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Decay of �� in a quark model
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We study the decay of�� in a nonrelativistic quark model. The wave function of�� is constructed for
the two cases JP � 1=2� as products of color, spin, flavor, and orbital parts respecting total antisymmet-
rization among the four quarks. We find that for the negative parity �� the width becomes very large
which is of order of several hundreds MeV, while it is about a several tens MeV for the positive parity. By
assuming additionally diquark correlations, the width is reduced to be of order 10 MeV. It is also pointed
out that a similar calculation for 3=2� results in strong suppression of its width.
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I. INTRODUCTION

One of the distinguished features of the pentaquark
particle�� is its very narrow width [1]. Many experiments
so far have reported only upper limits which are less than
experimental resolution. The pioneering work of the LEPS
group at SPring-8 has indicated � & 25 MeV [2], while
the ITEP group has reported � & 9 MeV [3]. Recent
analysis of the K� scattering from the xenon or deuteron
implies even smaller value � & 1 MeV [4–6]. It has been
often mentioned that a width of order of 10 MeVor less for
baryon resonances is very small as compared with a typical
value of around 100 MeV, though such a criterion should
be quantified on a better theoretical ground [7]. So far the
chiral soliton model has predicted the masses and widths of
the pentaquark baryons with less theoretical ambiguity
based on the SU(3) flavor algebra [8]. The model indicates
the width of �� around a few tens MeV [9]. Then one
might wonder if the chiral soliton model does something
exotic in contrast with the conventional knowledge of
hadron physics.

The purpose of this paper is to consider the width of��

in a nonrelativistic quark model. The model has been
successful for the description of the conventional baryons
made dominantly by three quarks. The detailed study in the
quark model must be useful in order to understand the
microscopic dynamics of the pentaquarks [10]. Even the
result of the chiral soliton model may be interpreted just as
for the nucleon in the large-Nc limit [11]. This is, however,
beyond our scope in this paper. Another question is related
to the intrinsic parity of the pentaquarks. Since we do not
know it, we perform the calculation for both cases. As we
will see, the decay width depends strongly on the parity of
��. Therefore, the study of the decay will help to know the
parity and hence the internal structure of the pentaquarks.

In order to prepare for the present study, we briefly look
at the general aspect for the width of baryons in this
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section. Consider a decay of �� going to the nucleon
and kaon. Assuming the spin of the ��, J � 1=2, the
interaction Lagrangian takes the form

L� � gKN� � N
� �K; (1)

where 
� � i
5 if the parity of �� is positive, while

� � 1 if the parity of �� is negative. The formula for
the decay width is given by

�� �
g2KN�
2


MNq3

EN�EN �MN�M�
; (2)

for the positive parity, whereMN andM�
� are the masses of

the nucleon and ��, and EN �
�������������������
q2 �M2

N

q
with ~q being

the momentum of the final state kaon in the kaon-nucleon
center-of-mass system, or equivalently in the rest frame of
��. The width for the negative parity is related to the one
of the positive parity by

�� �
�EN �MN�

2

q2
��: (3)

The difference arises due to the different coupling nature:
p-wave coupling for positive parity �� and s-wave cou-
pling for negative parity ��, representing the effect of the
centrifugal repulsion in the p-wave. In the kinematical
point of the �� decay, M� � 1540 MeV, MN �
940 MeV, and mK � 490 MeV, the factor on the right-
hand side of (3) becomes about 50 and brings a significant
difference in the widths of the positive and negative parity
��. If we take gKN� � 10 as a typical strength for strong
interaction coupling constants, we obtain �� � 100 MeV,
while �� � 5 GeV. Both numbers are too large as com-
pared with experimentally observed width. Therefore, the
relevant question is whether some particular structure of
�� will suppress the above naive values, or not.

