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We obtain reliable �� scattering amplitudes consistent with experimental data, both at low and high
energies, and fulfilling appropriate analyticity properties. We do this by first fitting experimental low
energy (s1=2 � 1:42 GeV) phase shifts and inelasticities with expressions that incorporate analyticity and
unitarity. In particular, for the S wave with isospin 0, we discuss in detail several sets of experimental data.
This provides low energy partial wave amplitudes that summarize the known experimental information.
Then, we impose Regge behavior as follows from factorization and experimental data for the imaginary
parts of the scattering amplitudes at higher energy, and check fulfillment of dispersion relations up to
0.925 GeV. This allows us to improve our fits. The ensuing �� scattering amplitudes are then shown to
verify dispersion relations up to 1.42 GeV, as well as s� t� u crossing sum rules and other consistency
conditions. The improved parametrizations therefore provide a reliable representation of pion-pion
amplitudes with which one can test chiral perturbation theory calculations, pionium decays, or use as
input for CP-violating K decays. In this respect, we find �a�0�0 � a�2�0 �2 � �0:077� 0:008�M�2

� and
��0�
0 �m2

K� � ��2�0 �m2
K� � 52:9� 1:6o.
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I. INTRODUCTION

A precise and unbiased knowledge of the �� scattering
amplitude has become increasingly important in recent
years. This is so, in particular, because �� scattering is
one of the few places where one has more observables than
unknown constants in a chiral perturbation theory (ch.p.t.)
analysis to one loop, so it provides a test of ch.p.t. in this
approximation, as well as a window to higher order terms.
Beside this, an accurate determination of the S wave
scattering lengths, and of the phase shifts, provides
essential information for three subjects under intensive
experimental investigation at present, viz., light scalar
spectroscopy, pionic atom decays, and CP violation in
the kaonic system.

In two recent papers, Ananthanarayan, Colangelo,
Gasser, and Leutwyler [1] and Colangelo, Gasser, and
Leutwyler [2] have used experimental information, analy-
ticity and unitarity (in the form of the Roy equations [3])
and, in the second paper, also chiral perturbation theory, to
construct a precise �� scattering amplitude at low energy,
s1=2 � 0:8 GeV. Unfortunately, however, the analysis of
Refs. [1,2] presents some weak points. First of all, the input
scattering amplitude at high energy (s1=2 * 1:5 GeV)
which these authors use is incompatible with experimental
data [4] on �� cross sections and also contradicts known
properties of standard Regge theory; see a detailed analysis
in Refs. [5–7] and Appendix B here. Moreover, the errors
these authors take for some of their experimental input data
are optimistic, as shown in Ref. [7]. As a consequence of
all this the �� amplitudes of Ref. [2] do not satisfy well a
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number of consistency tests, as we show in Sec. VII here
(see also Refs. [6,7] for more details).

Some of the shortcomings of the articles in Refs. [1,2],
notably incorrect Regge behavior, are also reproduced
in the papers of Descotes et al., and Kamiński, Leśniak,
and Loiseau [8], who also base their analysis in the
Roy equations but, since the errors given by these authors
are substantially larger than those of Ref. [2], their
effects are now less pronounced. Therefore, we still
need to find reliable pion-pion scattering amplitudes com-
patible with physical data both at high and low energy, as
well as to verify to what extent such amplitudes agree
with ch.p.t.

In the present paper we address ourselves to the first
question; that is to say, we try to find what experiment
implies for the �� amplitudes. To avoid biases, we will
start by performing fits to experimental data on phase shifts
and inelasticities, incorporating only the highly safe re-
quirements of analyticity and unitarity, in the low energy
region s1=2 � 1:42 GeV. In particular, for the S0 wave
below 0.95 GeV, where the experimental situation is con-
fused, we perform a global fit, as well as individual fits to
various sets of data. These fits are described in Sec. II and,
in the following sections, we investigate to which extent
the ensuing scattering amplitudes are consistent, in par-
ticular, with high energy information. To do so, we assume
Regge behavior, as given in Ref. [5] (slightly improved; see
Appendix B), above 1.42 GeV: using this we check in
Sec. III fulfillment of forward dispersion relations, for
the three independent �� scattering amplitudes. This, in
particular, permits us to discriminate among the various
-1  2005 The American Physical Society
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sets of phase shifts for the S0 wave, leaving only a few
solutions which are consistent with dispersion relations
(and, as it turns out, very similar one to the other, as
discussed in Sec. IV).

When dealing with different data sets one has to weigh
not only the data on a single experiment but one has to take
into account the reliability of the experiments themselves.
So we have done for many waves, where some clearly
faulty experimental data have only been considered to
conservatively enlarge the uncertainties. Concerning the
most controversial S0 wave, we have used the very reliable
data coming from Kl4 and K ! �� decays; to this we add
the results from other experimental analyses of �� scat-
tering available in the literature, either separately or com-
bined in a global fit. We then use forward dispersion
relations to test consistency of the several sets of data.

The present study should therefore be considered, in
particular, as a guideline to the consistency (especially
with forward dispersion relations) of the various data sets.

Next, we use these dispersion relations to improve the
central values of the parameters of the fits given in Sec. II.
The result of such analysis (Sec. IV) is that one can get a
precise description for all waves, consistent with forward
dispersion relations up to s1=2 
 0:95 GeV and a bit less so
( & 1:5� level) in the whole energy range, 2M� � s1=2 �
1:42 GeV, and even below threshold, down to s1=2 ����
2

p
M�. The greater uncertainties affect the S0 wave for

s1=2 > 0:95 GeV, a not unexpected feature, and, to a lesser
extent, the P wave above 1:15 GeV.

In Sec. V we verify that the scattering amplitudes we
have obtained, which were shown to satisfy s� u crossing
(by checking the dispersion relations), also verify s� t
crossing, in that they satisfy two typical crossing sum rules.
In Sec. VI we use the scattering amplitudes we have
determined and the method of the Froissart-Gribov repre-
sentation to calculate a number of low energy parameters
for P, D and some higher waves which, in particular,
provides further consistency tests. We also evaluate, in
Sec. VII, the important quantities �a�0�0 � a�2�0 �2 and
��0�
0 �m2

K� � ��2�
0 �m2

K� for which we find

�a�0�0 � a�2�0 �2 � �0:077� 0:008�M�2
� ;

��0�
0 �m2

K� � ��2�0 �m2
K� � 52:9� 1:6o:

Also in Sec. VII we compare our results with those ob-
tained by other authors using Roy equations and ch.p.t.
However, in the present paper we will not address our-
selves to the question of the chiral perturbation theory
analysis of our �� amplitudes.

Our paper is finished in Sec. VIII with a brief summary,
as well as with a few appendixes. In Appendix A, we
collect the formulas obtained with our best fits. In
Appendix B we give a brief discussion of the Regge for-
mulas used; in particular, we present an improved evalu-
ation of the parameters for rho exchange. Appendix C is
074016
devoted to a discussion of the shortcomings of experimen-
tal phase shift analyses above 
1:4 GeV, which justifies
our preference for using Regge formulas in this energy
region.

We end this introduction with a few words on notation
and normalization conventions. We will here denote am-
plitudes with a fixed value of isospin, say I, in channel s,
simply byF�I�, f�I�l ; we will specify the channel, F�Is�, when
there is danger of confusion. For amplitudes with fixed
isospin in channel t, we write explicitly F�It�.

For scattering amplitudes with well-defined isospin in
channel s, Is, we write

F�Is��s; t� � 2�
X

l�even

�2l
 1�Pl�cos��f
�Is�
l �s�; Is � even;

F�Is��s; t� � 2�
X
l�odd

�2l
 1�Pl�cos��f
�Is�
l �s�; Is� odd;

f�I�l �s� �
2s1=2

�k
f̂�I�l ; f̂�I�l � sin��I�l �s�ei�

�I�
l �s�: (1.1a)

The last formula is only valid when only the elastic channel
is open. When inelastic channels open this equation is no
more valid, but one can still write

f̂ l�s� �
�
�le

2i�l � 1

2i

�
: (1.1b)

The factor 2 in the first formulas in (1.1a) is due to Bose
statistics. Because of this, even waves only exist with
isospin I � 0; 2 and odd waves must necessarily have
isospin I � 1. For this reason, we will often omit the
isospin index for odd waves, writing e.g. f1, f3 instead
of f�1�1 , f�1�3 . Another convenient simplification that we use
here is to denote the�� partial waves by S0, S2, P, D0, D2,
F, etc., in self-explanatory notation.

The quantity �l, called the inelasticity parameter for
wave l, is positive and smaller than or equal to unity. The
elastic and inelastic cross sections, for a given wave, are
given in terms of �l and �l by

�el
l �

1

2

�
1
 �2

l

2
� � cos2�l

�
; �inel

l �
1� �2

l

4
;

(1.2)

�el
l ; �

inel
l are defined so that, for collision of particles A, B

(assumed distinguishable),

�tot �
4�2

�1=2�s;mA;mB�

2s1=2

�k

X
l

�2l
 1���el
l 
 �inel

l �:

(1.3)

When neglecting isospin violations (which we do
unless explicitly stated otherwise) we will take the con-
vention of approximating the pion mass by M� � m�� ’

139:57 MeV. We also define scattering lengths, a�I�l , and
-2
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effective range parameters, b�I�l , by

�

4M�k
2l Refl�s� ’k!0

a�I�l 
 b�I�l k
2 
 � � � ;

k �
���������������������
s=4�M2

�

q
:

(1.4)

II. THE �� SCATTERING AMPLITUDES AT LOW
ENERGY (s1=2� 1:42 GeV)

We present in this section parametrizations of the S, P,
D, F, and G waves in �� scattering obtained fitting ex-
perimental data at low energy, s1=2 � 1:42 GeV, which
will provide a representation of the experimental �� scat-
tering amplitudes in this energy range: this may be con-
sidered as an energy-dependent phase shift analysis. Above
1:42 GeV, we will use the Regge expressions obtained in
Ref. [5], which we reproduce and discuss in Appendix B in
the present paper. In following sections we will verify to
which extent the scattering amplitudes that one finds in this
way are consistent with dispersion relations or crossing
symmetry, within the errors given.

Before entering into the actual fits, a few words are due
on the choice of the energy 1:42 GeV as limit between the
regions where we use phase shift analyses and Regge
representations. Experimental phase shift analyses exist
up to 
2 GeV. However, as is known, phase shift analyses
become ambiguous as soon as inelastic processes become
important. As we will discuss in some detail in
Appendix C, the existing experimental phase shift analyses
become suspect for energies above 
1:4 GeV: in particu-
lar, they produce cross sections that deviate from experi-
mentally measured total cross sections.

As for the higher energy range, we have shown in
Ref. [5] that a Regge description of the imaginary part of
the �� scattering amplitudes agrees well with �� cross
section data (and, through factorization, also with �N and
NN data) for kinetic energies above 
1 GeV; for ��
scattering, down to s1=2 ’ 1:4, or even to 1:3 GeV, depend-
ing on the process. We have chosen the limiting energy to
be 1:42 GeV as a reasonable compromise; but one could
have taken lower limits, or slightly higher ones, as well. In
fact, it is not possible to go below 1:4 GeV with a Regge
description for the It � 1 amplitude or for�0�0 scattering,
since both contain the isospin zero amplitudes, which show
two resonances just below that region [the f2�1270� and the
f0�1370�]. But it is possible to choose a lower junction
point between the phase shift analyses and the Regge
formulas for �0�
 scattering. The influence of this is
negligible for �0�
, as we will show in Sec. III A 2,
provided one stays in the range 1:32 GeV � s1=2 �
1:42 GeV, with the larger values favored.

We now turn to the parametrizations. In writing them we
will use the requirements of analyticity and elastic unitar-
ity. Extra information has been added to help stabilize the
fits in those channels where the low energy data are scarce;
074016
in particular, information on Adler zeros or scattering
lengths. For the latter we impose values obtained from
their Froissart-Gribov representation, but with enlarged
error bars.

The method used to take into account unitarity and
analyticity will be the standard one of the effective range
formalism, supplemented by a conformal expansion. To be
precise, for a given partial wave f�I�l �s� we write, for any
value (complex or real) of s,

f�I�l �s� �
2s1=2

�k
1

2s1=2k�2l�1��I�
l �s� � i

�
k2l

�
1

��I�
l �s� � ik2l
1=2s1=2

: (2.1)

The effective range function ��I�
l �s� is real on the segment

0 � s � s0, but it will be complex above s0, and also for
s � 0. Here s0 is the energy squared above which inelastic
processes are nonnegligible. Using only the requirements
of causality and conservation of probability, it can be
shown that ��I�

l �s� is analytic in the complex s plane, cut
from �1 to 0 and from s0 to 
1; see Fig. 1.

We can profit from these analytical properties as follows.
We map the cut plane into the unit disk (as in Fig. 1) by
means of the conformal transformation

w�s� �

���
s

p
�

�������������
s0 � s

p

���
s

p



�������������
s0 � s

p :

The properties of analyticity and elastic unitarity of f�I�l �s�
are then strictly equivalent to uniform convergence (in the
variable w) in the disk jwj< 1 of the series

��I�
l �s� �

X1
n�0

Bnw�s�n:

This series thus converges, in the variable s, uniformly in
the interior of the whole cut plane; in general very quickly.
It will turn out that we will need only two or three terms in
the expansions for the partial wave amplitudes.
-3
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FIG. 2 (color online). The phase shifts of solution 1 from
Protopopescu et al. [10], Hyams et al. [11(a)], and Estabrooks
and Martin [11(a)] compared with the prediction with the
parameters (2.6) (solid line below 1 GeV). We emphasize that
this is not a fit to these experimental data, but is obtained from
the pion form factor [9]. The error here is like the thickness of
the line. Above 1 GeV, the dotted line and error (PY) are as
follows from the fit (2.7).
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Before starting with the actual fits, we here say a few
words on the values of s0 (i.e., the energy at which we
consider inelasticity not negligible) that we will take for
the various waves. For the S0 wave, the �KK channel is
strongly coupled, so here s0 � 4m2

K. For other waves the
�KK channel is weakly coupled. In the cases where we have

sufficiently precise data (that is, for the P wave and the low
energy S2 wave), we will take s1=20 � 1:05 GeV which is,
approximately, the 2�" threshold.

