
nonleading D terms and !�field

1;...;4 terms. If � and A are real,
the expressions (13)–(19) are consistent with the results of
[8], where the D-term contribution was calculated.4 Let us
note that it is not possible to generalize the expressions for
real �5;6;7 in the case of CP violating potential by the
straightforward replacement of the real �, A parameters
to the complex ones.
4In (13)–(15) we kept the terms of the order of g4
1;2.

075008
If we neglect the contributions of D terms, the wave-
function renormalization terms !�field

1;...;4, and the terms of
the order of h2

b for the b-quark couplings, only the one-loop
corrections of the order of O�h4

t � remain. This approxima-
tion was discussed in [12,14]. For example, �2 is given by

�2 �
g2

2 � g2
1

8
�

3

32:2

�
h4
t

jAj2

M2
SUSY

�
2 �

jAj2

6M2
SUSY

�

� 2h4
t l
�
: (25)

The beta function for �2 contains large negative contribu-
tion �6h4

t [8], or equivalently, �2 (13) contains the large
logarithmic term 6h4

t l=�32:2� which was observed in the
first calculations [10]. In the following the negative !�2

defined by (22) gives a large positive contribution to the
light Higgs boson mass in (38).

Numerical comparison of the �i parameters evaluated
using different approximations is presented in Table I,
where for our case in the second line of the Table

!�i � fone-loop contributiong � fone-loop�D terms

� wave-func. renormalization�g:

One can conclude that the one-loop corrections from D
terms and wave-function renormalization can be of the
order of the leading two-loop corrections. The difference
of the effective �i of the order of 10�1 may result in the
deviation of Higgs boson masses around 5 GeV and even
more.

III. DIAGONALIZATION OF THE EFFECTIVE
POTENTIAL MASS TERM IN THE

LOCAL MINIMUM

A. Complex �2
12, �5;6;7 parameters, ��0

The components!i, &i, +i of the SU(2) doublets (2) and
(3) are not a physical Higgs fields (mass eigenstates). In
order to extract the Higgs boson masses and the self-
interaction of the physical fields from the potential (6) it
-5
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is necessary to diagonalize the mass term of the latter in the
local minimum. This problem has been considered in [5]
for the case of complex �2

12, �5;6;7 parameters and the zero
phase of the �2 VEV . � 0. As an example we derive an
explicit representation for the triple Higgs boson vertex
H�H�hi, where the hi mass eigenstates are defined by the
formula (44) below, in the Appendix, see also Fig. 1. The
diagonalization of the mass term is performed in two
stages. First the CP-even fields h,H, the CP-odd field A
(‘‘pseudoscalar’’)5, and the Goldstone field G0 are defined
by the linear transformation
5The fields h, H, and A are the physical fields at ’ �
arg��At;b� � 0; n:.
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h � �&1 sin � &2 cos ; (26)

H � &1 cos � &2 sin ; (27)

A � �+1 sin5� +2 cos5; (28)

G0 � +1 cos5� +2 sin5; (29)

where tg5 � v2=v1 and (introducing compact notations
sin � s , cos5 � c5, etc.)
tg 2 �
s25�m2

A �m2
Z� � v2��!�3 � !�4�s25 � 2c2

5 Re!�6 � 2s2
5 Re!�7�

c25�m
2
A �m2

Z� � v2�!�1c
2
5 � !�2s

2
5 � Re!�5c25 � �Re!�6 � Re!�7�s25�

: (30)
Here the relations g2
1 � g2

2 � g2
2m

2
Z=m

2
W , g2

2 � g2
1 �

g2
2�2 �m2

Z=m
2
W� are used. Then we substitute to the effec-

tive potential the real parameters �1;2, �1;2;3;4 and the real
parts Re�2

12, Re�5;6;7, which are related by linear trans-
formation [5,16,17]:

�1 �
1

2v2

��
s 
c5

�
2
m2
h �

�
c 
c5

�
2
m2
H �

s5
c3
5

Re�2
12

�

�
1

4
�Re�7 tg35� 3 Re�6 tg5�; (31)

�2 �
1

2v2

��
c 
s5

�
2
m2
h �

�
s 
s5

�
2
m2
H �

c5
s3
5

Re�2
12

�

�
1

4
�Re�6 ctg35� 3 Re�7 ctg5�; (32)

�3 �
1

v2

�
2m2

H� �
Re�2

12

s5c5
�
s2 

s25
�m2

H �m2
h�

�

�
Re�6

2
ctg5�

Re�7

2
tg5; (33)

�4 �
1

v2

�
Re�2

12

s5c5
�m2

A � 2m2
H�

�
�

Re�6

2
ctg5

�
Re�7

2
tg5; (34)

Re�5 �
1

v2

�
Re�2

12

s5c5
�m2

A

�
�

Re�6

2
ctg5�

Re�7

2
tg5;

(35)

�2
1 � �1v

2
1 � ��3 � �4 � Re�5�

v2
2

2
� Re�2

12 tg5

�
v2s2

5

2
�3 Re�6 ctg5� Re�7 tg5�; (36)
�2
2 � �2v2

2 � ��3 � �4 � Re�5�
v2

1

2
� Re�2

12 ctg5

�
v2c2

5

2
�Re�6 ctg5� 3 Re�7 tg5�: (37)

At the purely real parameters (in the following we shall
name this case of ’ � 0 as the CP-conserving limit,
Re�i � j�ij, Re!�i � j!�ij) the relations (36) and (37)
set to zero the potential terms which are linear in the fields,
so they are the minimization conditions. It follows from
Eqs. (31)–(35) that in the CP-conserving limit the
CP-even Higgs boson masses and the real part of the �2

12
parameter can be expressed as

m2
h � s2

 �5m
2
Z � c2

 �5m
2
A � v2�!�1s2

 c2
5 � !�2c2

 s2
5

� 2�!�3 � !�4�c c5s s5 � Re!�5�s
2
 s

2
5

� c2
 c2

5� � 2c �5�Re!�6s c5 � Re!�7c s5��;

(38)
m2
H � c2

 �5m
2
Z � s2

 �5m
2
A � v2�!�1c2

 c2
5 � !�2s2

 s2
5

� 2�!�3 � !�4�c c5s s5 � Re!�5�c
2
 s

2
5

� s2
 c2

5� � 2s �5�Re!�6c c5 � Re!�7s s5��;

(39)
m2
H� � m2

W �m2
A �

v2

2
�Re!�5 � !�4�;

Re�2
12 � s5c5

�
m2
A �

v2

2
�2 Re!�5 � Re!�6 ctg5

� Re!�7 tg5�
�
:

(40)

After the substitution of (31)–(37) to (6) we find the mass
term of the effective potential
-6



FIG. 1. Triple Higgs boson interaction vertex gH�H�h1
(GeV)

calculated with the one-loop effective parameters �i vs the phase
arg��A� at the parameter values MSUSY � 500 GeV, tg5 � 5,
At;b � 1000 GeV, and � � 2000 GeV. Dashed line mH� �
300 GeV; solid line mH� � 200 GeV.
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Umass�h;H; A;H
�� � c0A� c1hA� c2HA�

m2
h

2
h2

�
m2
H

2
H2 �

m2
A

2
A2 �m2

H�H�H�:

(41)

The minimization condition c0 � 0 fixes the imaginary
part of the �2

12 parameter

Im�2
12 �

v2

2
�s5c5 Im�5 � c2

5 Im�6 � s2
5 Im�7�; (42)

and the factors in front of the nondiagonal terms hA and
HA in the local minimum c0 � 0 have the form

c1 �
v2

2
�s s5 � c c5�Im�5 � v2�s c5 Im�6

� c s5 Im�7�;

c2 � �
v2

2
�s c5 � c s5�Im�5 � v2�c c5 Im�6

� s s5 Im�7�:

(43)

They include only the imaginary parts of the parameters
Im�2

12, Im�5;6;7. The nondiagonal term hH does not appear
in (41), so in the mixing matrix (45) M12 � M21 � 0.