In the quark model, assuming that the meson, nucleon,
and pentaquark states are dominated by two, three, and five
valence quarks, the decay of the pentaquark occurs through
-1  2005 The American Physical Society
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the so-called fall apart process, in which the five quarks
dissociate into a three-quark cluster, a nucleon, a quark-
antiquark cluster, a meson, without pair creation of the
quarks [12,13]. This should be contrasted with an ordinary
meson-baryon coupling in which a creation of quark-
antiquark pair must accompany. If we treat the meson as
a fundamental field, as expected to be valid for the Nambu-
Goldstone boson, and introduce a meson-quark interaction
of the Yukawa type, Lint, the two processes involve matrix
elements of the types h0jLintjq �qi for the fall apart process,
while hqjLintjqi for the ordinary meson-baryon coupling.
These are depicted in Figs. 1(b) and 1(a), respectively. In
1(a) the coupling is spacelike, while in 1(b) timelike. To
the extent that the meson is regarded as a pointlike, the
effect of the form factor is neglected. This is one of the
assumptions we adopt in the present work. The quantity we
will investigate in this paper is essentially the former
matrix element h0jLintjq �qi for the decay of �� [8].

In Ref. [14], similar calculation was performed, where
the matrix element of the axial-vector current between the
�� and nucleon states were computed. In order to relate
the matrix element of the axial-vector current to the axial
transition form factor gA��� ! N�, they have assumed the
partially conserved axial-vector current (PCAC) relation,
which is, however, not applicable to their quark model
approach, since the quark model without the chiral mesons
does not generate the meson pole term in the current matrix
element and hence does not satisfy the PCAC relation.

Since we do not know the spin and parity of the ��, we
will study the decay width for several spin-parity states.
Naively, the negative parity state of �0s�5 configuration
appears lower than positive parity states of �0s�40p con-
figuration. Although mechanisms which lower the positive
parity states have been discussed [12,15,16], the quantita-
tive prediction for the mass is not yet fully done. However,
the mass of the �� is an important input for the decay
width, since it changes the phase space volume and also the
q (momentum) dependent transition form factor. In the
present study, we use as inputs of masses experimental
values in order to exclude the dependence coming from the
phase space and the q dependent form factor. In this way,
comparison of the results of different states reflects the
difference in the structure of, in particular, the internal
spin-flavor-color wave functions.

This paper is organized as follows. In section II, we
establish the necessary ingredients of the quark model,
q q

m

q

q

(a) (b)

FIG. 1. Meson-baryon couplings involving an mqq coupling. (a) T
(b) A decay of pentaquark baryon into a three-quark baryon and a m
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especially for the basic meson-quark interaction and how
to compute the matrix element of the fall apart process. In
section III, we calculate the transition matrix element from
the five-quark state of �� to KN in the nonrelativistic
quark model of harmonic oscillator. An advantage of the
model is that the separation of the center-of-mass coordi-
nate is completely performed. We compute the matrix
elements for both positive and negative parity ��. In the
fall apart process the decay of �� into KN proceeds first
by forming a nucleonlike qqq state and a kaonlike q �s state
in the �� wave function. It is then necessary to compute
the spectroscopic factor for a given quark model wave
function for ��. This is shown in detail in the appendix.
In section IV numerical values are presented with some
discussions. In the final section the paper is concluded.
II. INGREDIENTS OF THE QUARK MODEL

Our starting point is an interaction Lagrangian of chiral
mesons and quarks [17]:

L int � �ig � 
5� �
g
2m

�y ~� 
 ~r��; (4)

where  � � u;  d;  s� is a four-component Dirac spinor
field, � � ��u; �d; �s� the two component spinor field, and

� �


0 � 1��
3

p �
���
2

p

�

���
2

p
K����

2
p

� �
0 � 1��

3
p �

���
2

p
K0���

2
p
K�

���
2

p
�K0 � 2��

3
p �

0
BB@

1
CCA (5)

is a flavor octet meson field. In the second equation of (4),
we have shown an expression familiar in the nonrelativistic
quark model with a quark mass m. The meson-quark
coupling constant g may be determined from the 
NN
coupling constant g
NN � 13. Taking the matrix element
of (4) in the nucleon states of the quark model, we find

hN�p2�

ajLintjN�p1�i � i

5g
6m

~�N 
 ~q�a; (6)