For the D0 wave, and for the S2 wave at intermediate
energy, 1:05 GeV & s1=2 & 1:4 GeV, inelasticity is de-
tected. It is small (but not negligible) while, unfortunately,
the data are not precise enough to perform a fully consis-
tent analysis. We then follow a different strategy: we fit the
experimental phase shifts using formulas that neglect in-
elasticity below 1:45 GeV (which is, approximately, the 2"
threshold). The experimental inelasticity between 1 and
1:42 GeV is then added by hand.

Finally, for the D2, F waves, for which experiments
detect no inelasticity below 1:42 GeV, s0 is taken equal
to 1:45 GeV.

A. The P wave

1. Parametrization of the P wave below 1 GeV

We will consider first the P wave for �� scattering
below 1 GeV, to exemplify the methods, because it is the
one for which more precise results are obtained. We start
thus considering the region of energies where the inelas-
ticity is below the 2% level; say, s1=20 � 1:05 GeV2.

We then expand �1�s� in powers of w, and, reexpressing
w in terms of s, the expansion will be convergent over all
the cut s plane. Actually, and because we know that the P
wave resonates at s � M2

", it is more convenient to expand
not �1�s� itself, but  �s� given by

�1�s� � �s�M2
"� �s�=4; (2.2a)

so we write

 �s� � fB0 
 B1w
 � � �g: (2.2b)

In terms of �1�s� we thus find the expression for the
cotangent of the phase shift, keeping two terms in the
expansion,

cot�1�s� �
s1=2

2k3
�M2

" � s�
�
B0 
 B1

���
s

p
�

�������������
s0 � s

p

���
s

p



�������������
s0 � s

p

�
;

s1=20 � 1:05 GeV: (2.3)

M";B0; B1 are free parameters to be fitted to experiment. In
074016
terms of �1;  we have, for the rho width, and the scatter-
ing length, a1,

�" �
2k3"

M2
" �M

2
"�
; k" �

1

2

������������������������
M2
" � 4M2

�

q
;

a1 �
�1

4M��1�4M
2
��

�
1

M��M
2
" � 4M2

�� �4M
2
��
:

(2.4)

The values B0 � const, Bi�1 � 0 would correspond to a
perfect Breit-Wigner. Actually, it is known that the "
deviates from a pure Breit-Wigner and for a precision
parametrization two terms, B0 and B1, have to be kept in
(2.3). Note that the parametrization holds not only on the
physical region 4M2

� � s � s0, but on the unphysical re-
gion 0 � s � 4M2

� and also over the whole region of the
complex s plane with s � 0. The parametrization given
now is the one that has less biases, in the sense that no
model has been used: we have imposed only the highly safe
requirements of analyticity and unitarity, which follow
from causality and conservation of probability.

The best values for our parameters are actually obtained
not from fits to �� scattering data, but from fits to the pion
form factor [9]. This is obtained from e� scattering, from
e
e� ! �
�� and from $! %�� decay, where we have
a large number of precise data, and pions are on their mass
shells. Including systematic experimental errors in the fits,
and including in the fit also the constraint a1 � �38� 3� �
10�3M�3

� for the scattering length, we have
-4



PION-PION SCATTERING AMPLITUDE PHYSICAL REVIEW D 71, 074016 (2005)
from �
��: B0 � 1:074� 0:006; B1 � 0:13� 0:04; M" � 774:0� 0:4 MeV

from �
�0: B0 � 1:064� 0:006; B1 � 0:13� 0:04; M" � 773:1� 0:6 MeV:
(2.5a)

The fit is excellent; one has &2=d:o:f: � 245=�244� 13�, and the slight excess over unity is due to the well-known
incompatibility of OPAL and other data for $ decay at low invariant mass.

The corresponding values for the rho width, and P wave scattering length and effective range parameter, are

a1 � �37:8� 0:8� � 10�3M�3
� ; b1 � �4:74� 0:09� � 10�3M�5

� ; �"0 � 146:0� 0:8; from �
��

a1 � �37:8� 0:8� � 10�3M�3
� ; b1 � �4:78� 0:09� � 10�3M�5

� ; �"
 � 147:7� 0:7; from �
�0:
(2.5b)
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FIG. 3 (color online). Continuous line: The I � 2, S-wave
phase shifts, and error bands, corresponding to (2.7), (2.8a),
(2.8b), and (2.9), denoted by PY. Dotted line: the fit from
Ref. [6]. The experimental points are from Losty et al. (black
squares), Hoogland et al. [12] solution A (black dots), and Cohen
et al. [4] (black triangles). We have also included data from
Durusoy et al. and from solution B of Hoogland et al., although
they were not used in the fits. The dashed line, which lies below
our fit, is the S2 phase of Colangelo, Gasser, and Leutwyler [2]
with error band attached.
Although the values of the experimental �� phase shifts
were not included in the fit, the phase shifts that (2.5a)
implies are in very good agreement with them, as shown in
Fig. 2.

If neglecting violations of isospin invariance, one would
expect numbers equal to the average of both sets of pa-
rameters in (2.5a). If we also increase the error, so as to
take into account that due to isospin breaking, by adding
linearly half the difference between both determinations
(2.5a), we find

B0 � 1:069� 0:011; B1 � 0:13� 0:05;

M" � 773:6� 0:9; a1 � �37:6� 1:1� � 10�3M�3
� ;

b1 � �4:73� 0:26� � 10�3M�5
� ; (2.6)

the corresponding parametrization we take to be valid up to
s1=2 � 1 GeV.

2. The P wave for 1 GeV� s1=2� 1:42 GeV

In the range 1 GeV � s1=2 � 1:42 GeV one is suffi-
ciently far away from thresholds to neglect their influence
(the coupling to �KK is negligible). A purely empirical
parametrization that agrees with the data in Protopopescu
et al. [10] and Hyams et al. [11(a)] up to 1.42 GeV, within
errors, is obtained with a linear fit to the phase and in-
elasticity:

�1�s� � �0 
 �1�
�������
s=ŝ

p
� 1�; �1�s� � 1� '�

�������
s=ŝ

p
� 1�;

' � 0:30� 0:15; �0 � 2:69� 0:01; �1 � 1:1� 0:2:

(2.7)

Here ŝ � 1 GeV2. The value of �0 ensures the agreement
of the phase with the value given in the previous subsection
at s � ŝ � 1 GeV2. This fit is good (Fig. 2).

It should be remarked, however, that there are other
solutions for the P wave above 1:15 GeV. In the first
analysis of Hyams et al. [11(a)], that we have followed
here, a resonance occurs with a mass 
1:6 GeV, and its
effect is only felt above 
1:4 GeV; but in the second
analysis by the same group, Hyams et al. [11(b)] a broad,
highly inelastic resonance (actually, more a spike than a
resonance) with a mass 
1:35 GeV appears, or does not
074016
appear, depending on the solution chosen. Finally, the
Particle Data Group (based mostly on evidence from
e
e� annihilation and $ decay) report a resonance at
1:45 GeV: one has to admit that the situation for the P
wave above 1:15 GeV is not clear. We will return to this
later.

B. The S waves

1. Parametrization of the S wave for I� 2

We consider three sets of experimental data. The first
corresponds to solution A in the paper by Hoogland et al.
[12], who use the reaction �
p! �
�
n. We will not
consider the so-called solution B in this paper; while it
produces results similar to the other, its errors are clearly
underestimated. The second set corresponds to the work of
Losty et al., [12] who analyze instead ��p! �����.
-5
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The third set are the data of Cohen et al. [4], who consider
��n! ����p. These three sets represent a substantial
improvement over other determinations; since they pro-
duce two like charge pions, only isospin 2 contributes, and
one gets rid of the large S0 wave contamination. However,
they still present the problem that one does not have
scattering of real pions.

For isospin 2, there is no low energy resonance, but
f�2�0 �s� presents the feature that a zero is expected (and,
indeed, confirmed by the fits) in the region 0< s < 4M2

�.
This zero of f�2�0 �s� is related to the so-called Adler zeros
and, to lowest order in chiral perturbation theory, occurs at
s � 2z22 with z2 � M�. We note that, unlike the corre-
sponding zero for the S0 wave, 2z22 is inside the region
where the conformal expansion is expected to converge.

In Ref. [6], we neglected inelasticity below 1:45, and
fitted all experimental data, for s1=2 � 1380 MeV. A more
precise determination (and, above all, with more realistic
error estimates) is obtained if we realize that inelasticity is
detected experimentally above the 2�" threshold, ŝ1=2 �
1:05 GeV, so we should fit separately the low and high
energy regions (Fig. 3).

In the low energy region, we fix z2 � M� and fit only the
low energy data, s1=2 < 1:0 GeV; later, in Sec. IV, we will
allow z2 to vary. We write

cot��2�0 �s� �
s1=2

2k
M2
�

s� 2z22

�
B0 
 B1

���
s

p
�

�����������
ŝ� s

p

���
s

p



�����������
ŝ� s

p

�
;

z2 � M�; ŝ1=2 � 1:05 GeV: (2.8a)
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Then we get &2=d:o:f: � 13:0=�25� 2� and
B0 � �80:4� 2:8; B1 � �73:6� 12:6;

a�2�0 � ��0:052� 0:012�M�1
� ;

b�2�0 � ��0:085� 0:011�M�3
� :

(2.8b)
For the high energy region we neglect the inelasticity
below 1:45 GeV , and then add inelasticity by hand. We
consider two extreme possibilities: fitting the whole range,
or fitting only high energy data (s1=2 � 0:91 GeV), requir-
ing agreement of the central value with the low energy
determination at s1=2 � 1 GeV. We accept as the best
result an average of the two, and thus have
cot��2�0 �s� �
s1=2

2k
M2
�

s� 2M2
�

�
B0 
 B1

���
s

p
�

�������������
s0 � s

p

���
s

p



�������������
s0 � s

p

�
;

s1=20 � 1:45 GeV; B0 � �123� 6; B1 � �118� 14;

(2.9)
and we have enlarged the errors to cover both extreme
cases. We will not consider varying the position of the
Adler zero for this high energy piece.

The inelasticity may be described by the empirical fit
��2�
0 �s� �

�
1� '�1� ŝ=s�3=2; ' � 0:18� 0:12; s > ŝ � �1:05 GeV�2;
1; s < ŝ � �1:05 GeV�2:

(2.10)
These formulas are expected to hold from s1=2 � 1:0 GeV
up to 1:42 GeV. As shown in Fig. 3, both determinations,
(2.8a), (2.8b), and (2.9) and that in Ref. [6] are almost
overlapping (their error bands actually overlap).

2. Parametrization of the S wave for I� 0 below
0:95 GeV (global fit)

The S wave with isospin zero is difficult to deal with.
Here we have a very broad enhancement, variously de-
noted as '; �; f0, around s1=2 � +0 
 800 MeV. We will
not discuss here whether this enhancement is a bona fide
resonance; we merely remark that in all experimental
phase shift analyses ��0�0 �s� crosses 90� somewhere be-
tween 600 and 900 MeV; we define +0 as the energy at
which the phase equals 90�. Moreover, we expect a zero of
f�0�0 �s� (Adler zero), hence a pole of the effective range
function ��0�

0 �s�, for s � 1
2 z

2
0 with 1

2 z
2
0 in the region

0< s < 4M2
�. Chiral perturbation theory suggests that

z0 ’ M�.
We can distinguish two energy regions: below s1=20 �

2mK we are under the �KK threshold. Between s1=20 and
s1=2 
 1:2 there is a non-negligible coupling between the
�KK and �� channels and the analysis becomes very

unstable, because there is little information on the process
��! �KK and even less on �KK ! �KK. We will present
later an empirical fit in the region of energies around and
above 1 GeV, and we will now concentrate in the low
energy region.

For the theoretical formulas we impose the Adler zero at
s � 1

2M
2
� (no attempt is made to vary this for the moment;

see Sec. IV), and a zero of cot��0�0 �s� at s � +2
0, +0 a free

parameter. Then we map the s plane, cut along the left hand
cut (s � 0) and the �KK cut, writing

cot��0�
0 �s� �

s1=2

2k
M2
�

s� 1
2 z

2
0

+2
0 � s

+2
0

fB0 
 B1w�s� 
 � � �g;

and
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FIG. 4 (color online). The I � 0, S-wave phase shifts and error
bands corresponding to Eq. (2.14a) and (2.14b) (PY, continuous
line). Also shown (black dots) are the points from Kl4 and K2�
decays, and only the high energy data included in the fits, as
given in Eqs. (2.13a)–(2.13c). The dashed line is the solution of
Colangelo et al. [2] .
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w�s� �

���
s

p
�

�������������
s0 � s

p

���
s

p



�������������
s0 � s

p ; s0 � 4m2
K

(we have taken mK � 0:496 GeV).
This parametrization does not represent fully the cou-

pling of the �KK channel and we will thus only take it to be
valid up to s1=2 � 0:95 GeV.