At the second stage in order to remove the nondiagonal
terms hA and HA we perform the orthogonal transforma-
tion in the h, H, A sector

�h;H; A�M2
h
H
A

0@ 1A � �h1; h2; h3�aTikM
2
klalj

h1

h2

h3

0@ 1A; (44)

where the mass matrix is

M2 �
1

2

m2
h 0 c1

0 m2
H c2

c1 c2 m2
A

0B@
1CA; (45)

and get the physical Higgs bosons h1, h2, h3 without a
definite CP parity.6 The eigenvalues of the M2 matrix
define their masses squared and the components of nor-
malized eigenvectors are the matrix elements in the rows of
the mixing matrix aij. The squared masses of Higgs bosons
are (m2

h1
� m2

h2
� m2

h3
)

6Note that this picture is different from the well-known de-
scription of weak CP violation in meson decays, when the mass
splitting !m of the states is given by 2 ReM12, M12 the off-
diagonal elements of the complex 2 	 2 mass matrix, and the
meson mixing � parameter is ImM12=�

���
2

p
!m�. The meson decay

formalism uses the non-Hermitian effective Hamiltonian and not
precisely orthogonal mass ‘‘eigenstates.’’
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m2
h1

� 2
�����������
��q�

q
cos

�
/ � 2:

3

�
�
a2

3
;

m2
h2

� 2
�����������
��q�

q
cos

�
/ � 4:

3

�
�
a2

3
;

m2
h3

� 2
�����������
��q�

q
cos

�
/

3

�
�
a2

3
;

(46)

where

/ � arccos
r�������������

��q3�
p ; r �

1

54
�9a1a2 � 27a0 � 2a3

2�;

q �
1

9
�3a1 � a2

2�;

a1 � m2
hm

2
H �m2

hm
2
A �m2

Hm
2
A � c2

1 � c2
2;

a2 � �m2
h �m2

H �m2
A;

a0 � c2
1m

2
H � c2

2m
2
h �m2

hm
2
Hm

2
A:

The normalized eigenvector components �h;H; A� �
aijhj, aij � a0ij=nj are given by

a011 � ��m2
H �m2

h1
��m2

A �m2
h1
� � c2

2�; a021 � c1c2;

a031 � �c1�m
2
H �m2

h1
�; a012 � �c1c2;

a022 � ���m2
h �m2

h2
��m2

A �m2
h2
� � c2

1�;

a032 � c2�m2
h �m2

h2
�;
-7
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m H ±m H ±

(a) (b)

(c) (d)

FIG. 2 (color online). Neutral Higgs boson masses h;H; A versusmH� and the trilinear parameters At, Ab in the CP-conserving limit.
Solid line denotes the mh mass; short-dashed line mA; long-dashed line mH. (a) tg5 � 5, MSUSY � 0:5 TeV, and At � Ab � � � 0.
(b) tg5 � 5,MSUSY � 0:5 TeV, At � Ab � 0:9 TeV, and� � �1:5 TeV. (c) tg5 � 5,MSUSY � 0:5 TeV,mH� � 220 GeV,� � 0,
and At � Ab. (d) tg5 � 5, MSUSY � 0:5 TeV, mH� � 220 GeV, � � �2 TeV, and At � Ab.
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a013 � �c1�m
2
H �m2

h3
�; a023 � �c2�m

2
h �m2

h3
�;

a033 � �m2
h �m2

h3
��m2

H �m2
h3
�;

ni � �
�����������������������������������
�a021i � a022i � a023i�

q
. The Higgs boson masses mh1

,
mh2

, mh3
and the mixing matrix elements aij, which de-

scribe the mixed states, are shown in Figs. 2–4 as a
075008
function of the At;b, � parameters and/or the universal
phase ’ � arg��At;b�. Different from the figures in [5],
the mH� , tg5 parametrization is used for the convenience
of comparison with [15,18]. The parameters c1 and c2 can
change a sign with the variation of the phase ’; the ranges
of positively or negatively defined c1 and c2 depend on the
primary choice of the mH� , tg5, A, �, and MSUSY in the
CP-conserving limit. When we pass the zeros of c1 and c2,
-8



ar g(µA )

(a) (b)
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FIG. 3 (color online). (a) Neutral Higgs boson masses; (b)–(d) the matrix elements aij versus the phase ’ � arg��A� at the
parameter values tg5 � 5, mH� � 180 GeV, MSUSY � 0:5 TeV, At � Ab � 1 TeV, and � � 2 TeV. Solid line denotes i � 1; long-
dashed line i � 2; and short-dashed line i � 3.
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the matrix elements aij are expected to change their signs
respecting the requirement of the left orthonormal basis for
the eigenvectors. It is essential that mh1

, mh2
, and mh3

are
positioned in the mass matrix along the diagonal from the
upper left to the lower right corner, satisfying in the limit-
ing case c1 � c2 � 0 the correspondences mh1

!

min�mh;mH;mA�,mh3
! max�mh;mH;mA� (’’the mass or-

dering’’). Note also that as !�i increases, the denominator
of (30) can change sign, so for the mass ordering one must
define the angle  �’� consistently with the boundary con-
075008
dition at the scale MSUSY, which has the known formm2
A �

m2
Z � � sin2 = sin25�m2

H �m2
h�, following from (31)–

(35) and (7).
Some numerical values for the Higgs boson masses mh1

,
mh2

, mh3
as a function of the phase ’ in our approach, and

masses of the states H1, H2, and H3 evaluated by means of
CPsuperH [15] and FeynHiggs [18] packages are shown in
Table II. These packages are using the renormalization
group improved diagrammatic calculation that includes
radiative corrections to Yukawa couplings up to two loops.
-9
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FIG. 4 (color online). (a) Neutral Higgs boson masses; (b)–(d) the matrix elements aij versus the phase ’ � arg��A� at the
parameter values tg5 � 5, mH� � 300 GeV, MSUSY � 0:5 TeV, At � Ab � 1 TeV, and � � 2 TeV. Solid line denotes i � 1; long-
dashed line i � 2; and short-dashed line i � 3.
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A detailed general discussion on the conciliation of results
obtained in the frameworks of the diagrammatic and the
effective field theory approaches can be found in [19].
Different renormalization schemes in which calculations
in the two approaches are performed may lead to the
deviations of results evaluated with parameters taken at
different renormalization scales, so the nontrivial reevalu-
ation of parameters is needed for consistency. Besides this
it is important to notice that in the CPsuperH and
FeynHiggs packages the SU(2) eigenstates &1;2 and ,1;2
075008
are directly transformed to the Higgs boson mass eigen-
states, which is different from our procedure, when we first
transform to the states of the CP-conserving limit and then
rotate to h1;2;3. The ‘‘intermediate’’ Higgs boson states
�h;H; A� of the CP-conserving limit are not used, so the
&1, &2 mixing angle  is not introduced there. For this
reason at ’ � 0 the analog of the mixing matrix aij, see
(44), has nonzero off-diagonal matrix elements a12 �
a21 � 0, and in the analog of the mass matrix (45) M12

and M21 (the hH mixing terms in our notation) are also
-10



TABLE II. The Higgs boson masses (GeV) in our case at the
one-loop level and calculated by the packages CPsuperH [15] (at
the two-loop) and FeynHiggs [18] (in the one-loop regime). See
the Appendix for a more detailed comparison. The same pa-
rameter values were used:  EM�mZ� � 0:7812 	 10�2,
 S�mZ� � 0:1172, GF � 1:174 	 10�5 GeV�2, tan5 � 5,
MSUSY � 500 GeV, jAtj � jAbj � A, j�j � 2000 GeV, A �
1000 GeV, and mH� � 300 GeV.

’ � 0 :=6 :=3 :=2 2:=3 5:=6 :

mh1
115.4 118.7 125.9 131.4 130.7 125.2 122.0

mH1
[15] 106.8 109.0 113.9 117.4 114.9 105.7 99.4

mH1
[18] 115.8 118.8 125.5 130.2 123.2 98.2 78.0

mh2
295.5 289.6 279.7 269.3 262.2 259.8 259.6

mH2
[15] 302.2 297.8 290.9 282.2 273.9 268.3 264.4

mH2
[18] 295.6 290.0 279.1 264.3 249.2 239.7 236.9

mh3
297.1 299.5 300.4 299.9 298.8 297.6 297.1

mH3
[15] 302.3 304.4 305.0 304.5 303.5 302.4 302.0

mH3
[18] 297.6 300.0 301.1 301.3 300.9 300.4 300.2

7The upper component of h�2i in (4) is taken to be zero.
Otherwise additional constraint for the VEV components should
be imposed to ensure the existence of the massless gauge field
(photon) [21].
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nonzero. In the framework of the ‘‘direct’’ diagonalization
procedure the matrix elements of (45) have the form

M11 � m2
As

2
5 � v2 Re�5s2

5 � v2 Re�6s25 � 2v2�1c2
5;

M22 � m2
Ac

2
5 � v2 Re�5c

2
5 � v2 Re�7s25 � 2v2�2s

2
5;

M12 � v2 Re�6c2
5 � s5�v2 Re�7s5 � c5��m2

A � v2�3

� v2�4��;

M13 � �
1

2
v2�2 Im�6c5 � Im�5s5�;

M23 � �
1

2
v2�Im�5c5 � 2 Im�7s5�; M33 � m2

A;

and the parameters a0, a1, a2 in (46) should be redefined as
follows:

a0 � M2
12M33 �M2

23M11 �M2
13M22 � 2M12M23M13

�M11M22M33;

a1 � M11M22 �M11M33 �M22M33 �M2
12 �M2

13

�M2
23;

a2 � �M11 �M22 �M33:

We checked that both the ‘‘two-step’’ and the direct diag-
onalization methods lead within our procedure, as ex-
pected, to the same masses of Higgs states mh1

, mh2
, and

mh3
(see Table II). For the parameter values in the com-

parison, Table II, the benchmark point of the maximal CP
violation ‘‘CPX scenario’’ [20] at MSUSY � 500 GeV was
used. An extended list of numbers (Table V) including also
the rare one-loop-mediated decay widths h1 ! ��, h1 !
gg and the tree-level two-particle decays h1 ! f �f can be
found in the Appendix. Good qualitative agreement of
results is observed, but diversity of approaches to the
075008
calculation of radiative corrections makes precise numeri-
cal comparisons difficult.

B. Real �2
12, �5;6;7 parameters, ��0

If the parameters �2
12 and �5;6;7 of the effective potential

(6) are real, the latter is CP invariant. It is easy to show
[3,5,17] that the phases of complex parameters �2

12, �5;6;7

can be rotated away by the U�1�Y hypercharge transforma-
tion if the conditions

Im��4
12�

�

5� � 0; Im��2
12�

�

6� � 0;

Im��2
12�

�

7� � 0
(47)

are satisfied. Insofar as the physical motivation of these
‘‘fine-tuning’’ conditions is not available, the case of real
parameters and nonzero phase . of the VEV, when CP is
broken spontaneously, looks rather artificial. The local
minimum of the effective potential (6) occurs at �5 > 0
[i.e. purely imaginary �A, see (17)] and

cos. �
�2

12 �
v2

1

2 �6 �
v2

2

2 �7

�5v1v2
: (48)

Combining this equation with the diagonalization condi-
tion (35) we get

cos. �
m2
A

�5v
2 � 1; (49)

so there is no minimum if m2
A > 0. In the case �5 < 0 (48)

corresponds to the maximum, the absolute minimum is
achieved at the end points cos. � �1. For example, the
absolute minimum at . � 0 [taking into account again the
diagonalization condition (35)] is absent if

m2
A > 2j�5jv2 (50)

and it follows that for the case of real �2
12, �5;6;7, and CP

broken spontaneously there are no mass eigenstates in the
framework of our diagonalization procedure, at least if mA
is not extremely small.

C. Complex �2
12, �5;6;7 parameters, ��0

In the case of complex parameters and the nonzero phase
of �2 vacuum expectation value,7 the CP invariance of the
potential is broken both explicitly and spontaneously. The
condition to set to zero the derivative @U=@. includes both
the real and the imaginary parts of �2

12 and �5;6;7:
-11
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cos.�2 Im�2
12 � v2

1 Im�6 � v2
2 Im�7� � v1v2 Im�5 cos2.

� sin.�2 Re�2
12 � v2

1 Re�6 � v2
2 Re�7�

�v1v2 Re�5 sin2. � 0: (51)

The condition of the extremum for Im�2
12 depends on the

phase between the VEV’s ., while the diagonalization
condition for Re�2

12 depends also on the relative phase ,
TABLE III. The factors of the extremum cond