where ~q � ~p2 � ~p1 and ~�N is the spin matrix acting on the
two component nucleon spinor. Assuming that quark mass
is 1=3 of nucleon mass, m�MN=3, and comparing (6)
with the 
NN interaction �ig
NN=2MN� ~�N 
 ~q, we find

g �
g
NN
5

� 2:6: (7)
m

q q

m
(c)

ransition of a three-quark baryon to another three-quark baryon.
eson. (c) A diagram equivalent to (b).
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This interaction has been often used in the quark model
to compute meson-baryon couplings and transition ampli-
tudes of, for instance, N� ! 
N where N� is an ordinary
nucleon resonance made from three quarks as shown in
Fig. 1(a). The same interaction can be used for the decay of
a pentaquark baryon if one reverses the outgoing quark line
for the incoming antiquark line as shown in Fig. 1(b). Here
the quark-antiquark pair has the quantum numbers of the
kaon. When we treat the quarks as identical particles, it is
convenient to consider the diagram 1(c), where the anti-
quark line in the initial pentaquark state is once again
reversed to an outgoing quark line. This is the ‘‘particle-
hole transformation’’ which relates the interaction between
074021
the two particle states with the one for the particle and hole
states [18].

Now the pentaquark �� wave function j��i can be
written by four light quarks uudd and an �s. The state
contains a component of the first three quarks having the
neutron quantum numbers and the remaining quark and
antiquark having kaon quantum numbers,

j��i � aj�u�1�d�2�d�3��n�u�4� �s�5��K
�
i � 
 
 
 ; (8)

where a is the spectroscopic factor, probability amplitude
of finding theK�n state in j��i. Then transition amplitude
for �� ! K�n can be written as
hfj
Z
d4xLintjii � 2
!�Ef � Ei�Mfi;

M��!K�n � �ihnfK�� ~q�j
Z
d3xg � 
5� j���uudd �s�i

� �i
���
2

p
hnf�udd�j

Z
d3xg � 
5 e

�i ~q
 ~xj���uudd �s�i; (9)
where nf denotes the final state neutron of three quarks. In
the valence quark model, in the last line of (9), we have
assumed that the final state kaon is expressed by a non-
interacting plain wave of momentum ~q. In practical calcu-
lations, we treat the quarks as identical particles. By
moving �s in the initial state into s in the final state, the
initial and final states may be treated as systems of four
identical particles. Then the operator is written as a sum
over the four particles O �

P
i�1;...;4O�i�, and the final

state may be antisymmetrized as

juddsi �
1

2
�n�123�s�4� � n�124�s�3� � n�143�s�2�

� n�423�s�1��; (10)

where we have assumed that n�ijk� is already antisymme-
trized. The four quarks uudd in the initial state�� are also
antisymmetrized having the same structure as (10) under
permutation. The �� wave function is explicitly con-
structed in the next section. Combining (9) and (10) with
correct counting factors, we find

M��!K�n � 2
���
2

p
gah0j

Z
d3x � 
5 e

�i ~q
 ~xj�u�s�K
�
i

� hnfj�udd�
ni: (11)

We will compute the matrix element of (11) for both
positive and negative parity ��. Carlson et al. [19,20]
computed the constant a for several configurations. Here
we repeat the calculations briefly using the method of
Young diagram.

III. DECAY AMPLITUDE

A. Negative parity

Now we compute the matrix element (11) using a wave
function of harmonic oscillator for the nonrelativistic
quark model [21]. For simplicity, we assume that all quarks
are in a potential with the common oscillator parameter,
m! � &0. Hence the �0s�5 configuration for the negative
parity state may be written as

j��; �0s�5i �  � ~x1� � ~x2� � ~x3� � ~x4� � ~x5�j�
�
csfi; (12)

where the color-spin-flavor wave function is given by (A9)
in the appendix with the spectroscopic factor a � 1=�2

���
2

p
�.