On the experimental side the situation is still a bit
confused, although it has cleared up substantially in recent
years thanks to the experimental information on Kl4 and
K2� decays. The information we have on this S0 wave is of
three kinds: from phase shift analysis in collisions
[10,11(a)] �p! ��N;�; from the decay [13] Kl4; and
from K2� decays. The last gives the value of the combina-
tion ��0�

0 � ��2�0 at s1=2 � mK; the decay Kl4 gives ��0�
0 � �1

at low energies, s1=2 & 380 MeV. If using recent K2�
information [14] combined with older determinations,
and with the I � 2 phase obtained in the previous subsec-
tion, one finds the phase

��0�0 �m2
K� � 43:3� 3�: (2.11)

We will here include in the fit the low energy data from
Kl4 decay1 shown in Fig. 4, and we impose the value of
��0�
0 �m2

K� fromK2� given in (2.11). The main virtue of these
K decay data is that they refer to pions on their mass shell;
but, unfortunately, this leaves too much room at the upper
energy range, s1=2 * 0:6 GeV. If we fit only K decay data
we can only use one-parameter B0 in the conformal ex-
pansion: if including another parameter, spurious minima
would appear. We get a good fit, albeit with rather large
errors:

cot��0�0 �s� �
s1=2

2k
M2
�

s� 1
2 z

2
0

+2
0 � s

+2
0

B0; z0 � M�;

B0 � 18:5� 1:7; +0 � 766� 95 MeV;

&2

d:o:f:
�

5:7
12� 2

: a�0�0 � �0:22� 0:02� �M�1
� ;

��0�0 �mK� � 43� 5�:

(2.12)

To improve on this we have to add further data (and one
more parameter B1). To do so, we can follow two different
procedures. We can add to the Ke4, K2� data various sets of
experimental phase shifts, fitting each set individually; this
we will do in Sec. III. Or we can follow what we consider
to be the best procedure: we combine in the fit data from
1As a technical point, we mention that we have increased by
50% the error in the point at highest energy, s1=2 � 381:4 MeV,
from the Ke4 compilation of Pislak et al., because this experi-
mental value represents an average over a long energy range that
extends to the edge of phase space.
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various experiments at energies above 0.8 GeV, which we
will call a global fit. The reason to choose only data above
0.8 GeV is that, in the region between 0:81 GeV and
0:97 GeV, the more relevant experimental results have
overlapping error bars, something that does not happen at
other energies (see Fig. 5). By combining several sets we
may expect to average out systematic errors, at least to
some extent.

At high energy we thus include the following sets of
data: first of all, the values

��0�0 �0:8702 GeV2� � 91� 9�;

��0�0 �0:9102 GeV2� � 99� 6�;

��0�0 �0:9352 GeV2� � 109� 8�;

��0�0 �0:9652 GeV2� � 134� 14�:

(2.13a)

These points are taken from solution 1 of Protopopescu et
al. [10] (both with and without modified moments), with
the error increased by the difference between this and
solution 3 data in the same reference. We will also include
in the fit the data, at similar energies, of Grayer et al.
[11(a)]

��0�0 �0:9122 GeV2� � 103� 8�;

��0�0 �0:9292 GeV�� � 112:5� 13�;

��0�0 �0:9522 GeV2� � 126� 16�;

��0�0 �0:9702 GeV2� � 141� 18�:

(2.13b)

The central values are obtained averaging the solutions
-7



FIG. 5 (color online). The I � 0, S-wave phase shifts and error band in the whole energy range as given by our fits (PY),
Eqs. (2.14a), (2.14b), (2.15a), (2.15b), and (2.15b0). The experimental points from Kl4 and K2� decays are not shown.
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given by Grayer et al., except2 solution E, and the error is
calculated adding quadratically the statistical error of the
highest point, the statistical error of the lowest point (for
each energy) and the difference between the central value
and the farthest point.

Finally, we add three points between 0.8 and 0.9 GeV
obtained averaging the s-channel solution of Estabrooks
and Martin and solution 1 of Protopopescu et al., which
represent two extremes. The error is obtained adding the
difference between these two in quadrature to the largest
statistical error. In this way we obtain the numbers,

��0�0 �0:8102 GeV2� � 88� 6�;

��0�0 �0:8302 GeV2� � 92� 7�;

��0�0 �0:8502 GeV2� � 94� 6�:

(2.13c)

In spite of the generous errors taken, it should be noted
that these data could still contain systematic errors, beyond
those taken into account in (2.13a)–(2.13c), which may
contaminate the results of the fit at the higher energies. In
Sec. IV we will use dispersion relations to improve the
parametrization of this S0 wave.
2Solution E is incompatible with all other data sets in the
region above 
0:8 GeV; we will discuss this in more detail
below.
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We now have enough constraints to include two parame-
ters Bi in the expansion of cot��0�

0 . We find

cot��0�
0 �s� �

s1=2

2k
M2
�

s� 1
2 z

2
0

+2
0 � s

+2
0

�
B0 
B1

���
s

p
�

�������������
s0 � s

p

���
s

p



�������������
s0 � s

p

�
;

z0 �M�; B0 � 21:04; B1 � 6:62;

+0 � 782� 24 MeV; &2=d:o:f:� 15:7=�19� 3�:

a�0�0 � �0:230� 0:010�M�1
� ;

b�0�0 � �0:268� 0:011�M�3
� ;

��0�0 �mK� � 41:0� � 2:1�; (2.14a)

this fit (shown in Fig. 4) we take to be valid for s1=2 �
0:95 GeV. The errors of the Bi are strongly correlated;
uncorrelated errors are obtained if replacing the Bi by the
parameters x; y with

B0 � y� x; B1 � 6:62� 2:59x;

y � 21:04� 0:70; x � 0� 2:6:
(2.14b)

3. Parametrization of the S wave for I� 0 below
0:95 GeV (individual fits)

In this subsection we summarize, in Table I, the results
of fits to data from Kl4 and K2� decays including also,
individually, data from various sets of phase shift analyses.
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TABLE I. PY, Eqs. (2.14a) and (2.14b): our global fit, Sec. II B 2. The rest are fits to either K decay data alone, or combining these
with various �� scattering data sets. Grayer A, B, C, E: the solutions in the paper of Grayer et al. [11(a)] (solution D only concerns
data above 1 GeV). EM: the solutions of Estabrooks and Martin [11(a)]. Kaminski: the papers of Kamiński et al. [11(c)] Protopopescu
VI, XII, and VIII: the corresponding solutions in Ref. [10]. Solutions A, B and C of Grayer et al., as well as both solutions EM and
Kamiński et al. are from energy-independent analyses. The rest are from energy-dependent evaluations. �a� We do not give errors here
as they are strongly correlated; cf. Eq. (2.14b).

B0 B1 +0 (MeV) M� � a�0�0

PY, Eqs. (2.14a) and (2.14b) 21:04a 6.62a 782� 24 0:230� 0:010
K decay only 18:5� 1:7 � 0 766� 95 0:218� 0:021
K decay data 
Grayer, B 22:7� 1:6 12:3� 3:7 858� 15 0:246� 0:042
K decay data 
Grayer, C 16:8� 0:85 �0:34� 2:34 787� 9 0:236� 0:023
K decay data 
Grayer, E 21:5� 3:6 12:5� 7:6 1084� 110 0:26� 0:05
K decay data 
Kaminski 27:5� 3:0 21:5� 7:4 789� 18 0:25� 0:10
K decay data 
Grayer, A 28:1� 1:1 26:4� 2:8 866� 6 0:29� 0:04
K decay data 
EM, s channel 29:8� 1:3 25:1� 3:3 811� 7 0:27� 0:05
K decay data 
EM, t channel 29:3� 1:4 26:9� 3:4 829� 6 0:27� 0:05
K decay data 
 Protopopsecu VI 27:0� 1:7 22:0� 4:1 855� 10 0:26� 0:05
K decay data 
 Protopopsecu XII 25:5� 1:7 18:5� 4:1 866� 14 0:25� 0:05
K decay data 
 Protopopsecu VIII 27:1� 2:3 23:8� 5:0 913� 18 0:27� 0:07

aWe do not give errors here as they are strongly correlated; cf. Eq. (2.14b).

PION-PION SCATTERING AMPLITUDE PHYSICAL REVIEW D 71, 074016 (2005)
The method of fit is like that used in the previous sub-
section; in particular, we have fixed the Adler zero at z0 �
M� in all these fits.

A few comments are in order. First of all, we note that
the solution E of Grayer et al., as well as what one finds
with only K decay data, have very large errors. Moreover,
solution E of Grayer et al. only contains eight points which
clearly lie below all other experimental data; see Fig. 5.
Second, it is seen that the values of the parameters in the
first five fits (which, as will be shown in Sec. IV, are the
more reliable ones) cluster around our solution, labeled PY,
Eqs. (2.14a) and (2.14b) in Table I. This is as should be
expected, since our global solution sums up information
from various experimental sets. Third, unlike our global
solution, which includes systematic errors, the errors given
in Table I for the other fits are only the statistical ones.
Finally, we remark that all fits other than the first six have
parameters that differ a lot from those obtained fitting only
K decay data. Since this last fit is already very good, this
makes the lower six fits in Table I suspect. Indeed, and as
we will see, they lead to scattering amplitudes that do not
satisfy well dispersion relations.

4. The I� 0 S wave between 950 MeV and 1420 MeV

The description of pion-pion scattering above the �KK
threshold would imply a full two-channel formalism. To
determine the three independent components of the effec-
tive range matrix �, �11, �22, and �12, one requires
measurement of three cross sections. Failing this, one
gets an indeterminate set, which is reflected very clearly
in the wide variations of the effective range matrix parame-
ters in the energy-dependent fits of Protopopescu et al. [10]
and Hyams et al. [11(a)].
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The raw data themselves are also incompatible;
Protopopescu et al. find a phase shift that flattens above
s1=2 ’ 1:04 GeV, while that of Hyams et al. or Grayer et al.
continues to grow. This incompatibility is less marked if
we choose the solution with modified higher moments by
Protopopescu et al. (Table XIII there). The inelasticities
are compatible among the various determinations from ��
scattering, including that of Hyams et al., [11(b)] and
Kamiński et al., [11(c)] although the errors of
Protopopescu et al. appear to be much underestimated.
They are, however, systematically, well above what one
finds [11(d)] from ��! �KK scattering: see Fig. 6.

We will here give a purely empirical fit, using the ��
data. We write

cot��0�
0 �s� � c0

�s�M2
s ��M

2
f � s�

M2
fs

1=2

jk2j

k22
;

k2 �

������������������
s� 4m2

K

q
2

;

��0�
0 � 1�

	
'1

k2
s1=2


 '2
k22
s



M02 � s

s
;

M0 � 1:5 GeV �fixed�:

(2.15a)

The fit to the inelasticity gives

'1 � 6:4� 0:5; '2 � �16:8� 1:6;

&2=�d:o:f:� � 0:7:
(2.15b)

This result is driven by the data of Protopopescu et al.,
whose accuracy is, unfortunately, much overestimated: see
Fig. 6.
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FIG. 6 (color online). Fit to the I � 0, S-wave inelasticity and
phase shift between 950 and 1400 MeV. Data from Refs. [10,11].
The difference between the determinations of ��0�

0 from ��!

�� (PY from data) and from ��! �KK (PY alternative) is
apparent here.
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If, instead of fitting ��0�
0 to the �� data of Protopopescu

et al. and Hyams et al. we had fitted the data [11(d)] from
��! �KK scattering (shown in Fig. 6), we would have
found values for the 'i much smaller than what was given
in (2.15b):

'1 � 2:4� 0:2; '2 � �5:5� 0:8; &2=�d:o:f:� � 1:3:

(2.15b0)

We have checked that the influence of using (2.15b) or
(2.15b0) on the dispersion relations and other evaluations of
integrals, to be considered later, is minute, for energies
below 0:95 GeV. This is because the inelasticity affects
little the imaginary part of the partial wave (on the aver-
age). Above 1 GeV, if we took the 'i following from
��! K �K, Eq. (2.15b0), the dispersion relations would
be slightly better fulfilled; see Sec. IVA, at the end. In
spite of this, we stick to (2.15b). Taking ��0�

0 from one set of
experiments and ��0�0 from another (incompatible with the
first) would be an inconsistent procedure.

To fit ��0�0 we also require it to agree with the low energy
determination we found in Sec. II B 2 at s1=2 � 0:95 GeV.
If we include the data of Protopopescu et al. in the fit we
find a poor fit with &2=d:o:f: � 39=�14� 2� and the pa-
rameters

c0 � 1:72� 0:08; Ms � 920 MeV;

Mf � 1340 MeV:

The error in c0, corresponding to 3�, is purely nominal. If
we keep Ms fixed and remove the data of Protopopescu
et al., we get a good &2=d:o:f:, and now
074016
c0 � 0:79� 0:25; Mf � 1270 MeV:

If we want to be compatible with the data of Hyams et al.,
we must increase the errors. We then take the numbers

c0 � 1:3� 0:5; Mf � 1320� 50 MeV;

Ms � 920 MeV �fixed�:
(2.16)

The fit is shown in Fig. 6.
We emphasize again that these are purely empirical fits

and, moreover, they are fits to data which certainly have
uncertainties well beyond their nominal errors, as given in
given in (2.15b) and (2.16); something that is obvious for
��0�

0 from Fig. 6. It follows that relations such as dispersion
relations in which the S0 wave plays an important role will
be unreliable for energies near and, especially, above �KK
threshold (below these energies, however, both (2.15b) and
(2.15b0) give very similar results). In fact, we will check
that mismatches occur when s1=2 > 0:95 GeV. A sound
description of the S0 wave for s1=2 > 0:95 GeV in ��
scattering would require more refined parametrizations
and, above all, use of more information than just ��
experimental data, and lies beyond the scope of the present
paper.