�2
1

. � 0 . � 0

�1 v2
1 v2

1

�2 0 0
�3

1
2v

2
2

1
2v

2
2

�4
1
2v

2
2

1
2v

2
2

Re�5
1
2v

2
2

1
2v

2
2

Im�5 � 1
2v

2
2tg. 0

Re�6
1
2v1v2�2 � cos2.� sec. 3

2v1v2

Im�6 �v1v2 sin. 0
Re�7

1
2v

2
2 sec. tg5 1

2v
2
2 tg5

Im�7 0 0
Re�2

12 �tg5 sec. �tg5
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[see (3) and (4)] of the SU(2) doublets. At the real �2
12,

�5;6;7 and . � 0 the Eq. (51) is reduced to (48).
For convenience we present the extremum conditions

@U=@& � 0, @U=@, � 0 in the cases of zero and nonzero
. in the form of Tables III and IV, where the factors in front
of the potential parameters are shown. The bulky condition
for the real part of �2

12 to define the pseudoscalar mass mA

for the general case of nonzero phases can explicitly be
evaluated as follows:
Re�2
12 � ��2

v2 cos. sin3�25�sin2�.� ,�

3 � �1 � cos. cos,��cos45� 3
2 sin2�25�� � sin45� cos. cos,�1 � sin45�

� Re�5
v2�cos45 cos2,� cos2. sin45� cos5 cos�.� ,� sin5 sin�25��

cos25 ctg5 sec.� cos, sin�25� � sec. sin25 tg5

� Im�5
v2�sin2�25� sin�.� ,� � sin45�sin�2.� � tg.� � cos45�tg.� sin�2,���

2�cos25 ctg5 sec.� cos, sin�25� � sec. sin25 tg5�
� Re�6

1

2
v2 cos25

� Im�6
v2 cos35 sin5 sin,

cos25 ctg5 sec.� cos, sin�25� � sec. sin25 tg5

� Re�7

�
v2 cos45�4 cos�.� 2,� � 2 cos�2.� sec.�tg5

4�cos25 ctg5 sec.� cos, sin�25� � sec. sin25 tg5�

�
v2�2 sin2�25� cos,� 2 sec. sin45� cos�2.� ,�sin2�25��tg5

4�cos25 ctg5 sec.� cos, sin�25� � sec. sin25 tg5�
�

� Im�7
v2 sin�25��2 cos25 cos, sin�.� ,� � sin25�2 sin,� sin�2.� ,���

2�cos25 ctg5 sec.� cos, sin�25� � sec. sin25 tg5�

� Im�2
12

sin�25� sin,

cos25 ctg5 sec.� cos, sin�25� � sec. sin25tg5

�m2
A

1

cos25 ctg5 sec.� cos, sin�25� � sec. sin25 tg5
: (52)

If we set . � 0 and , � 0, the formulas coincide with the special case of only the explicit CP violation (35) and (42).
The substitution of the extremum conditions corresponding to Tables III and IV to (51) gives an identity independently on
the expression (52) for Re�2

12. The extremum is a minimum if the second derivative in . is positively defined
itions for �2
1 and �2

2 at zero and nonzero ..

�2
2

. � 0 . � 0

0 0
v2

2 v2
2

1
2v

2
1

1
2v

2
1

1
2v

2
1

1
2v

2
1

1
2v

2
1

1
2v

2
1

� 1
2v

2
1tg. 0

1
2v

2
1 sec. ctg5 1

2v
2
1 ctg5

0 0
1
2v1v2�2 � cos2.� sec. 3

2v1v2

�v1v2 sin. 0
�ctg5 sec. �ctg5
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TABLE IV. The factors of the extremum condition for Re�2
12

at . � 0 and for Im�2
12 for zero and nonzero ..

Re�2
12 Im�2

12

. � 0 , � 0 . � 0 . � 0

�1 0 0 0
�2 0 0 0
�3 0 0 0
�4 0 0 0
Re�5 v1v2 v1v2 sin. 0
Im�5 0 1

2v1v2 cos2. sec. 1
2v1v2

Re�6
1
2v

2
1

1
2v

2
1 tg. 0

Im�6 0 1
2v

2
1

1
2v

2
1

Re�7
1
2v

2
2

1
2v

2
2 tg. 0

Im�7 0 1
2v

2
2

1
2v

2
2

m2
A sin5 cos5 0 0

Re�2
12 � � � �tg. 0
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� sin.�2 Im�2
12 � v2

1 Im�6 � v2
2 Im�7�

�2v1v2 Im�5 sin2.� cos.�2 Re�2
12 � v2

1 Re�6

�v2
2 Re�7� � 2v1v2 Re�5 cos2. > 0: (53)

Numerical investigation shows that this condition is ful-
filled in a rather wide range of the MSSM parameter space.
If for simplicity we set , � 0 then the second derivative is
positively defined in any region of the parameter space, so
no restrictions on the phase of spontaneous CP breaking
appear in this special case from the minimization.

The diagonalization of the effective potential mass term
in the local minimum for the general case . � 0 and , � 0
is performed analogously to the procedure described in
Sec. III A using the following scheme: (1) we define the
four ~h, ~H, ~A, ~G0 linear combinations of independent fields
&1, &2, +1, +2 that are contained in the two-doublet system
(2) and (3), where for the Goldstone field ~G0 we define a
zero row of matrix elements and a zero column of matrix
elements in the symmetric mass matrix 4 	 4. In other
words, the Goldstone mode is introduced as the linear
combination, orthogonal to the plane defined by the ‘‘di-
rections’’ in the complex scalar fields space, parallel to the
VEV’s v1 and v2 expfi�,� -�g. Then the mass matrix 4 	
4 includes the symmetric 3 	 3 block with zero matrix
elements in the power of the extremum conditions from
Tables III and IV; (2) we define an orthogonal transforma-
tion for the 3 	 3 submatrix fixing the mixing angle ~ in
the sector ~h� ~H to set to zero the ~h ~H nondiagonal term. In
the framework of this procedure for the case of nonzero
phases , � 0, . � 0 (when the fields are denoted by the
symbol ~ ) the limiting cases of zero phases , � . � 0
(when the notation for the fields does not contain the
symbol ~ ) and also the CP-conserving limit in the mass
basis h,H, A, are clearly seen. For the physical Higgs fields
in the case , � 0, . � 0 we finally obtain the representa-
tion
075008
~h � �&1 sin~ � �+2 sin.� &2 cos.� cos ~ ;

~H � &1 cos~ � �+2 sin.� &2 cos.� sin~ ;

~A � �+1 sin5� �+2 cos.� &2 sin.� cos5;

~G0 � +1 cos5� �+2 cos.� +2 sin.� sin5:

(54)

We checked explicitly, using the symbolic calculation
packages, that direct substitution of these fields to the
potential (6) gives the symmetric 4 	 4 squared mass
matrix with zero row and column, corresponding to the
Goldstone mode. The nondiagonal matrix elements of the
3 	 3 block, corresponding to the nondiagonal terms ~h ~A
~H ~A in the local minimum, can be written in the form

~c 1 � �
v2

2
�cos�~ � 5� cos�2.�Im�5

� 2 sin ~ cos5 cos. Im�6 � 2 cos~ sin5 cos. Im�7

� cos�~ � 5� sin�2.�Re�5

� 2 sin ~ cos5 sin.Re�6 � 2 cos~ sin5 sin.Re�7�;