The single particle wave function is given by

 � ~xi� �
�
&20



�
3=4
exp

�
�
&20
2
j ~xij

2

�
: (13)

By introducing various coordinates as defined in Fig. 2, we
can decompose the single particle state (12) into a product
of parts of the corresponding coordinates. After the sepa-
ration of the wave function for the total center-of-mass
coordinate ~Xtot, and then replacing it by the plane wave of
the total momentum ~Ptot � 0, we can write

j��i � aj�u�1�d�2�d�3��n�u�4� �s�5��K
�
i � 
 
 


� aei ~Ptot
 ~Xtot(KN� ~x�(N� ~); ~*�(K� ~r�

� �color� 
 �spin� 
 �flavor� � 
 
 
 ; (14)

where the color-spin-flavor wave function is presented in
the appendix, and the dots in the last line contain all
possible states composed of products of color singlet 3q
and q �q states which are orthogonal to the K�n state in the
first term. The wave function (KN� ~x� is for the relative
motion of the nucleon and kaonlike clusters, (N� ~); ~*� for
the intrinsic state of the nucleonlike part, and(K� ~r� for the
intrinsic (relative) state of the kaonlike part. For instance,

(KN� ~x� �
�
&2




�
3=4
exp

�
�
&2

2
x2
�
; (15)
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FIG. 2. Definition of various coordinates of the five-quark system.
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where the parameter & is for the relative motion of the kaon
and nucleonlike clusters and is related to &0 by

&2 �
6

5
&20: (16)

The final state wave function takes the form

ei ~Ptot
 ~Xtotei ~q
 ~x(N� ~); ~*�; (17)

where we have assumed that the intrinsic structure of the
final state nucleon is the same as the one of the three-quark
cluster in the initial state, and the relative motion of the
kaon and the nucleon is described by a plane wave of
momentum ~q.

The remaining computation is rather straightforward but
it is worth mentioning a few remarks. First, the overlap of
the three-quark wave functions in the initial and final states
is set one by assuming that the oscillator parameter of the
five quarks in the initial state �� is the same as that of the
nucleon in the final state. Therefore, we have
hnfj�udd�ni � 1. If spatial structure for the nucleon and
pentaquark states are different, this overlap factor will be
suppressed from 1. Furthermore, a small repulsive force in
the KN scattering channel also reduce the overlap. As
discussed in Ref. [14], strong diquark correlation has a
significant effect on the suppression. Whether sufficient
spatial correlation will be developed or not is, however, a
dynamical question [22]. In any case, we expect some
suppression in a more realistic study, and therefore the
estimation in the present work provides the upper bound
in the quark model calculation. Second, the matrix element
for the annihilation of the kaonlike cluster in the initial
state reduces to

h0j � �s
5 uj�u �s�
K�

i �
���
2

p �
&20
2


�
3=4
(K� ~x�: (18)

Here, 
5 is replaced by one in the nonrelativistic approxi-
mation, since the lower component of the antiquark wave
function is a large component. The factor

���
2

p
is from the

spin part of the matrix element for S � 0 pair of u and �s
quarks whose wave function is given by 1=

���
2

p
�"# � #"�, and

�&20=2
�
3=4 is the value of the kaonlike wave function

(K� ~r� at the origin.
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The resulting matrix element of (11) is compared with
the matrix element of the s-wave coupling,

hn�� ~q�jgKN�
Z
d3x � n �e

�i ~q
 ~xj���~0�i

� �2
�3!3�0�gKN�; (19)

where we have set the normalization factor����������������������������
�E�M�=2M

p
! 1. We find the result

gKN� � 4ga
�
5

3

�
3=4
F�q�; (20)

where the transition form factor is defined by

F�q� �
�
&2

2


�
3=2 Z

d3xe��1=2�&2 ~x2e�i ~q
 ~x � e��q2=2&2�:

(21)
B. Positive parity

For a positive parity ��, one of the four light quarks
must be excited into a p-orbit, and hence the five-quark
configuration is �0s�40p. For this case, four independent
configurations are available [12]. In general, the lowest
energy configuration may be a linear combination of these
states. Here we consider three simple cases; the one min-
imizing the spin-flavor interaction [19], the one minimiz-
ing the spin-color interaction, and the one with strong
S � I � 0 diquark correlation [23]. For illustration, how-
ever, we show detailed computation only for the first one of
minimizing the spin-flavor interaction.