C. The D waves

The D waves cannot be described with the same accu-
racy as the S, P waves. The data are scanty, and have huge
errors. That one can get reasonable fits at all is due to the
fact that one can use low energy information from sum
rules; specifically, we will impose in the fits the values of
the scattering lengths that follow from the Froissart-Gribov
representation. Note that this is not circular reasoning, and
it only introduces a small correlation: the Froissart-Gribov
representation for the D0, D2, F waves depends mostly on
the S0, S2 and P waves, and very little on the D0, D2, F
waves themselves.

1. Parametrization of the I� 2 D wave

For isospin equal 2 we would only expect important
inelasticity when the channel ��! "" opens up, so we
will take the value s0 � 1:452 GeV2 
 4M2

" for the energy
at which elasticity is not negligible.

But life is complicated: a pole term is necessary to get an
acceptable fit down to low energy since we expect ��2�

2 to
change sign near threshold. The experimental measure-
ments (Losty et al.; Hoogland et al. [12]) give negative
and small values for the phase above some 500 MeV, while
chiral perturbation calculations and the Froissart-Gribov
representation indicate a positive scattering length [6]. If
we want a parametrization that applies down to threshold,
we must incorporate this zero of the phase shift. What is
more, the clear inflection seen in data around 1 GeV im-
plies that we will have to go to third order in the conformal
expansion. So we write
-10



004 006 008 0001 0021 0041
s

2/1
)VeM(  

7-

6-

5-

4-

3-

2-

1-

0

δ2
)2(

)s(

.la te ytsoL

.la te dnalgooH

.la te nehoC

atad morf YP

devorpmi YP

LGCA

)EPO( .la te yosuruD

)PD-EPO( la te yosuruD

FIG. 7 (color online). Fits to the I � 2, D-wave phase shift.
Continuous line (PY) with Eq. (2.18). Dashed line: PY, after
improving with dispersion relations (Sec. IV). Dotted line: the fit
used in Refs. [1,2] (ACGL, CGL). Also shown are the data points
of Losty et al., from solution A of Hoogland et al. [12], from
Cohen et al. [4], and Durusoy et al. [12], the last not included in
the fit.

3For these data we arbitrarily take a common error of 10%.
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cot��2�2 �s� �
s1=2

2k5
fB0 
 B1w�s� 
 B2w�s�2g

�
M�

4s

4�M�
2 
 �2� � s

(2.17a)

with � a free parameter fixing the zero and

w�s� �

���
s

p
�

�������������
s0 � s

p

���
s

p



�������������
s0 � s

p ; s1=20 � 1450 MeV:

Since the data we have on this wave are not accurate (cf.
Fig. 7) we have to include extra information. To be precise,
we include in the fit the value of the scattering length that
follows from the Froissart-Gribov representation,

a�2�2 � �2:78� 0:37� � 10�4M�5
� ;

but not that of the effective range parameter,

b�2�2 � ��3:89� 0:28� � 10�4M�7
�

(see below, Sec. VI).
We get a mediocre fit, &2=d:o:f: � 71=�25� 3�, and the

values of the parameters are

B0 � �2:4� 0:3� � 103; B1 � �7:8� 0:8� � 103;

B2 � �23:7� 3:8� � 103; � � 196� 20 MeV:

(2.17b)

We have rescaled the errors by the square root of the
&2=d:o:f:

The fit, which may be found in Fig. 7, returns reasonable
numbers for the scattering length and for the effective
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range parameter, b�2�2 :

a�2�2 � �2:5� 0:9� � 10�4M�5
� ;

b�2�2 � ��2:7� 0:8� � 10�4M�7
� :

(2.18)

Although the twist of ��2�2 �s� at s1=2 
 1:05 GeV is
probably connected to the opening of the 2�" channel,
we neglect the inelasticity of the D2 wave, since it is not
detected experimentally. This, together with the incompati-
bility of the various sets of experimental data and the poor
convergence of the conformal series, indicates that the
solution given by (2.17a) and (2.17b) is, very likely, some-
what displaced with respect to the ‘‘true’’ D2 wave at the
higher energy range (say for s1=2 * 0:7 GeV). In fact, the
values of the parameters will be improved in Sec. IV with
the help of dispersion relations; the D2 phase shift one
finds by so doing is slightly displaced with respect to that
following from (2.17a) and (2.17b), as shown in Fig. 7.

2. Parametrization of the I� 0 D wave

The D wave with isospin 0 in�� scattering presents two
resonances below 1:7 GeV: the f2�1270� and the f2�1525�,
that we will denote, respectively, by f2, f02. Experi-
mentally, �f2 � 185� 4 GeV and �f02 � 76� 10 GeV:
The first, f2, couples mostly to ��, with small couplings
to �KK (4:6� 0:5%), 4� (10� 3%), and ��. The second
couples mostly to �KK, with a small coupling to�� and 2�,
respectively, 10� 3% and 0:8� 0:2%. This means that the
channels �� and �KK are essentially decoupled and, to a
15% accuracy, we may neglect inelasticity up to s ’
1:452 GeV2.

There are not many experimental data on the D wave
which, at accessible energies, is small. So, the compilation
of ��0�2 phase shifts of Protopopescu et al. [10] gives
significant numbers for ��0�

2 only in the range 810 MeV �

s1=2 � 1150 MeV. In view of this, it is impossible to get
accurately the D-wave scattering lengths, or indeed any
other low energy parameter, from this information: so, we
will include information on a�0�2 to help stabilize the fits.

We take the data of Protopopescu et al. [10] and consider
the so-called ‘‘solution 1,’’ with the two possibilities given
in their Tables VI and XIII (with modified higher mo-
ments), in the range mentioned before, s1=2 � 0:810 GeV
to 1:150 GeV. The problem with these data points is that
they are certainly biased, as indeed they are quite incom-
patible with those of other experiments. We can stabilize
the fits by fitting also the points3 of Estabrooks and Martin,
[11(a)] and imposing the value of the width of the f2
resonance, with the condition �f2 � 185� 10 MeV, as
well as the value of the scattering length. We write
-11
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cot��0�2 �s� �
s1=2

2k5
�M2

f2
� s�M2

�fB0 
 B1w�s�g (2.19a)

and

w�s� �

���
s

p
�

�������������
s0 � s

p

���
s

p



�������������
s0 � s

p ; s1=20 � 1450 MeV;

Mf2 � 1275:4 MeV:

We find

B0 � 23:6� 0:7; B1 � 24:7� 1:0: (2.19b)

The fit is not good in that we get &2=d:o:f: � 300=�52�
2�. However, it improves substantially if we exclude the
data of Protopopescu et al., which are strongly biased (as is
clearly seen in Fig. 8); the central values, however, vary
very little. We have included in the errors in (2.19b) half
the difference between the two possibilities (with or with-
out the data of Protopopescu et al.)

The fit returns the values

a�0�2 � �18:0� 2:8� � 10�4M�5
� ;

b�0�2 � ��8:1� 3:1� � 10�4M�7
� ;

�f2 � 190� 8 MeV:

(2.20)

The value of b�0�2 agrees within 1:3� with the more precise
result obtained with the Froissart-Gribov representation
(see below), that gives

a�0�2 � �18:70� 0:41� � 10�4M�5
� ;

b�0�2 � ��4:16� 0:30� � 10�4M�7
� :

(2.21)
400 600 800 1000 1200 1400
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1/2
  (MeV)
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25
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δ2
(0)

(s)

PY

Protopopescu et al.

Estabrooks & Martin

FIG. 8. Fit to the I � 0, D-wave phase shift. Also shown are
the data points from solution 1 of Protopopescu et al. (open
circles) and data of Estabrooks and Martin (black dots). The
dotted lines mark the f2�1270� resonance, whose location and
width were included in the fit.
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This agreement is remarkable, taking into account that the
D-wave b2 calculations are less reliable since they are the
ones with a relatively large contribution of the derivative of
the I � 2 t-channel amplitude, which is very uncertain (see
Ref. [6]).

We then take into account the inelasticity by writing

��0�
2 �s� �

8><
>:
1; s< 4m2

K;

1� '
k2�s�
k2�M

2
f2
�
; '� 0:262� 0:030; s> 4m2

K;

(2.22)
k2 �
���������������������
s=4�m2

K

q
: We have fixed the coefficient ' fitting

the inelasticities of Protopopescu et al. [10], and the ex-
perimental inelasticity of the f2; the overall &2=d:o:f: of
this fit is 
1:8.

In principle, by including b�0�2 in our fit the nominal
uncertainties in the ‘‘fit to data’’ parameters could be
decreased. However, we have not done so, since, as ex-
plained before and in Ref. [6], the D-wave b2’s are less
reliable than the a2’s (used as input with very large errors)
and, therefore, the apparent improvement would be made
at the cost of reliability.

D. The F, G waves

The contribution of the F wave to our sum rules and
dispersion relations is very small, but it is interesting to
evaluate it (we have included its contribution to all rela-
tions) to check, precisely, the convergence of the partial
wave series. The contribution of the G0, G2 waves is
completely negligible, for the quantities we calculate in
our paper, but we describe fits to these for completeness.

1. The F wave

The experimental situation for the F wave is somewhat
confused. According to Protopopescu et al. [10], it starts
negative (but compatible with zero at the 2� level) and
becomes positive around s1=2 � 1 GeV. Hyams et al.
[11(a)] report a positive �3�s� when it differs from zero
(above s1=2 � 1 GeV). In both cases no inelasticity is
detected up to s1=2 
 1:4 GeV.

The corresponding scattering length may be calculated
with the help of the Froissart-Gribov representation and
one finds

a3 � �6:3� 0:4� � 10�5M�7
� :
It could in principle be possible that �3�s� changes sign
twice, once near threshold and once near s1=2 � 1 GeV.
However, we disregard this possibility and write, simply,
-12
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cot�3�s� �
s1=2M6

�

2k7
fB0 
 B1w�s�g;

w�s� �

���
s

p
�

�������������
s0 � s

p

���
s

p



�������������
s0 � s

p ;
(2.23a)

with s1=20 � 1:45 GeV, and impose the value of a3.
It is to be understood that this parametrization provides

only an empirical representation of the available data, and
that it may not be reliable except at very low energies,
where it is dominated by the scattering length, and for
s1=2 * 1 GeV. We fit data of Protopopescu et al. [10] for
energies above 1 GeV, and data of Hyams et al. [11(b)] We
have estimated the errors of this last set (not given in the
paper) as the distance from the average value to the ex-
treme values in the different solutions given. We find

&2

d:o:f:
’

7:7
14� 2

; B0 � �1:09� 0:03� � 105;

B1 � �1:41� 0:04� � 105: (2.23b)

The errors have been increased by including as an error the
variation that affects the central values when using only
one of the two sets of data. We do not include separately
the effects of the "3�1690�, since its tail is incorporated in
the fitted data.

2. The G waves

The experimental information on the G waves is very
scarce. For the wave G2, we have two nonzero values for
��2�
4 from Cohen et al. [4] and four significant ones from

Losty et al. [12]; they are somewhat incompatible. We then
fit the data separately, with a one-parameter formula; we
write

cot��2�
4 �s� �

s1=2M8
�

2k9
B:

If we fit the data of Losty et al. we find B � ��0:56�
0:09� � 106, while from Cohen et al. we get B �
��10:2� 3:0� � 106. Fitting both sets together we find
B � �9:1� 106, and a very poor &2=d:o:f: � 32=�6�
1�. Enlarging the resulting error to cover 6�, we obtain
our best result,

cot��2�4 �s� �
s1=2M8

�

2k9
B; B � ��9:1� 3:3� � 106:

(2.24)

This formula can only be considered as valid only for a
limited range, 0:8 � s1=2 � 1:5 GeV. In fact, from the
Froissart-Gribov representation it follows that the G2 scat-
tering length is positive. One has a�2�4 � �4:5� 0:2� �
10�6M�9

� ; while (2.24) would give a negative value.
For the G0 wave, the situation is similar. However, we

know of the existence of a very inelastic resonance with
mass around 2 GeV. An effective value for the imaginary
074016
part of the corresponding partial wave may be found in
Appendix A.
III. FORWARD DISPERSION RELATIONS

We expect that the scattering amplitudes that follow
from the phase shifts (and inelasticities) at low energy
(s1=2 � 1:42 GeV), and the Regge expressions at high
energy, will satisfy dispersion relations since they fit well
the experimental data and are therefore good approxima-
tions to the physical scattering amplitudes. In the present
section we will check that this is the case, at low energies
(s1=2 & 0:95 GeV), for three independent scattering ampli-
tudes (that form a complete set), which we will conven-
iently take the following t-symmetric or antisymmetric
combinations: �0�0 ! �0�0, �0�
 ! �0�
, and the
amplitude It � 1, corresponding to isospin unity in the t
channel. The reason for choosing these amplitudes is that
the amplitudes for �0�0 and �0�
 depend only on two
isospin states, and have positivity properties: their imagi-
nary parts are sums of positive terms. Because of this, the
errors are much reduced for them. This is easily verified if
we compare the errors in the dispersion relations for �0�0

and �0�
 with those for the amplitude with It � 1, which
depends on three isospin states and has no positivity prop-
erties (see below, in Fig. 15).

Here we will not cover the full energy range or try to
improve the parameters by requiring fulfillment of the
dispersion relations, something that we leave for Sec. IV.
We will start discussing the global fit in Sec. II B 2; the
results using the individual fits for S0, as in Sec. II B 3, will
be discussed later, in Sec. III C.

In our analysis one should take into account that, for the
amplitudes that contain the S0 wave, the uncertainties for it
above 0.95 GeV induce large errors in the dispersive in-
tegrals, and the agreement between dispersive integrals and
real parts of the scattering amplitudes evaluated directly
becomes affected. This is particularly true for the �0�0

amplitude, dominated by the S0 contribution, where the
mismatch becomes important above 
0:7 GeV. For the
�0�
 amplitude, however, since it is not affected by the S0
problem, the fulfillment of the dispersion relation is good,
within reasonably small errors, up to the very region where
Regge behavior takes over, s1=2 ’ 1:42 GeV.