(55)

~c 2 � �
v2

2
�sin�~ � 5� cos�2.�Im�5

� 2 cos~ cos5 cos. Im�6 � 2 sin ~ sin5 cos. Im�7

� cos�~ � 5� sin�2.�Re�5

� 2 cos~ cos5 sin.Re�6 � 2 sin~ sin5 sin.Re�7�:

(56)

In the case . � 0 they coincide with (43).
The same scheme is suitable for the case , � 0, . � 0

when the relative phase , between the SU(2) doublets
appears in the mass eigenstates, which are obtained by
the replacement .! .� ,:

~h � �&1 sin~ � �+2 sin�.� ,� � &2 cos�.� ,�� cos ~ ;

~H � &1 cos~ � �+2 sin�.� ,� � &2 cos�.� ,�� sin~ ;

~A � �+1 sin5� �+2 cos�.� ,� � &2 sin�.� ,�� cos5;

~G0 � +1 cos5� �+2 cos�.� ,� � +2 sin�.� ,�� sin5:

(57)
IV. SUMMARY

The potential of a two-Higgs-doublet model in the gen-
eral case is not CP invariant and the parameters �2

12 and
�5;6;7 of the two-doublet MSSM Higgs sector should be
taken complex. The choice of purely real parameters im-
plicitly assumes that the fine-tuning conditions (47) are
additionally imposed without clear physical motivation. In
the MSSM the complex parameters naturally appear if we
allow the CP invariance violating mixings in the squark-
Higgs boson sector of the MSSM, analogous to the CKM
-13
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mixings for the three quark generations in the charged
current sector of the standard model. If these mixings
lead to a strong CP parity violation8 and the scalar sector
of the MSSM is coupled strongly enough (i.e. large imagi-
nary parts of the parameters �2

12 and �5;6;7 appear), the
deviations of the observable effects in the scenario with CP
violation from the phenomenology of the standard scenario
can be substantial. The deviations are particularly strong if
the power terms At;b=MSUSY, �=MSUSY are large and the
charged Higgs boson mass does not exceed 150–200 GeV,
being rather weakly dependent on the value of tg5. Such
models could lead in principle to a reconsideration of the
experimental priorities [23] for the signals of Higgs bosons
production in the channels ��, b �b,W�W�, ZZ, ttH, bbH,
etc. at the CERN LHC. The scenario with light Higgs
boson mh1

� 70–80 GeV that could escape the detection
at CERN LEP2 [24], the analysis of the h1 signal at
Tevatron, and the high-luminosity linear colliders [25]
demonstrate that physical possibilities in the framework
of CP violating scenarios could be considerably modified
in comparison with the traditional CP-conserving limit.

The comparison of our results for the masses of scalars
mh1

, mh2
, and mh3

and their two-particle decay widths with
outputs of the CPsuperH [15] and the FeynHiggs [18]
packages demonstrates rather good qualitative agreement.
However, in some cases high sensitivity of the observables
to the magnitude of radiatively induced correction terms in
the effective two-Higgs-doublet potential shows up, so
careful complementary analysis of the theoretical uncer-
tainties is appropriate.

The relative phase of the SU(2) scalar doublet - and the
VEV phase ,, see (4), could be constrained on the basis of
the conditions for the mass term diagonalization and the
potential minimization (Sec. III C). In principle these con-
ditions could lead to some nontrivial relations between the
- , , and the variables of the MSSM parameter space.
However, at the first sight it is questionable to expect
some direct relations of this type connecting the CKM
phase and the - , , phases of the THDM, which seem to
describe the CP violation of a different origin. Returning to
the notations of the Introduction, we can write the THDM
type II Yukawa term as

�L � &uij � i0L�1u
j0
R � ,dij � i0L ~�2d

j0
R � H:c:; (58)

where &uij and ,dij are nondiagonal complex 3 	 3 matrices
(i; j � 1; 2; 3). As mentioned in the Introduction, in order
to define the quark fields mass eigenstates the unitary
mixing matrix Vui;dj should be introduced in the
Lagrangian terms of the charged Higgs boson interaction
with quarks
8Recent discussion of the weak CP violation scenarios can be
found in [22].
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Md tg5���
2

p
v

uiLVui;djd
j
RH

� �
Mu���

2
p
v tg5

diLV
y
ui;dju

j
RH

�: (59)

If we extract the universal phase factor from the mixing
matrix elements Vui;dj ! ei’jVui;dj j, V

y
ui;dj ! e�i’jVui;dj j,

the Yukawa interaction terms take the form

Md tg5���
2

p
v

uiLe
i’jVui;dj jd

j
RH

�

�
Mu���

2
p
v tg5

diLe
�i’jVui;dj ju

j
RH

�; (60)

so we can identify the universal phase ’ as the relative
phase , of the SU(2) doublets. The structure of this sort,
however, does not look like the weak charged current
sector mixing matrix, where the universal complex factor
is not suitable to describe the effects of CP violation in
meson decays.
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APPENDIX

The decay width hi ! ��, see Table V, can be written as

��hi ! ��� �
M3
hi
 2

256:3v2 �jS
�
i �Mhi�j

2 � jP�i �Mhi�j
2�;

(A1)

where the scalar and the pseudoscalar factors are given by
[15,26]

S�i �Mhi� � 2
X

f�b;t;~+�
1 ;~+

�
2

NCQ
2
fg

S
hi �ff

v
mf

Fsf�Eif�

�
X

~fj�~t1;~t2;~b1;~b2;~E1;~E2

NCQ2
fghi ~f�j ~fj

v2

2m2
~fj

F0�Ei~fj�

� ghiVVF1�EiW� � ghiH�H�

v

2M2
H�

F0�EiH��;

P�i �Mhi� � 2
X

f�b;t;~+�
1 ;~+

�
2

NCQ2
fg

P
hi �ff

v
mf

Fpf�Eif�:

(A2)

Eix � M2
hi
=4m2

x, NC � 3 for squarks and NC � 1 for stau
and chargino, respectively. The vertex factors ghif �f can be
easily extracted from Table VI, where we list also the triple
vertices with hi and gauge bosons. The threshold correc-
tions induced by the exchanges of gluinos and charginos
[24,28] are not included in the following calculation.
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TABLE V. Higgs boson masses and their two-particle decay widths calculated in our approach and by means of CPsuperH and
FeynHiggs packages. The parameter set  EM�mZ� � 0:7812 	 10�2,  S�mZ� � 0:1172, GF � 1:174 	 10�5 GeV�2, mb � 3 GeV,
tg5 � 5, MSUSY � 500 GeV, jAtj � jAbj � A � 1000 GeV, j�j � 2000 GeV, and mH� � 300 GeV. Our results are calculated with
mt � 175 GeV. The choice of At;b, �, and MSUSY respects the constraints of the CPX scenario [20]. Our results at the one-loop, mhi ,
and with the two-loop QCD corrections to Yukawa terms [3], m0

hi
, are shown together with CPsuperH [15] and FeynHiggs [18] results.