In the nonrelativistic quark model of harmonic oscilla-
tor, we can write the two terms of the p-states of (A18) in
terms of KN relative coordinate, as

j��; �0s�40pi �

������
5

96

s
&� ~x; ��J�1=2;mi

�
&
2


�
3=2
e��1=2�&2x2

�

�
5

3

�
3=4
ei ~Ptot
 ~Xtot(N� ~); ~*�; (22)

where we have set ~x4 ! ~x5 prior to computation of the
matrix element. In (22), � ~x; ��J�1=2;mi

represents the cou-
pling of the relative coordinate between the kaon and
nucleonlike clusters ~x and the spin-1=2 state � to form
-4



TABLE I. The KN�� coupling constant gKN�� and decay
width (in MeV) of �� for JP � 1=2�. In the columns of SF,
SC, and JW presented are the results for the configuration that
minimize the spin-flavor interaction, that minimizes the spin-
color interaction, and that with the S � I � 0 diquark correla-
tion of the Jaffe-Wilczek type.

gKN� � (MeV)
JP � 1=2� 1=2� JP � 1=2� 1=2�

hr2i1=2 &20 SF SC JW SF SC JW
1=

���
2

p
fm 3 fm�2 4.1 7.7 5.5 3.2 890 63 32 11

1 fm 1:5 fm�2 3.2 8.4 5.9 3.4 520 74 37 12
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the total spin J � 1=2; mi. Furthermore, we have recovered
the spectroscopic factor a �

�����������
5=96

p
as derived by Carlson

et al. [19].
The matrix element (11) can now be computed with the

result

M � �2
�3!3�0�

������
5

96

s
4g���
3

p
&
hmfj ~� 
 ~qjmiiF�q�

�

�
&
2


�
3=2

�
5

3

�
3=4

(23)

which is compared with the p-wave coupling defined by

gKN�hn�� ~q�j
Z
d3x � n
5 �e

�i ~q
 ~xj��~0�i

� �2
�3!3�0�gKN�
~� 
 ~q
2MN

: (24)

Hence we find

gKN� � g

������
5

96

s
8MN���
3

p
&

�
5

3

�
3=4
F�q�; (25)

where & �
��������
6=5

p
&0 and F�q� has been defined by (21).

The appearance of the oscillator parameter & in the
denominator is worth being pointed out. It indicates that
as the size (inversely proportional to &) of �� decreases,
the coupling constant and hence the decay width decreases.
This is a feature of the fall apart decay into a p or higher
partial wave state. For a small�� the decay is suppressed,
since the overlap with the decaying p-wave final state is
suppressed. This feature is very much different from the
decay (transition) of an ordinary baryon which is accom-
panied by the creation of quark-antiquark pair for a meson.
Such a decay remains finite in the limit that the size of the
baryon is zero.

IV. NUMERICAL VALUES AND DISCUSSIONS

The decay width is given by the square of the coupling
constant times the phase space volume. Since the change in
the mass affects the phase space volume and the transition
form factor, our study here is considered to be for the
coupling constant gKN� at the realistic kinematical point
by fixing the masses at experimental values: mK �
490 MeV, MN � 940 MeV, and M� � 1540 MeV. For
numerical estimation, we consider the following two cases
corresponding to different sizes of harmonic oscillator
potential:

hr2i1=2N � 1:0 fm! &20 � 1:5 fm�2;

hr2i1=2N � 0:7 fm! &20 � 3:0 fm�2:
(26)

The resulting coupling constants and the decay widths are
summarized in Table I. As discussed before, since we do
not consider possible difference in the structures of the
spatial wave functions of the nucleons and pentaquark, the
values in Table I should be upper bounds.
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From the table, we see that the width of the negative
parity�� is too wide for the state to be regarded as a sharp
resonance, as consistent with the naive estimate made in
section I. In this paper, we have shown this by explicitly
calculating the matrix element. However, for the ground
state configuration �0s�5, this could have been expected, if
we have noticed that this is the unique configuration, unlike
the positive parity��. Because of this uniqueness, the��

wave function is completely written as a KN -like state as
given in (10). The spectroscopic factor 1=2 (for finding two
KN states) is then identical to the normalization factor of
(10). Hence, unless there is some attraction and/or coupled
channels, 1=2� state cannot accommodate a resonance
[7,12]. If one could include a higher excited state such as
a �0s�41s configuration, there could be a resonance state,
but the energy would become very large.