This is a good place to comment on the importance of
the contribution of the Regge region (i.e., from energy
above 1.42 GeV) to the various dispersive integrals. Of
course, this depends on each dispersion relation. As an
indication, we mention that for the unsubtracted dispersion
relation (3.7) at threshold, the contribution of the Regge
region (s � 1:42 GeV) is 9%. This may go up to 23%
around 800 MeV. For the subtracted dispersion relation
(3.1a) the Regge contribution is of 10% at s1=2 � 0:5 GeV
and 20% at s1=2 � 0:8 GeV. It should, however, be noted
that, since the estimated uncertainties in the Regge expres-
-13
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sions [5] is & 15%, the influence of the uncertainties in our
Regge formulas is below the 4% level up to 
0:8 GeV.

A final general comment is that here, as well as for the
sum rules that we will discuss in Sec. V and the Froissart-
Gribov calculations (Sec. VI), we only include the contri-
butions of waves up to and including the F wave. We have
checked, in a few typical cases, that the contributions of the
G0, G2 waves are completely negligible.
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A. Even amplitude dispersion relations (with the
global fit)

1. �0�0 scattering

We consider here the forward dispersion relation for
�0�0 scattering, subtracted at threshold, 4M2

�. We write,
with F00�s� the forward �0�0 amplitude,
ReF00�s� � F00�4M
2
�� �

s�s� 4M2
��

�
P:P:

Z 1

4M2
�

ds0
�2s0 � 4M2

�� ImF00�s0�

s0�s0 � s��s0 � 4M2
���s0 
 s� 4M2

��
: (3.1a)

In particular, for s � 2M2
�, which will be important when we later discuss the Adler zeros (Sec. IV), we have

F00�4M
2
�� � F00�2M

2
�� 
D00; D00 �

8M4
�

�

Z 1

4M2
�

ds
ImF00�s�

s�s� 2M2
���s� 4M2

��
: (3.1b)

We first check the sum rule (3.1b). We take for F00�4M2
��; F00�2M2

�� the values that follow from our fits to experimental
data of Sec. II, which provide a representation of partial waves valid below threshold (provided s > 0), and evaluate the
dispersive integral with the parametrizations we obtained also in Sec. II. We find fulfillment to less than 1�:

D00 � �43� 3� � 10�3 (3.2a)

and

F00�4M
2
�; 0� � F00�2M

2
�; 0� � �33� 22� � 10�3: (3.2b)

For the difference (which should vanish if the dispersion relation was exactly fulfilled, and which takes into account
correlations) we get

F00�4M
2
�; 0� � F00�2M

2
�; 0� �D00 � ��10� 23� � 10�3: (3.2c)

We can also verify the dispersion relation (3.1a). The result is shown in Fig. 9, where a certain mismatch is observed in
some regions. As we will see below, the matching is better for the other dispersion relations because of the smaller weight
of the S0 wave there.

2. �0�� scattering

We have, with F0
�s� the forward �0�
 amplitude,

ReF0
�s� � F0
�4M2
�� �

s�s� 4M2
��

�
P:P:

Z 1

4M2
�

ds0
�2s0 � 4M2

�� ImF0
�s
0�

s0�s0 � s��s0 � 4M2
���s0 
 s� 4M2

��
: (3.3a)

In particular, at the point s � 2M2
�, this becomes

F0
�4M2
�� � F0
�2M2

�� 
D0
; D0
 �
8M4

�

�

Z 1

8M2
�

ds
ImF0
�s�

s�s� 2M2
���s� 4M2

��
: (3.3b)
The calculation is now more precise because D0
 is
dominated by the P wave, very well known. We find, for
the dispersive evaluation,

D0
 � �12� 1� � 10�3: (3.4a)
On the other hand, using directly the explicit parametriza-
tions for the partial wave amplitudes we found in Sec. II
one has

F0
�4M2
�; 0� � F0
�2M2

�; 0� � �6� 16� � 10�3: (3.4b)
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For the difference,

F0
�4M
2
�; 0� � F0
�2M

2
�; 0� �D0
 � ��6� 17� � 10�3

(3.4c)

i.e., perfect agreement.
This is a good place to remark that the agreement of the

values of F0
�2M2
�; 0� and F00�2M2

�; 0� obtained with our
parametrizations, and those found evaluating dispersion
relations [Eqs. (3.2c) and (3.4c)] provides a nontrivial test
of the validity of our parametrizations even in regions
below threshold, well beyond the region were we fitted
data.

The fulfillment of the dispersion relation (3.3a) is shown
in Fig. 10 for s1=2 below 1:4 GeV. The agreement is now
good in the whole range; the average &2=d:o:f: for s1=2 &
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FIG. 10 (color online). The combination ReF0
�s� �
F0
�4M2

�� (continuous line) and the dispersive integral (broken
line).
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0:925 GeV is of 1.7. The fact that the fulfillment of the
dispersion relation reaches the energy where the Regge
formulas start being valid, s1=2 
 1:4 GeV, is yet another
test of the consistency of the Regge analysis with the low
energy data.

To test the dependence of our results on the point at
which we effect the junction between the phase shift
analyses and the Regge formulation, we have repeated
the calculation of the forward �0�
 dispersion relation
performing this junction at 1.32 GeV, instead of doing so at
1.42 GeV. The fulfillment of the dispersion relation im-
proves slightly (below the percent level) at low energy,
s1=2 < 0:75 GeV; while it deteriorates a bit more for s1=2 �
0:75 GeV. The net results are practically unchanged, with
the choice s1=2 � 1:42 GeV for the junction slightly fa-
vored. We will use this number (1:42 GeV) henceforth.

B. The odd amplitude F�It�1�: dispersion relation and
Olsson sum rule (global fit)

We consider first a forward dispersion relation for the
amplitude F�It�1� with isospin 1 in the t channel, evaluated
at threshold. This is known at times as the (first) Olsson
sum rule. Expressing F�It�1��4M2

�; 0� in terms of the scat-
tering lengths, this reads

2a�0�0 � 5a�2�0 � DOl;

DOl � 3M�

Z 1

4M2
�

ds
ImF�It�1��s; 0�

s�s� 4M2
��

:

(3.5)

In terms of isospin in the s channel,

F�It�1��s; t� �
1

3
F�Is�0��s; t� 


1

2
F�Is�1��s; t�
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6
F�Is�2��s; t�:
004 006 008 0001 0021 0041
s

2/1 
)VeM(  

1-

0

1

2

3

atad morf tcerid YP
atad morf evisrepsid YP

I
t

1=

FIG. 11 (color online). The amplitude ReFIt�1�s; 0� (continu-
ous line) and the dispersive integral (broken line).
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TABLE II. PY, Eqs. (2.14a) and (2.14b): our global fit of Sec. II B 2. The next rows show the fits to K decay [13] alone or combined
with �� scattering data. Grayer A, B, C, E: the solutions in the paper of Grayer et al. [11(a)] EM: the solutions of Estabrooks and
Martin [11(a)]. Kaminski refers to the papers of Kamiński et al. [11(c)] Protopopescu VI, XII, and VIII: the corresponding solutions in
Ref. [10].

B0 B1 +0 (MeV) &2

d:o:f: �It � 1� &2

d:o:f: ��
0�0�

PY, Eqs. (2.14a) and (2.14b) 21:04a 6.62a 782� 24 0.3 3.5
K decay only 18:5� 1:7 � 0 766� 95 0.2 1.8
K decay data 
Grayer, B 22:7� 1:6 12:3� 3:7 858� 15 1.0 2.7
K decay data 
Grayer, C 16:8� 0:85 �0:34� 2:34 787� 9 0.4 1.0
K decay data 
Grayer, E 21:5� 3:6 12:5� 7:6 1084� 110 2.1 0.5
K decay data 
Kaminski 27:5� 3:0 21:5� 7:4 789� 18 0.3 5.0

K decay data 
Grayer, A 28:1� 1:1 26:4� 2:8 866� 6 2.0 7.9
K decay data 
EM, s channel 29:8� 1:3 25:1� 3:3 811� 7 1.0 9.1
K decay data 
EM, t channel 29:3� 1:4 26:9� 3:4 829� 6 1.2 10.1
K decay data 
 Protopopsecu, VI 27:0� 1:7 22:0� 4:1 855� 10 1.2 5.8
K decay data 
 Protopopsecu, XII 25:5� 1:7 18:5� 4:1 866� 14 1.2 6.3
K decay data 
 Protopopsecu, VIII 27:1� 2:3 23:8� 5:0 913� 18 1.8 4.2

aErrors as in Eq. (2.14b).

4That is to say, the sum of the &2 of each point, spaced at
intervals of 25 MeV, divided by the number of points minus the
number of free parameters.
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Substituting in the right hand side above the scattering
amplitudes we have just determined up to 1:42 GeV, and
the Regge expression for rho exchange of Appendix B at
higher energies, we find,

DOl � 0:647� 0:021: (3.6a)

(Here, and in all the numbers for scattering lengths and
effective ranges, we will take the pion mass M� as unity).
This is to be compared with what we find from the values
of the a�I�0 we found in the fits of Sec. II,

2a�0�0 � 5a�2�0 � 0:719� 0:072: (3.6b)

For the difference,

2a�0�0 � 5a�2�0 �DOl � 0:073� 0:077; (3.6c)

thus vanishing within errors.
One can also evaluate the corresponding dispersion

relation,

ReF�It�1��s; 0� �
2s� 4M2

�

�
P:P:

�
Z 1

4M2
�

ds0
ImF�It�1��s0; 0�

�s0 � s��s0 
 s� 4M2
��
;

(3.7)

calculating ReF�It�1��s; 0� at all values of s, either directly
using the fits of Sec. II, or from the dispersive integral. The
agreement, as shown in Fig. 11, is very good below 1 GeV
and reasonably good above this.

C. Dispersion relations using the individual fits to S0
wave data

In this subsection we present the results of checking the
forward dispersion relations using the individual fits for the
S0 wave that we performed in Sec. II B 3. The methods are
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identical to those used for the solution with the global fit
for this wave in the previous subsections, so we will skip
details and give only the results, summarized in Table II.
Here we give the average4 &2=d:o:f: for the dispersion
relations for the amplitudes that contain the S0 wave: It �
1 and �0�0. The values of the parameters Bi, +0 are, of
course, as in Table I, but we repeat them here for ease of
reference.

We have separated in Table II the fits which produce a
total &2=d:o:f: of less than 6, from those that give a number
larger than or equal to 6 when running the corresponding
amplitudes through dispersion relations. We may consider
that the second set is disfavored by this test. Also, we may
repeat some of the comments made in Sec. II B 3 with
regard to solution E of Grayer et al., and the evaluation
usingK decay data alone: their errors are very large, due of
course to the small number of points they fit, so that their
fulfillment of dispersion relations is less meaningful than
what looks at first sight.

IV. IMPROVING THE PARAMETERS WITH THE
HELP OF DISPERSION RELATIONS

In this section we will show how one can improve the
results for the fits to the individual waves that we found in
Sec. II: the fact that the dispersion relations are fulfilled
with reasonable accuracy at low energy, and that at the
& 3� level they still hold to higher energies, suggests that
we may improve the values of the parameters we have
found with our fits to data requiring also better fulfillment
of such dispersion relations. This will provide us with a
parametrization of the various waves with central values
-16
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more compatible with analyticity and s� u crossing. This
method is an alternative to that of the Roy equations to
which it is, in principle, inferior in that we do not include
s� t crossing (although we check it a posteriori); but it is
clearly superior in that we do not need as input the values
of the scattering amplitude for jtj up to 30M2

�, where the
various Regge fits existing in the literature disagree
strongly one with another (see Appendix B) and also in
that, with dispersion relations, we can test all energies,
whereas the Roy equations are only valid for s1=2 <������
60

p
M� 
 1:1 GeV and, in practice, only applied up to

0:8 GeV.

A. Improved parameters for the global fit of Sec. II B 2

We will consider the displacement of the central values
of the parameters, requiring fulfillment, within errors, of all
three dispersion relations for

���
2

p
M� � s1=2 � 0:925 GeV

(note that we even go below threshold), starting with the
global solution in Eqs. (2.14a) and (2.14b). We do not fit
higher energies because we feel that the errors in the input
for some waves is too poorly known to give a reliable test
there. Specifically, the P wave in the region 1:15 GeV &

s1=2 & 1:5 GeV is not at all determined by experiment;
depending on the fit, a resonance appears, or does not
appear, in that region: its mass varies between 1:25 and
1:6 GeV . Something similar occurs for the S0 wave above
0.95 GeV. Thus, it may well be that the parametrizations
we use (which, for example, assume no P wave resonance
below 1.5 GeV) are biased. Finally, our treatment of the
inelasticity of the D0, D2 waves was, of necessity, incom-
plete. This could likely be the explanation of the slight
mismatch of dispersion relations above 1 GeV, when the
corresponding contributions begin to become important;
especially for the real parts of the scattering amplitudes.
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Because of this uncertainty with the P wave above
1.15 GeV, and the S0 wave above 0.95 GeV, which goes
beyond their nominal errors, and because they are of small
importance at low energy, we have not varied the parame-
ters that describe these waves here. We have then mini-
mized the sum of &2’s obtained from the variation of the
parameters of the waves, within their errors, as obtained
from data, plus the average &2 of the dispersion relations
(that we call ‘‘&2=d:o:f:’’). This average is obtained eval-
uating each dispersion relation at intervals of 25 MeV in
s1=2, from threshold up to s1=2 � 0:925 MeV, dividing this
by the total number of points. For the dispersion relations
for�0�
 and�0�0 scattering, we also include in the fit the
relations (3.1b) and (3.3b), which are important in fixing
the location of the Adler zeros for the S0, S2 waves.