While the CPsuperH masses are calculated at the two-loop only, the one-loop FeynHiggs 2.2beta regime (program options 20030111)
and the two-loop FeynHiggs 2.2beta regime (program options 20030211) are used. Higgs boson masses calculated in our approach at
the two-loop omitting the nonleading D terms and the wave-function renormalization (wfr) in the effective �i are separately shown. In
the calculation of decay widths �hi denotes our results with the �i taken at one-loop, sparticles contribution not included, �0

hi
denotes

our results with the two-loop terms [3] introduced to �i, sparticles contribution again not included, �00
hi

denotes the decay widths in our
case at the one-loop when sparticles contribution is included. The one-loop regime of FeynHiggs is used, while the CPsuperH numbers
are at the two-loop.

’ � 0 :=6 :=3 :=2 2:=3 5:=6 :

mh1
, one-loop 115.4 118.7 125.9 131.4 130.7 125.2 122.0

m0
h1

, two-loop 111.8 113.9 118.4 121.8 121.4 118.3 116.5
m0
h1

, two-loop, no D and wfr 112.1 114.4 119.7 124.2 125.0 123.0 121.6
mH1

[18], one-loop 115.8 118.8 125.5 130.2 123.2 98.2 78.0
mH1

[18], two-loop 111.4 113.7 118.3 119.2 103.6 � � � � � �

mH1
[15], two-loop 106.8 109.0 113.9 117.4 114.9 105.7 99.4

mh2
, one-loop 295.5 289.6 279.7 269.3 262.2 259.8 259.6

m0
h2

, two-loop 293.0 289.3 282.4 275.1 269.9 267.8 267.4
m0
h2

, two-loop, no D and wfr 294.4 291.0 283.9 276.2 270.6 268.1 267.6
mH2

[18], one-loop 295.6 290.0 279.1 264.3 249.2 239.7 236.9
mH2

[18], two-loop 290.4 286.5 275.8 260.7 246.1 � � � � � �

mH2
[15], two-loop 302.2 297.8 290.9 282.2 273.9 268.3 264.4

mh3
, one-loop 297.1 299.5 300.4 299.9 298.8 297.6 297.1

m0
h3

, two-loop 296.1 297.3 297.5 296.7 295.2 293.6 293.0
m0
h3

, two-loop, no D and wfr 298.2 299.1 299.2 298.2 296.7 295.1 294.4
mH3

, one-loop [18] 297.6 300.0 301.1 301.3 300.9 300.4 300.2
mH3

, two-loop [18] 293.9 295.9 296.9 297.8 298.3 � � � � � �

mH3
[15], two-loop 302.3 304.4 305.0 304.5 303.5 302.4 302.0

�h1!gg 	 104 1.378 1.529 1.907 2.220 2.101 1.707 1.516
�0
h1!gg

	 104 1.283 1.381 1.624 1.841 1.846 1.687 1.597
�00
h1!gg

	 104 2.103 2.355 3.024 3.643 3.397 2.412 1.889
�H1!gg 	 104 [18] 2.040 2.187 2.462 2.225 0.863 0.037 0.110
�H1!gg 	 104 [15] 1.878 1.964 2.107 1.961 1.262 0.503 0.263

�h1!�� 	 106 7.703 8.593 10.981 13.313 12.953 10.645 9.508
�0
h1!��

	 106 6.887 7.447 8.896 10.369 10.683 9.935 9.460
�00
h1!��

	 106 7.470 8.371 10.832 13.321 12.945 10.274 8.887
�H1!�� 	 106 [18] 6.373 7.058 9.038 11.217 9.983 5.336 3.021
�H1!�� 	 106 [15] 5.796 6.287 7.605 8.996 8.969 7.223 6.101

�h1!� �� 	 105 0.212 0.204 0.179 0.166 0.218 0.304 0.341
�H1!� �� 	 105 [15] 0.157 0.152 0.141 0.137 0.175 0.240 0.269

�h1!E �E 	 103 0.591 0.567 0.498 0.461 0.607 0.848 0.950
�H1!E �E 	 103 [15] 0.435 0.423 0.391 0.382 0.485 0.668 0.746

�h1!d �d 	 10�7 0.202 0.194 0.170 0.158 0.208 0.290 0.325
�H1!d �d 	 107 [15] 0.193 0.187 0.171 0.167 0.212 0.297 0.335

�h1!s �s 	 105 0.744 0.713 0.626 0.580 0.764 1.066 1.195
�H1!s�s 	 105 [15] 0.709 0.687 0.629 0.612 0.780 1.089 1.230

�h1!c �c 	 103 0.083 0.086 0.093 0.097 0.095 0.088 0.083
�H1!c �c 	 103 [15] 0.101 0.103 0.108 0.111 0.107 0.096 0.089

�h1!b �b 	 102 0.504 0.483 0.424 0.393 0.518 0.724 0.810
�H1!b �b 	 102 [15] 0.481 0.469 0.426 0.414 0.528 0.737 0.832
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TABLE VI. Vertex factors of h1, h2, and h3. This is a part of the complete set of vertices generated by LANHEP package [27].

Fields in the vertex Vertex factor

�bap bbq h1 � Mb
c5�v

Jpq�c � a21 � Jab � s � a11 � Jab � s5 � i � a31 � �
5
ab�

�bap bbq h2 � Mb
c5�v

Jpq�c � a22 � Jab � s � a12 � Jab � s5 � i � a32 � �
5
ab�

�bap bbq h3 � Mb
c5�v

Jpq�c � a23 � Jab � s � a13 � Jab � s5 � i � a33 � �
5
ab�

�tap bbq H
� � i�

��
2

p
�Vtb

s25�v
Jpq�s

2
5 �Mb � �1 � �5�ab � c2

5 �Mt � �1 � �5�ab�

�tap tbq h1 � Mt
s5�v

Jpq�s � a21 � Jab � c � a11 � Jab � c5 � i � a31 � �
5
ab�

�tap tbq h2 � Mt
s5�v

Jpq�s � a22 � Jab � c � a12 � Jab � c5 � i � a32 � �
5
ab�

�tap tbq h3 � Mt
s5�v

Jpq�s � a23 � Jab � c � a13 � Jab � c5 � i � a33 � �
5
ab�

H� W�
� h1 � 1

2
e
sw
�s �5 � i � a21 � p

�
3 � c5� � i � a11 � p

�
3 � s �5 � i � a21 � p

�
1 � c5� � i � a11 � p

�
1 � a31 � p

�
3 � a31 � p

�
1 �

H� W�
� h2 � 1

2
e
sw
�s �5 � i � a22 � p

�
3 � c5� � i � a12 � p

�
3 � s �5 � i � a22 � p

�
1 � c5� � i � a12 � p

�
1 � a32 � p

�
3 � a32 � p

�
1 �

H� W�
� h3 � 1

2
e
sw
�s �5 � i � a23 � p

�
3 � c5� � i � a13 � p

�
3 � s �5 � i � a23 � p

�
1 � c5� � i � a13 � p

�
1 � a33 � p

�
3 � a33 � p

�
1 �

W�
� W�

/ h1
1
2
e2�v
s2
w
g�/�c5� a21 � s �5a11�

W�
� W�

/ h2
1
2
e2�v
s2
w
g�/�c5� a22 � s �5a12�

W�
� W�

/ h3
1
2
e2�v
s2
w
g�/�c5� a23 � s �5a13�

Z� Z/ h1 2 e2�v
s2

2w
g�/�c5� a21 � s �5a11�

Z� Z/ h2 2 e2�v
s2

2w
g�/�c5� a22 � s �5a12�

Z� Z/ h3 2 e2�v
s2

2w
g�/�c5� a23 � s �5a13�
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The factors Fsf, Fpf, F0, and F1 [29] are expressed by
means of the dimensionless function f�E�

Fsf�E� � E�1�1 � �1 � E�1�f�E��;

Fpf�E� � E�1f�E�;

F0�E� � E�1��1 � E�1f�E��;

F1�E� � 2 � 3E�1 � 3E�1�2 � E�1�f�E�;

(A3)

with an integral representation

f�E� � �
1

2

Z 1

0

dy
y

ln�1 � 4Ey�1 � y��

�

� arcsin2�
���
E

p
�: E � 1;

� 1
4 �ln�

��
E

p
�
�������
E�1

p��
E

p
�
�������
E�1

p � � i:�2: E � 1:
(A4)

QCD corrections in the large mass limit can be found in
[30]

J�q � 1 �
 s�M

2
hi
�

:
; J�~q � 1 �

8 s�M
2
hi
�

3:
: (A5)

Chargino contributions depend on the couplings

gSh1 ~+�
1 ~+�

1
� V11U12GS1 � V12U11GS2;

gPh1 ~+�
1 ~+�

1
� V11U12GP1 � V12U11GP2;

(A6)
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gSh1 ~+�
2 ~+�

2
� V21U22GS1 � V22U21GS2;

gPh1 ~+�
2 ~+�

2
� V21U22GP1 � V22U21GP2;

(A7)

for h1 we have GS1 � � sin a11 � cos a21, GS2 �
cos a11 � sin a21, GP1 � sin5a31, GP2 � cos5a31,
and the matrix elements Uij

U12 � U21 �
1���
2

p

����������������������������������������������������������
1 �

M2
2 ��2 � 2m2

W cos25
W

s
; (A8)

U22 � �U11 �
"B���

2
p

����������������������������������������������������������
1 �

M2
2 ��2 � 2m2

W cos25
W

s
; (A9)

V21 � �V12 �
"A���

2
p

����������������������������������������������������������
1 �

M2
2 ��2 � 2m2

W cos25
W

s
;

(A10)

V22 � V11 �
4���
2

p

����������������������������������������������������������
1 �

M2
2 ��2 � 2m2

W cos25
W

s
; (A11)

where

W �
�������������������������������������������������������������������������������������������������
�M2

2 ��2 � 2m2
W�

2 � 4�M2 ���m2
W sin25�2

q
;

(A12)
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"A � sgn�M2 sin5�� cos5�;

"B � sgn�M2 cos5�� sin5�:
(A13)

Chargino masses are given by

m2
~+�

1
�

1

2
j
������������������������������������������������������������������
�M2

2 ��2�2 � 2m2
W�1 � sin25�

q
�

������������������������������������������������������������������
�M2

2 ��2�2 � 2m2
W�1 � sin25�

q
j; (A14)

m2
~+�

2
�

1

2
�
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Sfermion contributions depend on the couplings

HIGGS BOSONS IN THE TWO-DOUBLET MODEL WITH . .
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gh1
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In these formulas ht;b;E are real variables. Sfermion masses are given by

m2
~q�~l�1;2

�
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2
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�2 � 4jaq�l�j2m2

q�l�

q
�; (A18)

where

m2
~qL � M2

~Q3
�m2

q � c25m2
Z�T

q
z �Qqs2

W�;
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Here the Yukawa couplings of quarks hq, q � t; b, R � U;D, Ttz � �Tbz � 1=2, Qt � 2=3, Qb � �1=3, Rb � tg5 �
v2=v1, Rt � ctg5, the mixing angles are
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A charged Higgs boson contribution depends on the effective triple self-couplings gH�H�hi which can be written as
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FIG. 5 (color online). Light Higgs boson mass mh1
�’� (GeV) vs arg��A� in various regions of the MSSM parameter space.

Horizontal dotted lines indicate the h1 mass in the CP-conserving limit (mh1
� mh). (a) tg5 � 5, MSUSY � 0:5 TeV, At � Ab �

1 TeV, and � � 2 TeV. Solid line mH� � 180 GeV; dashed line mH� � 250 GeV. Thin solid line denotes mh�’�. (b) tg5 � 5,
mH� � 300 GeV, and � � 2 TeV; solid line At � Ab � �1:2 TeV; dashed line At � Ab � 1:3 TeV. (c) tg5 � 5, mH� � 300 GeV,
and At � Ab � 1 TeV; solid line � � �1:6 TeV; dashed line � � 0:7 TeV. (d) � � 2 TeV, mH� � 300 GeV, and At � Ab �
1 TeV; solid line tg5 � 5; dashed line tg5 � 40.
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This representation uses the mass basis for CP-even/odd
Higgs fields �h;H; A�, then rotated by matrix aij in the
three-dimensional �h;H; A� isospace, and for this reason
includesmh,mH,mA, andmH� of the CP-conserving limit,
calculated with one-loop MSSM corrections from the
squark sector. In this sense the vertices above are MSSM
effective one-loop Higgs self-interaction vertices. If the
imaginary parts in these vertices are set to zero they are
reduced to the self-interaction vertices of the
CP-conserving limit, when mh, mH, mA, and mH� are
075008
the masses of physical states. Various extremal cases (de-
coupling limits) are clearly seen. Equivalent representation
of the triple couplings can be written in the �i basis (see
details on the representations in mass and �i basis in [5]).
For example,

gh1H�H� � �v
X3
 �1

a 1g H�H� ;

where
-19



Γ(h1 → gg)