For the positive parity ��, the column SF (spin-flavor)
shows the results for the �� configuration minimizing the
spin-flavor interaction as we have discussed so far. The
column SC (spin-color) is for the result for the configura-
tion minimizing the spin-color interaction. The SC con-
figuration has a spectroscopic factor

�������������
5=192

p
which is

smaller than that of the SF by the factor 1=
���
2

p
.

Therefore, the expected decay width becomes half. We
have also shown in the column JW the result for the case
where the Jaffe-Wilzeck type of diquark correlation is
developed [23]. In this case, the spectroscopic factor be-
comes

�������������
5=576

p
[19] instead of

�����������
5=96

p
, which reduces the

decay width by the factor 6 from the result of SF.
Although the results depend significantly on the choice

of model parameters, the general tendency is that the decay
width for the negative parity�� is too wide, while that for
the positive parity can be of order of 10 MeV when strong
correlation in the color-spin-flavor space is developed. As
anticipated spatial correlation will further suppress the
decay width. Interference between different configurations
could be another source of reduction. This, however, is a
difficult problem at this point, since it depends very much
on the type of interaction.

The present analyses can be extended straightforwardly
to the case of spin-3=2. For the negative parity case, the
spin-1 state of the four quarks in the�� may be combined
-5
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with the spin of �s for the total spin-3=2. In this case the final
KN state must be in d-wave, and therefore, the spectro-
scopic factor of finding a d-wave KN state in the initial
configuration which is �0s�5 is simply zero. If a tensor
interaction induces a small admixture of a d-wave configu-
ration, it can decay into a d-waveKN state. The decay rate,
however, would be small. Therefore the decay of 3=2� ��

into KN is expected to be suppressed. There could be a
possible decay channel of the nucleon and the vector K� of
JP � 1�. This decay, however, does not occur since the
total mass of the decay channel is larger than the mass of
��. Hence this JP � 3=2� state could be another candi-
date for the observed narrow state. This state does not have
a spin-orbit partner and forms a single resonance peak
around its energy.

For the positive parity case, the p-state orbital excitation
may be combined with the spin of �s for the total spin-3=2.
In this case, the calculation of the decay width is precisely
the same as before except for the last step of Eqs. (A16)
and (A18), where the total spin should be 3=2. After taking
the average over the angle ~q, however, the coupling yields
the same factor as for the case J � 1=2. Hence the decay
rate of spin-3=2 �� is the same as that of �� of spin-1=2
in the present simple treatment.
V. CONCLUSION

We have studied the decay of the pentaquark baryon��

in the nonrelativistic quark model. The matrix element of
the fall apart process has been calculated using the meson-
quark coupling of the Yukawa type. The method is a
natural extension of the standard quark model calculation
for meson-baryon couplings which involves the matrix
element of the axial current between quark states to the
one of quark-antiquark annihilation. If the quark-meson
coupling would be fundamental, such an approach should
be reliable.

In the quark model, we can consider various states, in the
present study positive and negative parity pentaquark
states. This is perhaps an advantage over the chiral soliton
model, since the latter negative parity states require an
excitation beyond the rigid rotation, which is rather diffi-
cult to construct. In the quark model of harmonic oscillator,
ground state of �0s�5 is dominated by the KN scattering
state and is necessarily lead to a large decay width of the
1=2� pentaquark state. Hence, JP � 1=2� pentaquarks
dominated by the �0s�5 configuration are hardly regarded
as a resonance as observed in experiments.