According to this, we allow variation of the parameters
of the S0 wave up to �KK threshold (including the location
of the Adler zero, z0); the parameters of the P wave up
to s1=2 � 1:0 GeV; and the parameters of S2, D0, D2,
and F waves for all s1=2 � 1:42 GeV. For S2 we also leave
free z2. We find that the total variation of the parameters
has an average &2 of 0:38, showing the remarkable stability
of our fits. The only parameters that have varied by 
1�
or a bit more are some of the parameters for the S0 and
D2 waves. For both, this hardly affects the low energy
shape, but alters them a little at medium and higher ener-
gies (for D2, see Fig. 7). Given the low quality of experi-
mental data in the two cases, this feature should not be
surprising.

As stated above, in the present subsection we take as
starting point the S0 wave we obtained with our global fit in
Sec. II B 2. The new central values of the parameters, and
the scattering length and effective range parameters (both
in units of M�) are listed below.
S0; s1=2 � 2mK: B0 � 17:4� 0:5; B1 � 4:3� 1:4; +0 � 790� 21 MeV; z0 � 195 MeV �fixed�;

a�0�0 � 0:230� 0:015; b�0�0 � 0:312� 0:014:

S2; s1=2 � 1:0: B0 � �80:8� 1:7; B1 � �77� 5; z2 � 147 MeV �fixed�;

a�2�0 � �0:0480� 0:0046; b�2�0 � �0:090� 0:006:

S2; 1:0 � s1=2 � 1:42: B0 � �125� 6; B1 � �119� 14; ' � 0:17� 0:12:

P; s1=2 � 1:05: B0 � 1:064� 0:11; B1 � 0:170� 0:040; M" � 773:6� 0:9 MeV;

a1 � �38:7� 1:0� � 10�3; b1 � �4:55� 0:21� � 10�3:

D0; s1=2 � 1:42: B0 � 23:5� 0:7; B1 � 24:8� 1:0; ' � 0:262� 0:030;

a�0�2 � �18:4� 3:0� � 10�4; b�0�2 � ��8:6� 3:4� � 10�4:

D2; s1=2 � 1:42: B0 � �2:9� 0:2� � 103; B1 � �7:3� 0:8� � 103; B2 � �25:4� 3:6� � 103;

� � 212� 19 MeV; a�2�2 � �2:4� 0:7� � 10�4; b�2�2 � ��2:5� 0:6� � 10�4:

F; s1=2 � 1:42: B0 � �1:09� 0:03� � 105; B1 � �1:41� 0:04� � 105; a3 � �7:0� 0:8� � 10�5:

�s1=2 � 0:925 GeV; total average &2=d:o:f: � 0:80�: (4.1a)
-17
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FIG. 12 (color online). Fulfillment of dispersion relations, with
the central parameters in (4.1a). The error bands are also shown.
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We note that the central values and errors for all the
waves, with the exception of the S0 and D2 waves (and a
little the S2 wave), are almost unchanged (in some cases,
they are unchanged within our precision). The results for
the S0, S2, and D2 waves are shown in Figs. 7, 13, and 14.

This brings us to the matter of the errors. In general, one
cannot improve much the errors we found in Sec. II by
imposing the dispersion relations since, to begin with, they
are reasonably well satisfied by our original parametriza-
tions; and, indeed, the errors obtained fitting also the
dispersion relations are almost identical to the ones we
found in Sec. II. Any improvement would thus be purely
nominal and would be marred by the strong correlations
among the parameters of the various waves that would be
introduced.

The exceptions are, as stated, the S0, S2, and D2 waves.
For the first two when including the fulfillment of the
dispersion relations in the fits, we have first left the Adler
zeros, located at 1

2 z
2
0 and 2z22, free. We find

z0 � 195� 21 MeV; z2 � 147� 7 MeV: (4.1b)

Unfortunately, the parameters are now strongly correlated
so the small gain obtained would be offset by the compli-
cations of dealing with many correlated errors.5 Because of
this we have fixed the Adler zeros at their central values as
given in (4.1b) when evaluating the errors for the other
parameters. Then the errors are almost uncorrelated.

For the D2 wave we accept the new errors because its
parameters vary by more than 1� from those of Sec. II.
Given the poor quality of experimental data, obvious from
a look at Fig. 7, we feel justified in trusting more the central
values and errors buttressed by fulfillment of dispersion
relations.

We consider (4.1a) and (4.1b) to provide the best central
values (and some improved errors) for the parameters
shown there. The various dispersion relations are fulfilled,
up to s1=2 � 0:925 GeV, with an average &2 of 0.66 (for
�0�0), of 1.62 for the �0�
 dispersion relation, and of
0.40 for the It � 1 case. The consistency of our �� scat-
tering amplitudes that this shows is remarkable, and may
be seen depicted graphically for the dispersion relations in
Fig. 12, where we show the fulfillment of the dispersion
relation up to s1=2 � 1:42 GeV. Mismatch occurs to more
than one unity of &2=d:o:f: due to the artificial joining of
our low and high energy fits to data, to the incomplete
treatment of the inelasticity of the D0, D2 waves and,
above all, to the uncertainties of the P and, especially, the
S0 wave between 1 and 1:42 GeV.

In fact, this mismatch is small; if we take the improved
values of the parameters as given in (4.1a), and recalculate
5There is another reason for not attaching errors to z0; the
Adler zero is located at 1

2 z
2
0 
 0:01 GeV2, so near the left hand

cut that our conformal expansion cannot be considered to be
convergent there.
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the various dispersion relations up to s1=2 � 1:42 GeV, we
find that for �0�0 scattering the dispersion relation is
fulfilled with an average &2 of 1.85, while for �0�


scattering we find an average &2 of 1.57 and the It � 1
dispersion relation is fulfilled to an average &2 of 1.16.
However, the last two numbers become smaller than unity
if only we increase the error of the slope of the P wave
between 1 and 1.4 GeV by a factor of 2, i.e., if we take
�1 � 1:1� 0:4 in Eq. (2.7).
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Likewise, if we replaced the S0 inelasticity in (2.15b) by
that in (2.15b0), the average &2 for �0�0 would improve to
1.35, while the average &2 for the It � 1 amplitude would
become slightly worse, 1.47. Doubtlessly, the incompati-
bility of phase and inelasticity for the S0 wave above
1 GeV precludes a perfect fit. We plan, in a coming paper,
to use the results here to find consistent values for the phase
shift and inelasticity for the S0 and P waves between 1 and
1.42 GeV, by requiring consistency below the 1� level of
the dispersion relations in that energy range.

The agreement of dispersion relations up to 1.42 GeV is
the more remarkable in that the dispersion relations above
0.925 GeV have not been used to improve any wave.

For the sum rules (3.2a)–(3.2c) and (3.4a)–(3.4c) we
now find

2a�0�0 � 5a�2�0 �DOl � �25� 32� � 10�3;

F00�4M
2
�; 0� � F00�2M

2
�; 0� �D00 � ��15� 9� � 10�3;

F0
�4M2
�; 0� � F0
�2M2

�; 0� �D0
 � �3� 7� � 10�3:

(4.2)
B. Improved parameters for the individual fits of
Sec. II B 3

We now refine the parameters of the fits to data, but
taking as starting point the numbers obtained from the
individual fits to the various data sets as described in
Sec. II B 3. Apart from this, the procedure is identical to
that used in Sec. IVA; in particular, we also fit the relations
(3.1b) and (3.3b). The results of the evaluations are pre-
sented in Table III, where we include the solution (4.1a)
and (4.1b), and also what we find if requiring the fit to only
K decay data for the S0, as given in Eq. (2.12).

The following comments are in order. First of all, we
have the remarkable convergence of the first three solutions
in Table III; and even the last three solutions approach our
evaluation, PY, Eqs. (4.1a) and (4.1b). This convergence is
not limited to the S0 wave: the parameters for all waves
other than the S0 agree, within & 1�, for all solutions
TABLE III. PY, Eqs. (4.1a) and (4.1b): our global fit, improved wit
A, B, C, E means that we take, as experimental low energy data for th
Table I. Kaminski means we have used the data of Kamiński et al.
fulfillment of dispersion relations. Although errors are given for the
other errors. We have included the fulfillment of the sum rule (3.1b
within 1 � by all solutions.

Improved fits: B0 B1 +0 (M

PY, Eqs. (4.1a) and (4.1b) 17:4� 0:5 4:3� 1:4 790�
K decay only 16:4� 0:9 � 0 809�
K decay data 
Grayer, C 16:2� 0:7 0:5� 1:8 788�

K decay data 
Grayer, B 20:7� 1:0 11:6� 2:6 861�
K decay data 
Grayer, E 20:2� 2:2 8:4� 5:2 982�
K decay data 
Kaminski 20:8� 1:4 13:6� 3:7 798�
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in Table III, with the numbers given for the PY solution
in Eqs. (4.1a) and (4.1b). For this reason we do not give in
detail, for each individual fit, the improved solutions for
waves other than the S0 wave. Of course, the values of the
&2’s given in Table III have been evaluated with the
corresponding improved solutions for all waves.

Second, the fulfillment of dispersion relations is similar
for all solutions in Table III. However, the solutions based
on Grayer B, Grayer E, and that based on the data of
Kamiński et al., fail to satisfy the sum rule (3.1b) by a
large amount even though they have large errors; see the
last column in Table III. We should, therefore, consider the
three solutions PY, that based onK decay data only, and the
solution based on Grayer C, to be clearly favored by this
consistency test. This is satisfactory in that the solution C
was obtained by Grayer et al. [11] from solution B by
including absorption corrections.

Third, we may consider the solution based on K decay
data only, and with a single parameter B0, to be in the
nature of a first approximation, and the introduction of the
parameter B1 as producing the more accurate solutions
denoted by Grayer C and PY. In this respect, the coinci-
dence of the common parameters of the first three solutions
in Table III within & 2� is satisfactory. And, indeed, this
coincidence is even more pronounced. In Fig. 13 we show
our starting, global fit from Eqs. (2.14a) and (2.14b) to-
gether with the improved solution PY, Eqs. (4.1a) and
(4.1b) and the improved solution corresponding to Grayer
C: they are all three contained inside the error band of PY,
Eqs. (4.1a) and (4.1b), with which the solution Grayer C
practically overlaps. We also show, in Fig. 14, the S2 wave,
before and after improvement.

Finally, and in spite of the virtual coincidence between
the two improved solutions Grayer C and PY, Eqs. (4.1a)
and (4.1b), we consider the last to be preferred: it incorpo-
rates data from various experiments and is thus less likely
to be biased by systematic errors. Because of all this, we
feel confident in considering our solution in Eqs. (4.1a) and
(4.1b) to be fully validated, and the method we have used to
be well tested. We will then henceforth accept and work
h forward dispersion relations, as explained in Sec. IVA. Grayer
e S0 wave, the solutions in Grayer et al. [11(a)] fitted as shown in
[11(c)] In these fits we have improved the parameters requiring
Adler zero, we have fixed it at its central value when evaluating
) in the last column, but not (3.3b) and (3.5), which are verified

eV) z0 (MeV) &2�It�1�
d:o:f:

&2��0�0�
d:o:f:

&2��0�
�
d:o:f: (3.1b)

21 198� 21 0.40 0.66 1.62 1:6 �
53 182� 34 0.30 0.29 1.77 1:5 �
9 184� 39 0.37 0.32 1.74 1:5 �

14 233� 30 0.37 0.83 1.6 4:0 �
95 272� 50 0.60 0.09 1.4 6:0 �
17 245� 39 0.43 1.08 1.36 4:5 �
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FIG. 13 (color online). The S0 phase shift corresponding to
Eqs. (4.1a) and (4.1b) (PY, thick continuous line and error band),
the unimproved solution of Eqs. (2.14a) and (2.14b) (thin con-
tinuous line), and the improved solutions ‘‘K decay only’’ and
‘‘Grayer C’’ of Table III (difficult to see as they fall almost on
top of PY). The solution CGL [2] (lowest discontinuous line) is
also shown.

FIG. 14 (color online). Phase shift for the S2 wave, Eqs. (4.1a)
and (4.1b) (PY, thick continuous line, and error band), our
unimproved fit, Eq. (2.8a) and (2.8b) (dotted line) and the
solution CGL, [2] and error band (dashed line). We also show
the data from Durusoy et al. [12] and solution B in Hoogland
et al. [12], not included in the fit.
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with the solution given in Eqs. (4.1a) and (4.1b) for the
improved S0 wave below 0.95 GeV.

V. CONSISTENCY TESTS OF s�t�u CROSSING:
TWO SUM RULES

In this section we discuss two sum rules that follow from
crossing symmetry; in the next section we will consider
Froissart-Gribov sum rules, which can also be viewed as
074016
checks of s� t� u crossing. The sum rules we discuss
now relate high (s1=2 � 1:42 GeV) and low energy, with
the low energy given by the P, D, F waves in the region
s1=2 � 1:42 GeV and the high energy is dominated by,
respectively, the rho and Pomeron Regge trajectories.
The interest in checking them is that they were given by
the authors in Refs. [1,2] (following Pennington [15]) as
the reason for the incorrect Regge parameters they used.
Contrarily to the assertions in these references, however,
we will here check, once again, that there is perfect con-
sistency provided one uses standard Regge behavior for
energies above 1.42 GeV, and accurate representations of
the experimental partial waves below 1.42 GeV, such as the
ones found here in Secs. II and IV and collected in
Appendix A. We should perhaps remark here that the
contributions of the S0, S2 waves cancel in both sum rules,
hence we do not even need to worry about which solution
to use for the S0 wave.