ar g(µA )
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FIG. 6 (color online). The decay width ��h1 ! gg� 	 104 (GeV) at MSUSY � 500 GeV. Dotted lines show �h in the CP-conserving
limit ’ � 0. Thin solid or dashed lines are only for SM contributions, thick solid or dashed lines show SM and sparticle contributions
with the K factor included. (a) tg5 � 5, At � Ab � 1 TeV, and � � 2 TeV; solid line mH� � 190 GeV; dashed line mH� �
300 GeV. (b) tg5 � 5, mH� � 300 GeV, and � � 2 TeV; solid line At � Ab � �1:1 TeV; dashed line At � Ab � 1:1 TeV.
(c) tg5 � 5, mH� � 300 GeV, and At � Ab � 1 TeV; solid line � � 0:2 TeV; dashed line � � 1:2 TeV. (d) � � 2 TeV, mH� �
300 GeV, and At � Ab � 1 TeV; solid line tg5 � 5; dashed line tg5 � 40.
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FIG. 7 (color online). The decay width ��h1 ! gg� 	 104 (GeV) at MSUSY � 500 GeV. Dotted lines show �h in the CP-conserving
limit ’ � 0. Thin solid or dashed lines are only for SM contributions, thick solid or dashed lines show SM and sparticle contributions
with the K factor included. (a) tg5 � 5, At � Ab � 1 TeV, and � � 2 TeV; solid line ’ � :=2; dashed line ’ � :. (b) tg5 � 5,
mH� � 300 GeV, and � � 2 TeV; solid line ’ � :=2; dashed line ’ � :. (c) tg5 � 5, mH� � 300 GeV, and At � Ab � 1 TeV;
solid line ’ � :=2; dashed line ’ � :. (d) � � 2 TeV, mH� � 300 GeV, and At � Ab � 1 TeV; solid line ’ � :=2; dashed line
’ � :.
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g3H�H� � c2
5 Im!�7 � s5c5 Im!�5 � s2

5 Im!�6:

In this representation the scalar masses of the
CP-conserving limit do not explicitly participate. The
magnitude of the coupling gH�H�h1

is shown in Fig. 1.
The decay width hi ! gg has the form

��hi ! gg� �
M3
hi
 2
S

32:3v2 �K
g
HjS

g
i �Mhi�j

2 � Kg
AjP

g
i �Mhi�j

2�;

(A20)

where
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(A21)

and QCD K factors are

Kg
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(A22)
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Γ(h1 → γ γ )
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FIG. 8 (color online). The decay width ��h1 ! ��� 	 106 (GeV) at MSUSY � 500 GeV. Dotted lines show �h in the CP-conserving
limit ’ � 0. Thin solid or dashed lines are only for SM contributions, thick solid or dashed lines show SM and sparticle contributions
with the J factor included. (a) tg5 � 5, At � Ab � 1 TeV, and � � 2 TeV; solid line mH� � 190 GeV; dashed line mH� �
300 GeV. (b) tg5 � 5, mH� � 300 GeV, and � � 2 TeV; solid line At � Ab � �1:1 TeV; dashed line At � Ab � 1:1 TeV.
(c) tg5 � 5, mH� � 300 GeV, and At � Ab � 1 TeV; solid line � � 0:2 TeV; dashed line � � 1:2 TeV. (d) � � 2 TeV, mH� �
300 GeV, and At � Ab � 1 TeV; solid line tg5 � 5; dashed line tg5 � 40.
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NF � 5 is the number of quark flavors with masses less than mh1
.

The decay width of Higgs boson to the two fermions h1 ! f �f can be written as

�h1!f �f �
NCg

2
fmh1

53=2
k

8:

8><
>:
�s a21 � c a11�

2 1
s2
5
� ctg25a2

31; f � u; c; t;

�c a21 � s a11�
2 1
c2
5
� tg25a2

31; f � b; d; s; e;�; E;
(A23)
where 5k � 1 � 4k, k � m2
f=m

2
h1

, gf � gmf=2mW , and
NC � 3 (1) for quarks (leptons).

In the following Table V we list the Higgs boson masses
mh1

, mh2
, mh3

which are calculated using the effective �i
075008
parameters (13)–(19), Sec. II, and the mass term diagonal-
ization method described in Sec. III A. The decay widths
�h1!gg, �h1!�� (unprimed) include only the leading one-
loop contributions of t, b quarks and W� bosons. For an
-22



Γ(h1 → γ γ )

m H ± Αt = Αb

µ t g(β)
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FIG. 9 (color online). The decay width ��h1 ! ��� 	 106 (GeV) at MSUSY � 500 GeV. Dotted lines show �h in the CP-conserving
limit ’ � 0. Thin solid or dashed lines denote the SM contributions, thick solid or dashed lines show SM and sparticle contributions
with the J factor included. (a) tg5 � 5, At � Ab � 1 TeV, and � � 2 TeV; solid line ’ � :=2; dashed line ’ � :. (b) tg5 � 5,
mH� � 300 GeV, and � � 2 TeV; solid line ’ � :=2; dashed line ’ � :. (c) tg5 � 5, mH� � 300 GeV, and At � Ab � 1 TeV;
solid line ’ � :=2; dashed line ’ � :. (d) � � 2 TeV, mH� � 300 GeV, and At � Ab � 1 TeV; solid line ’ � :=2; dashed line
’ � :.
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illustration of the sensitivity of mh1
, mh2

, mh3
and their

decay widths to the values of �i we computed Higgs boson
masses m0

h1;h2;h3
and the leading one-loop decay widths

�0
h1!gg

, �0
h1!��

(include t, b and W contributions only)

using the effective potential parametrization with both the
one-loop and two-loop contributions to �i from the paper
[3]. Finally, the decay widths �00

h1!gg
, �00

h1!��
are found

using the effective parameters (13)–(19) and taking into
account all possible one-loop fermion (t, b), gauge boson
W�, sfermion (~t, ~b), chargino, and charged Higgs boson
contributions, with K factors introduced in the expressions
for decay widths.

Table V contains also the output of the CPsuperH [15]
package and the FeynHiggs [18] package with the input
075008
parameter values taken the same as used in our parameter
set. The two-loop evaluation in the CPsuperH and the one-
loop evaluation in the FeynHiggs 2.1beta has been per-
formed. Note that physical Higgs bosonsH1,H2, andH3 of
the CPsuperH and FeynHiggs are evaluated in the way that
is technically different from the construction of our mixed
states h1, h2, h3, however a difference of numbers (which is
from several percent to 40% in the majority of cases) is
caused mainly by theoretical uncertainties of the effective
two-doublet potential representation, not by different defi-
nitions of the Higgs boson eigenstates in the generic basis
of scalar doublets, as demonstrated explicitly in Sec. III A.

In Figs. 5–9 we show the variation of the light Higgs
boson mass and the variations of ��h1 ! gg�, ��h1 ! ���
decay widths in different regions of the parameter space
-23
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(’, mH� , At;b, �, tg5). At the parameter set (0, 300 GeV,
1000 GeV, 2000 GeV, 5) the decay widths of h1 to �� and
gg are not far from the decay widths of the SM Higgs
boson with mH � 120 GeV. The largest sensitivity of the
widths to the charged Higgs mass is observed. At mH�

around 200 GeV [Figs. 6(a) and 8(a)] we observe the
suppression of the branchings of h1 to gg and �� of
more than 10 times at ’� :, which takes place in
075008
CPsuperH and FeynHiggs at higher masses of mH� around
300 GeV.

Our approach is algorithmized in the form of the model
in CompHEP 41.10 format [31], where the symbolic ex-
pressions for vertices are a starting level for the calculation
of the complete tree-level sets of diagrams with the follow-
ing cross section/decay width calculations and the genera-
tion of unweighted events.
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