In contrast, for the positive parity �� there are more
configurations available, which together with the factor
due to the centrifugal barrier suppresses the transition
probability of �� ! KN. The suppression rate depends
significantly on the configuration. In the three cases we
have studied, one minimizing the spin-flavor interaction,
spin-color interaction, and with the I � S � 0 diquark
correlations, the decay widths turned out to be 70�
074021
10 MeV. These values, however, were computed only
when color-spin-flavor part of the wave functions were
properly treated. The inclusion of possible spatial correla-
tions and/or with more realistic configuration mixing
would reduce these values. Therefore, the width of the
pentaquark baryon around 10 MeV may be explained if
the parity would be positive when the spin of�� is 1=2. If
it will be of order 1 MeV, then we will still need further
reduction of order 10 for the width, or about 3 for the
coupling constant.

Finally, we have pointed out another possibility of a
narrow resonance of JP � 3=2�. In the hadronic language,
this state is dominated by the K�N s-wave bound state.
Such a picture may not only explain a narrow width of the
pentaquark state but also provide a simple production
mechanism as dominated by the K�-exchange.

As we have seen, the decay width is extremely sensitive
to the structure of the baryons. Therefore, in the quark
model more accurate treatment of the five-body system
with reliable model Hamiltonian should be desired. As
several attempts have been reported in a recent workshop
[1], more development will be expected to appear to clarify
the structure of the pentaquark state.
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APPENDIX: COMPUTATION OF
SPECTROSCOPIC FACTOR

1. Negative parity ��

First we start by noting that the color wave function of
the q4 system must be �211�c to form the color singlet state
with �s of �11�c. This condition should be satisfied not only
for the negative parity but also for positive parity ��. All
four light quarks are then assumed to occupy the lowest
s-state and therefore the orbital wave function is totally
symmetric �4�o. Therefore, the spin-flavor wave function
must have the symmetry �31�fs which is combined with the
color wave function �211�c to form the totally antisymmet-
ric state �1111�csfo. In the Young diagram,
-6
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The subscripts c, s, f, and o in the diagram denote color
(c), spin (s), flavor (f), and orbital (o) parts of the wave
function. Furthermore, center dot ‘‘
’’ denotes the inner
product of wave functions in different functional space.
The csf wave function is now decomposed into color and
spin-flavor part. In the Young tableaux with particle num-
ber assignment, it can be written as

The Young tableaux is convenient when projecting out
such a term as containing the quarks 123 forming the
nucleonic component and of 4�5 kaoninc one. The first
term is the one of such, where the color wave function of
123 is totally antisymmetric �111�c and spin-flavor part is
totally symmetric �3�sf. Assuming that the �� has isospin
0, the flavor wave function is expressed by �22�f and so the
only possible spin wave function is �31�s. Therefore, in the
Young tableaux, the spin-flavor wave function can be ex-
pressed as

Finally the �s wave function is multiplied to the above q4

wave function. The color, spin-flavor wave function of �s
quark is expressed by

This is combined with the q4 wave function to yield the��

wave function

In the first term of this equation, the fourth quark and �s
form the desired color (singlet) and flavor (isosinglet)
quantum numbers. The spin part needs one more step.
For instance, the spin wave function has the coupling
structure with S1234 � 1 as

��S123; S4�S1234 ; S5�Stot � ��1=2; 1=2�1; 1=2�1=2; (A6)
074021
which may be recoupled for the kaon with spin S45 � 0:

��1=2; 1=2�1; 1=2�1=2 �
X
J

cJ�1=2�1=2; 1=2�
J�1=2;

c0 �

���
3

p

2
; c1 �

1

2
:

(A7)

Here the coefficients c0 and c1 are the amplitude for the
spin S45 � 0 and 1 components. S45 � 1 corresponds to
the K� vector meson of spin one. Therefore, the coupling
strength of K� to the �� is 1=

���
3

p
of that of K for the

negative parity ��.
Using the results of Eqs. (A5) and (A7), one finds the

amplitude of finding the neutronlike udd and kaon(K�)-
like u �s is

a �
1���
2

p
1���
3

p

���
3

p

2
�

1

2
���
2

p : (A8)

Note that the first factor 1=
���
2

p
is needed when extracting

the K�n component from the isospin zero combination of
K�n and K0p in the flavor wave function of (A5). In other
words, we have

j��
csfi �

1

2
���
2

p j�udd�n�u �s�K
�
i �

1

2
���
2

p j�uud�p�d �s�K
0
i

� 
 
 
 (A9)