The first sum rule is obtained by profiting from the
threshold behavior to write an unsubtracted forward dis-
persion relation for the quantity F�Is�1��s; 0�=�s� 4M2

��.
One gets

6M�

�
a1 �

1

�

Z 1

M2
�

ds
ImF�Is�1��s; 0�

�s� 4M2
��

2



1

�

X
I

C�su�
1I

Z 1

M2
�

ds
ImF�I��s; 0�

s2
; (5.1)

which is known at times as the (second) Olsson sum rule;
see e.g. the textbook of Martin et al. [16]. The index I
refers to isospin in the s channel and C�su�

1I are the s� u
crossing matrix elements. Canceling a1 with the Froissart-
Gribov expression for this quantity (cf. Sec. VI), and
substituting the C�su�

1I , we find the result

I �
Z 1

M2
�

ds
ImF�It�1��s; 4M2

�� � ImF�It�1��s; 0�

s2

�
Z 1

M2
�

ds
8M2

��s� 2M2
��

s2�s� 4M2
��

2 ImF�Is�1��s; 0� � 0: (5.2)

The contributions of the S waves cancel in (5.2), so only
the P, D, F, and G waves contribute. At high energy the
integrals are dominated by rho exchange. We take the
improved central values of the parameters for the different
waves as given in Eqs. (4.1a) and (4.1b). In units of the pion
mass we get

I � ��0:12� 1:27� � 10�5; (5.3)

that is to say, perfect consistency.
The second sum rule we discuss is that given in

Eqs. (B.6), (B.7) of Ref. [1]. It reads,
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J �
Z 1

4M2
�

ds
�
4ImF0�0��s; 0� � 10ImF0�2��s; 0�

s2�s� 4M2
��

2

� 6�3s� 4M2
��

ImF0�1��s; 0� � ImF�1��s; 0�

s2�s� 4M2
��

3

�
� 0: (5.4)

Here F0�I��s; t� � @F�I��s; t�=@ cos�, and the upper indices
refer to isospin in the s channel. We get, again with the
improved parameters and with M� � 1,

J � ��0:2� 4:2� � 10�3: (5.5)

These are not the only crossing sum rules that our ��
amplitude verifies; the coincidence of the values for the
parameters a1, b1, b�I�2 obtained from direct fits to data in
Sec. II with those from the Froissart-Gribov projection,
that involves simultaneously s; u and t crossing, are highly
nontrivial ones. We will see this in next section.
VI. LOW ENERGY PARAMETERS FOR WAVES
WITH l� 1 FROM THE FROISSART-GRIBOV

PROJECTION, AND A NEW SUM RULE FOR b1

A. The Froissart-Gribov representation for a1;b1

The quantities a1, b1 may be evaluated in terms of the
It � 1 amplitude using the Froissart-Gribov representation
(for more details on the Froissart-Gribov representation,
see Refs. [6,17] and work quoted there). For, e.g. al with
l � odd, we have

2a�I�1�
l �

����
�

p
��l
 1�

4M���l
 3=2�

Z 1

4M2
�

ds
ImF�It�1��s; 4M2

��

sl
1
:

(6.1)

We will use the parametrizations in (4.1a) and (4.1b) for the
imaginary parts of the scattering amplitudes in all the
Froissart-Gribov integrals, and the Regge expressions in
Appendix B here at high energy. We find the following
results, in units of M�:

F:-G: Eqs: �4:1a; 4:1b�
103 � a1: 37:7� 1:3 38:7� 1:0:

(6.2)

We here compare the result obtained with (6.1), denoted by
F.-G., and the value for a1 which we found in our improved
fits, as given in Eq. (4.1a). Because the two determinations
are essentially independent, we can compose the errors to
get a precise and reliable value for a1:

a1 � �38:4� 0:8� � 10�3M�3
� : (6.3)

For the quantity b1 we have, with the same conventions
as before,

F:-G: Eqs: �4:1a; 4:1b�
103 � b1: 4:69� 0:98 4:55� 0:21:

(6.4)

The Froissart-Gribov integral here is dominated by the rho
Regge pole, as the low energy contributions cancel almost
completely. The agreement between these two determina-
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tions of b1 is, therefore, a highly nontrivial test of the
consistency of the high and low energy parts of our pion-
pion scattering amplitude, unfortunately not very precise
because of the large error in the Froissart-Gribov determi-
nation. We will discuss this further at the end of
Appendix B.

The F wave scattering length may be similarly eval-
uated; we find

a3 � �6:3� 0:4� � 10�5M�7
� : (6.5)

B. The Froissart-Gribov projection for even

amplitudes: the a�I�
2 ;b�I�2 parameters

We first calculate the two combinations of scattering
lengths a�0
� � 2

3 �a
�0�
2 � a�2�2 � and a�00� � 2

3 �

�a�0�2 
 2a�2�2 �. They correspond to the s-channel ampli-
tudes

F�0�
 �
1

2
F�Is�1� 


1

2
F�Is�2�;

F�0�0 �
1

3
F�Is�0� 


2

3
F�Is�2�

for which (as mentioned before) errors are minimized.
The dominant high energy part in the Froissart-Gribov

representation is given now by the Pomeranchuk trajectory
and its importance is smaller than previously because the
integrals converge faster. We find, in units of M�,

a�0
� � �10:61� 0:14� � 10�4M�5
� ;

a�00� � �16:17� 0:75� � 10�4M�5
� :

(6.6)

For the effective range parameters,

b�0
� � ��0:183� 0:061� � 10�4M�7
� ;

b�00� � ��7:96� 0:57� � 10�4M�7
� :

(6.7)

C. A new sum rule for b1

The Froissart-Gribov representation for the effective
range b1 depends strongly on the Regge parameters for
rho exchange, and is affected by large errors. Here we will
present a sum rule that, contrarily, depends almost entirely
on the low energy scattering amplitudes and is much more
precise. It is obtained in a way similar to that used for the
first crossing sum rule in Sec. V. We now write a dispersion
relation for the quantity

@
@s

	
F�Is�1��s; 0�

s� 4M2
�



;

which we evaluate at threshold. Taking into account that

@
@s

	
F�Is�1��s; 0�

s� 4M2
�



s�4M2

�

�
3M�

2�
b1;

we obtain a fastly convergent relation for b1:
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M�b1 �
2

3

Z 1

4M2
�

ds
�
1

3

�
1

�s� 4M2
��

3 �
1

s3

�
ImF�It�0��s; 0�



1

2

�
1

�s� 4M2
��

3 

1

s3

�
ImF�It�1��s; 0�

�
5

6

�
1

�s� 4M2
��

3 �
1

s3

�
ImF�It�2��s; 0�

�
: (6.8)

Most of the contribution to b1 comes from the S0 and P
waves at low energy, while all other contributions (in
particular, the Regge contributions) are substantially
smaller than 10�3. Adding all pieces we find

b1 � �4:99� 0:21� � 10�3M�5
� ; (6.9)

a value reasonably compatible with what we found in
(4.1a) and (4.1b), b1 � �4:55� 0:21� � 10�3M�5

� (be-
cause of correlations, the distance is actually below 1�).
We can combine both and find a precise estimate,

b1 � �4:75� 0:16� � 10�3M�5
� : (6.10)
VII. COMPARISON WITH THE LOW ENERGY
PARAMETERS OF CGL, DFGS, AND KLL

We present in Table IV a global comparison of the low
energy parameters as given here, that we denote by PY, as
well as recent evaluations, that use the Roy equations, by
Colangelo, Gasser, and Leutwyler [2] (CGL), by Descotes
et al. [8], that we denote by DFGS, and by Kamiński,
Leśniak, and Loiseau [8], denoted by KLL. Besides scat-
tering lengths and effective range parameters, we give the
TABLE IV. Units of M�. The numbers in the CGL column are as
values for the D, F waves parameters are from the Froissart-Gribov re
relations, except for a1 and b1 that have been taken from Eqs. (6.3)

DFGS KLL

a�0�0 0:228� 0:032 0:224� 0:0

a�2�0 �0:0382� 0:0038 �0:0343� 0:

�a�0�0 � a�2�0 �2 0:071� 0:018 0:067� 0:0

��0�
0 �m2

K� � ��2�0 �m2
K�

b�0�0 0:252� 0:0

b�2�0 �0:075� 0:
a1 39:6� 2:4
b1 2:83� 0:6

a�0�2

a�2�2

a�0
�

a�00�
b�0�2

b�2�2

b�0
�

b�00�
a3
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quantities �a�0�0 � a�2�0 �2 and ��0�
0 �m2

K� � ��2�
0 �m2

K�, relevant,
respectively, for pionic atom decays and CP violating kaon
decays.

The DFGS solution is compatible, within its errors, both
with CGL and PY. As to the KLL solution, its values for
a�I�0 , b�I�0 are compatible with those of DFGS (for the first),
somewhat less so with the numbers of PY and with what
CGL find. The central value for a1 of KLL is too high,
although it is compatible within its errors with other deter-
minations. The value of b1, however, is 3� below the next
lowest one in the Table IV. The reason could be that
Kamiński, Leśniak, and Loiseau use some approximate
calculation techniques, such as effective, separable poten-
tials and Padé approximants.

The calculation of CGL [2] is different from the others,
since CGL impose ch.p.t. to two loops. However, CGL use
Roy equations, which require phenomenological input for
energies above 0.8 GeV. As stated in the Introduction (and
discussed in more detail in Refs. [6,7]) some of this input is
not accurate, which may cause biases in the final results. In
this respect, we find that the predictions of CGL for the
scattering lengths a�I�0 ; a1 agree very well with what we find
from experiment. This means that our results do not chal-
lenge the standard chiral counting of ch.p.t. However, the
solution given by CGL deviates from our results for quan-
tities like b1, a�I�2 , b�I�2 , or the S0 and S2 phase shifts above
500 MeV [in particular we disagree by 3� with the
value used as input by CGL at the matching point,
��0�0 ��800 MeV�2� � 82:3� 3:4o].
given by CGL in Table II and elsewhere in their text. In PY, the
presentation. The rest are from the fits, improved with dispersion
and (6.10).

CGL PY

13 0:220� 0:005 0:230� 0:015

0036 �0:0444� 0:0010 �0:0480� 0:0046

07 0:070� 0:003 0:077� 0:008

47:7� 1:5� 52:9� 1:6�

11 0:280� 0:001 0:312� 0:014

015 �0:080� 0:001 �0:090� 0:006
37:9� 0:5 38:4� 0:8 ��10�3�

7 5:67� 0:13 4:75� 0:16 ��10�3�

17:5� 0:3 18:70� 0:41 ��10�4�

1:70� 0:13 2:78� 0:37 ��10�4�

10:61� 0:14 ��10�4�

16:17� 0:75 ��10�4�

�3:55� 0:14 �4:16� 0:30 ��10�4�

�3:26� 0:12 �3:89� 0:28 ��10�4�

�0:183� 0:061 ��10�4�

�7:96� 0:57 ��10�4�

5:6� 0:2 6:3� 0:4 ��10�5�
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That the CGL solution deteriorates as the energy
increases is quite transparent if we compare the
fulfillment of dispersion relations with the parameters of
CGL for the S0, S2, and P waves at low energy, or with
FIG. 15 (color online). Consistency of dispersion relations for the �
parameters in (4.1a) and (4.1b), denoted by PY. We plot the differe
calculation of the real parts directly with the various parametrizati
would occur if the continuous curves coincided with the dotted lines.
the CGL results as the energy increases is apparent here.
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our parameters here. This is depicted in Fig. 15, where
we show the mismatch between the real part and the
dispersive evaluations, that is to say, the differences
�i,
�1 � ReF�It�1��s; 0� �
2s� 4M2

�

�
P:P:

Z 1

4M2
�

ds0
ImF�It�1��s0; 0�

�s0 � s��s0 
 s� 4M2
��
; (7.1a)

�00 � ReF00�s� � F00�4M
2
�� �

s�s� 4M2
��

�
P:P:

Z 1

4M2
�

ds0
�2s0 � 4M2

��ImF00�s0�

s0�s0 � s��s0 � 4M2
���s0 
 s� 4M2

��
; (7.1b)

and

�0
 � ReF0
�s� � F0
�4M
2
�� �

s�s� 4M2
��

�
P:P:

Z 1

4M2
�

ds0
�2s0 � 4M2

��ImF0
�s0�

s0�s0 � s��s0 � 4M2
���s0 
 s� 4M2

��
: (7.1c)
These quantities would vanish, �i � 0, if the dispersion
relations were exactly satisfied.

We include in the comparison of Fig. 15 the errors; in
the case of CGL, these errors are as follow from the
parametrizations given by these authors in Ref. [2], for
s1=2 & 0:8 GeV. At higher energies they are taken
from experiment via our parametrizations. By comparison,
we show the same quantities for our best results in the
present paper, that is to say, with amplitudes improved by
use of dispersion relations, Eq. (4.1a) and (4.1b). In both
cases we have taken the Regge parameters from
Appendix B here.

VIII. SUMMARY AND CONCLUSIONS

In the previous sections we have given a representation
of the �� scattering amplitudes obtained fitting experi-
mental data below 1.42 GeV, supplemented by standard
Regge formulas above this energy. We have shown that our
� amplitudes of Ref. [2] (CGL) and for our amplitudes, with the
nces �i, given in Eqs. (7.1a)–(7.1c), between the results of the
ons given, or from the dispersive formulas. Perfect consistency
The error bands are also shown. The progressive deterioration of
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J. R. PELÁEZ AND F. J. YNDURÁIN PHYSICAL REVIEW D 71, 074016 (2005)
representations satisfy reasonably well forward dispersion
relations at low energy, as well as crossing sum rules. We
have shown that requiring fulfillment of the dispersion
relations up to s1=2 � 0:925 GeV leads to a refinement of
the central values and errors for the parameters for the
various waves, giving a set of these quantities such that
dispersion relations are now satisfied, within acceptable
errors, at all energies.