2. Positive parity ��

The wave function for the positive parity �� contains
excitation of one unit of orbital angular momentum and
allows four independent states with JP � 1=2� and flavor
antidecuplet. Assuming that one of the uudd quarks is
excited into the l � 1 p-orbit, the orbital part of the q4

wave function takes the symmetry structure �31�o. The
totally symmetric state �4�o represents a center-of-mass
motion of the uudd system. As in the negative parity
case, the spin-flavor-orbital wave function has the symme-
try �31�sfo, and therefore, the spin-flavor part can take �4�sf
or �22�sf. The spin-flavor decomposition of these states
with the flavor symmetry �22�f for antidecuplet is

�4�sf � �22�s 
 �22�f;

�22�sf � ��22�s or �31�s or �4�s� 
 �22�f:
(A10)

As discussed previously [12], we take the most likely
configuration for the spin-flavor wave function with the
symmetry �4�sf in which the attraction due to the meson-
exchange interactions is maximized. Such a spin-flavor
state may be expressed by the following Young tableaux

Accordingly, the color-orbital wave function is totally
-7
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antisymmetric:

As in the case of negative parity, we need to pick up the
term where the 123 quarks form neutron quantum numbers
with color singlet and totally symmetric in spin-flavor
wave function. We then need one more decomposition
for the orbital part. Denoting s (l � 0) and p (l � 1) states
simply by s and p, the orbital wave function in the relevant
term is

The first term sssp is combined with �s state, representing a
state where the nucleonlike (123) is in the s-state and the
kaon either moving in p-state or excited intrinsically:

ps �
1���
2

p

�
1���
2

p �ps� sp� �
1���
2

p �ps� sp�
�
: (A14)

For the decay �� ! K�n, we pick up the first term of
(A14). The combination of the first term of (A13) and the
first term of (A14) is referred to as the case (1). The second
term of (A13) represents that the nucleonlike udd is mov-
ing in the p-state while the kaonlike u �s is in the s-state. We
will refer to this term as the case (2). The first and second
cases both contribute to �� decay and are added
coherently.

Finally, we need to evaluate the spin rearrangement for
qqqq �s,

Using the notation of (A6), it can be done as
074021
��1=2; 1=2�0; 1=2�1=2 �
X
J

c0J�1=2; �1=2; 1=2�
J�1=2;

c00 �
1

2
; c01 �

���
3

p

2
:

(A16)

Here c01=c
0
0 �

���
3

p
represents the ratio of the K� coupling to

K coupling to the ��, which is the result presented by
Close and Dudek [13]. The probabilities of finding the KN
state for the cases (1) and (2) in the �� wave function are

P�1� �
�������� 1���
3

p

���
3

p

2

1���
2

p
1

2

��������2� 1

32
;

P�2� �
�������� 1���
3

p
1

2

1

2

��������2� 1

48
; P�1� � P�2� �

5

96
:

(A17)

These results agree with that derived in Ref. [19]. Note that
these are probabilities of findingKN � �K�n� K0p�=

���
2

p
.

Therefore, the probabilities of finding K�n are half of
them. To complete the decomposition of the wave function,
we write

j��i �
a1���
2

p j���udd�nl�0;S�1=2�j�1=2; � �su�
K�

l�1;S�0�J�1=2i

�
a2���
2

p j���udd�nl�1;S�1=2�j�1=2; ��su�
K�

l�0;S�0�J�1=2i

� ��K�n� ! �K0p�� � 
 
 


�

������
1

32

s
j1i �

������
1

48

s
j2i � 
 
 


�

������
5

96

s 0@ ���
3

5

s
j1i �

���
2

5

s
j2i

1A� 
 
 
 : (A18)

Here the states j1i and j2i are for the states of a1 and a2
terms, respectively. In these equations, we have shown that
the �� contains a component of relative p-wave motion
between the two-quark cluster (mesonlike) and three-quark
cluster (nucleonlike) states. This reduces to (22).
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