In particular, for the S0 wave, we have analyzed the
results found starting from different sets of data. If we
eliminate from those sets the ones that are less consistent
with the dispersion relations, it is seen that the remaining
determinations converge to a solution, essentially unique,
when improved by requiring fulfillment of the dispersion
relations. We have, therefore, obtained a complete set of
�� scattering amplitudes that are consistent, with theo-
retical requirements as well as with experiment: they are
collected in Appendix A.

After this, we use these scattering amplitudes to evaluate
low energy parameters for P, D0, D2, and F waves in a
reliable manner, clearly improving on previous work.
[1,2,8] These parameters may then be used to test chiral
perturbation theory to one and two loops, or to find quan-
tities relevant for pionium decays or CP violating kaon
decays:

�a�0�0 � a�2�0 �2 � 0:077� 0:008M�2
� ;

��0�0 �m2
K� � ��2�

0 �m2
K� � 52:9� 1:6o:

We may remark here that our errors are, typically, a
factor 2 to 3 times larger than those in CGL, [2] at low
energy. Given that the scattering amplitudes of this refer-
ence show mismatches between high and low energy, for
many observables by several standard deviations (cf., for
example, Fig. 15), and that our results are of higher preci-
sion at intermediate energies for some quantities (compare,
for example, the error bars in Figs. 15), we do not consider
our results to be inferior. But one certainly can ask the
question whether it would be possible to improve on our
precision. The answer is no, in the sense that our ampli-
tudes agree, within errors, with theoretical requirements
and with data. A sizable improvement would require sub-
stantially improved experimental data, certainly for the S0,
S2 waves at low energy, and for the S0 and P waves above

1 GeV. One may think that imposing chiral perturbation
theory could lead to decreasing the errors of the ��
scattering amplitudes. However, the matter is complicated
and will be left for a future publication.
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APPENDIX A: SUMMARY OF LOW ENERGY
(s1=2� 1:42 GeV) PARTIAL WAVES

In this appendix we collect the best values for the
parametrizations of the various partial waves. We give
the values obtained after improving with the help of dis-
persion relations, Eqs. (4.1a) and (4.1b). The values of the
parameters and errors obtained from raw fits to data are as
given in Sec. II.

1. The S wave with isospin zero below 950 MeV

We impose the Adler zero at s � 1
2 z

2
0, with z0 fixed, and

a ‘‘resonance’’ with mass +0, a free parameter. After
improving the global fit with dispersion relations we have

cot��0�0 �s� �
s1=2

2k
M2
�

s� 1
2 z

2
0

+2
0 � s

+2
0

�
B0 
B1

���
s

p
�

�������������
s0 � s

p

���
s

p



�������������
s0 � s

p

�
;

B0 � 17:4� 0:5; B1 � 4:3� 1:4;

+0 � 790� 21 MeV; z0 � 195� 21 MeV �fixed�:

(A1)

This fit we take to be valid for s1=2 & 0:95 GeV. Note that
we have fixed the value of z0 when evaluating the errors of
the other parameters.

This gives

a�0�0 � �0:230� 0:015�M�1
� ;

b�0�0 � �0:312� 0:014�M�3
� ;

��0�0 �mK� � 44:4� � 1:5�:

(A2)

2. The I� 0 S wave between 950 MeV and 1420 MeV

We write

cot��0�0 �s� � c0
�s�M2

s ��M
2
f � s�

M2
fs

1=2

jk2j

k22
;

k2 �

������������������
s� 4m2

K

q
2

; (A3)

��0�
0 � 1�

	
'1

k2
s1=2


 '2
k22
s



M02 � s

s
: (A4)

Then,

c0 � 1:3� 0:5; Mf � 1320� 50 MeV;

Ms � 920 MeV �fixed�; '1 � 6:4� 0:5;

'2 � �16:8� 1:6; M0 � 1500 MeV �fixed�:

(A5)

It should be clear that this fit is not very reliable since there
are several incompatible sets of experimental data. Thus,
the errors are purely nominal. If using��! �KK data to fit
the inelasticity we would have obtained different values for
the 'i:
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'1 � 2:4� 0:2; '2 � �5:5� 0:8: (A50)

This fit has not been improved with dispersion relations.
For dispersion relations below 0.925 GeV, it is irrelevant
whether we use (A5) or (A50).

3. Parametrization of the S wave for I� 2 below 1 GeV

We fit only the low energy data, s1=2 < 1:0 GeV, taking
the inelastic threshold at s0 � 1:052 GeV2,

cot��2�0 �s� �
s1=2

2k
M2
�

s� 2z22

�
B0 
 B1

���
s

p
�

�������������
s0 � s

p

���
s

p



�������������
s0 � s

p

�
;

s1=2 � 1:0 GeV: (A6)

The central values and errors are improved with dispersion
relations; we get

B0 � �80:8� 1:7; B1 � �77� 5;

z2 � 147� 7 MeV �fixed�;

a�2�0 � ��0:0480� 0:0046� �M�1
� ;

b�2�0 � ��0:090� 0:006� �M�3
� ;

��2�
0 �m2

K� � �8:5� 0:3�:

(A7)

4. Parametrization of the S wave for I� 2 above 1 GeV

At high energy, we may fit data from s1=2 � 0:91 GeV
up to s1=2 � 1:42 GeV. We require junction with the low
energy fit at 1 GeV, neglect inelasticity below 1:45 GeV,
and write

cot��2�0 �s� �
s1=2

2k
M2
�

s� 2z22

�
B0 
 B1

���
s

p
�

�������������
s0 � s

p

���
s

p



�������������
s0 � s

p

�
;

s1=20 � 1:45 GeV; z2 � 147 MeV �fixed�: (A8a)

After improving with dispersion relations we then find

B0 � �125� 6; B1 � �119� 14;

s > �1:0 GeV�2:
(A8b)

The inelasticity may be described by the empirical fit

��2�
0 �s� � 1� '�1� ŝ=s�3=2; ' � 0:17� 0:12

�ŝ1=2 � 1:05 GeV�:

These formulas are expected to hold from 1 GeV up to
1:42 GeV.

5. The P wave below 1 GeV

We have

cot�1�s� �
s1=2

2k3
�M2

" � s�
�
B0 
 B1

���
s

p
�

�������������
s0 � s

p

���
s

p



�������������
s0 � s

p

�
;

s1=20 � 1:05 GeV: (A9a)
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The best result, from (4.1a) and (4.1b), is

B0 � 1:064� 0:011; B1 � 0:170� 0:040;

M" � 773:6� 0:9; a1 � �38:7� 1:0� � 10�3M�3
� ;

b1 � �4:55� 0:21� � 10�3M�5
� : (A9b)

Slightly better values for a1, b1, improved with sum rules,
may be found in Table IV.

6. The P wave for 1 GeV� s1=2� 1:42 GeV

For the P wave between 1 GeV and 1.4 GeV we use an
empirical formula, obtained with a linear fit to the phase
and inelasticity of Protopopescu et al. [10] and Hyams et
al. [11]

�1�s� � �0 
 �1�
�������
s=ŝ

p
� 1�;

�1�s� � 1� '�
�������
s=ŝ

p
� 1�; ' � �0:30� 0:15�;

�0 � 2:69� 0:01; �1 � 1:1� 0:2: (A10)

Here ŝ � 1 GeV2. The value of �0 ensures the agree-
ment of the phase with the value given by (A9a) and (A9b)
at s � ŝ � 1 GeV2. This fit is good; however, it should be
remarked that there are other sets of experimental data for
this wave disagreeing with the one used here for s1=2 >
1:15 GeV. Hence (A10) may be biased beyond its nominal
errors.

This fit has not been improved with dispersion relations.

7. Parametrization of the D wave for I� 0

We fit data on ��0�2 altogether neglecting inelasticity,
which we will then add by hand. The data are scanty, and
of poor quality. We impose in the fit the scattering length,
as obtained from the Froissart-Gribov representation, and
the experimental width of the f2. Moreover, we improve
the central values with dispersion relations.

We write

cot��0�2 �s� �
s1=2

2k5
�M2

f2
� s�M2

�fB0 
 B1w�s�g; (A11a)

and

w�s� �

���
s

p
�

�������������
s0 � s

p

���
s

p



�������������
s0 � s

p ; s1=20 � 1450 MeV;

Mf2 � 1275:4 MeV �fixed�:

We find,

B0 � 23:5� 0:7; B1 � 24:8� 1:0: (A11b)
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We take into account the inelasticity by writing

��0�
2 �s� �

� 1; s < 4m2
K;

1� '
k2�s�
k2�M

2
f2
�
; ' � 0:262� 0:030; s > 4m2

K:

(A11c)

Here k2 �
���������������������
s=4�m2

K

q
:

The fit returns the values

a�0�2 � �18:4� 3:0� � 10�4 �M�5
� ;

b�0�2 � ��8:6� 3:4� � 10�4 �M�7
� :

Better values for a�0�2 ; b
�0�
2 are given in Table IV.

8. Parametrization of the D wave for I� 2

For isospin equal 2, there are no resonances in the D
wave. If we want a parametrization that applies down to
threshold, we must incorporate the zero of the correspond-
ing phase shift. So we write

cot��2�2 �s� �
s1=2

2k5
fB0 
 B1w�s� 
 B2w�s�

2g

�
M4
�s

4�M2
� 
 �2� � s

;

s1=2 � 1:05 GeV:

(A12a)

with � a free parameter and

w�s� �

���
s

p
�

�������������
s0 � s

p

���
s

p



�������������
s0 � s

p ; s1=20 � 1450 MeV:

Moreover, we impose the value for the scattering length
that follows from the Froissart-Gribov representation. We
assume negligible inelasticity and find, after improvement
with dispersion relations,

B0 � �2:9� 0:2� � 103; B1 � �7:3� 0:8� � 103;

B2 � �25:4� 3:6� � 103; � � 212� 19 MeV:
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The fit returns reasonable values for the scattering length
and effective range parameter, b�2�2 :

a�2�2 � �2:4� 0:7� � 10�4M�
�5;

b�2�2 � ��2:5� 0:6� � 10�4M�
�7:

(A13)

Better values for a�2�2 ; b
�2�
2 are given in Table IV.

9. The F wave

For the F wave below s1=2 � 1:42 GeV we fit the phase
shifts of Protopopescu et al. [10] and those of Hyams et al.
[11(b)], plus the scattering length as given by the Froissart-
Gribov representation. After honing the central values of
the parameters with the help of dispersion relations we find

cot�3�s� �
s1=2

2k7
M6
�

�
B0 
 B1

���
s

p
�

�������������
s0 � s

p

���
s

p



�������������
s0 � s

p

�
;

B0 � �1:09� 0:03� � 105;

B1 � �1:41� 0:04� � 105:
(A14)

This implies a3 � �7:0� 0:8� � 10�5M�7
� , in agreement

(within errors) with the result of the Froissart-Gribov cal-
culation (Table IV).

The contribution of the F wave to all our sum rules is
very small (but not always negligible); the interest of
calculating it lies in that it provides a test (by its very
smallness) of the convergence of the partial wave
expansions.
10. The G waves

For the G0 wave, we take its imaginary part to be given
by the tail of the f4�2050� resonance, with its properties as
given in the particle data tables:
Im f̂�0�4 �s� �
	
k�s�

k�M2
f4
�



18
BR

M2
f4
�2

�s�M2
f4
�2 
M2

f4
�2�k�s�=k�M2

f4
��18

; s1=2 � 1 GeV; BR � 0:17� 0:02;

Mf4 � 2025� 8 MeV; � � 194� 13 MeV:

(A15)
For the wave G2, we can write, neglecting its eventual
inelasticity,

cot��2�4 �s� �
s1=2M8

�

2k9
B; B � ��9:1� 3:3� � 106;

s1=2 � 1 GeV: (A16)

It should be noted that the expressions for the G0, G2
waves, are little more than order of magnitude estimates.
Moreover, at low energies they certainly fail; below 1 GeV,
expressions in terms of the scattering length approxima-
tion, with

a�0�4 � �8:0� 0:4� � 10�6M�9
� ;

a�2�4 � �4:5� 0:2� � 10�6M�9
� ;

are more appropriate. If, in a given calculation, the con-
tribution of either of the 2 G waves is important, it means
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that the calculation will have a large error. We have
checked in a representative number of our calculations
that the contributions of the G0, G2 waves are totally
negligible.
APPENDIX B: THE REGGE AMPLITUDE
(s1=2� 1:42 GeV)

In the calculations of the various sum rules and disper-
sion relations we require the imaginary part of the scatter-
ing amplitudes at high energy. For this we use Regge
formulas, applicable when s� .2, with . ’ 0:3 GeV
the QCD parameter, and s� jtj. Specifically, we use
them above s1=2 � 1:42 GeV and expect them to be valid
at least for jtj & 4M2

� ’ 0:08 GeV2. These formulas are
obtained from NN, �N scattering, using factorization, and
from direct fits to�� data. We will not include refinements
that take into account the logarithmic increase of total
cross sections at ultrahigh energies (that may be found in
Ref. [5]), superfluous for applications to�� scattering. We
give here the relevant formulas, for ease of reference, for
Pomeron and P0 Regge poles, and will only discuss in some
detail (and even improve slightly) the parameters of the rho
residue.

We consider three Regge poles: Pomeron (P), the P0

[associated with the f2�1270� resonance] and the rho. For
the first two,

ImF�It�0�
�� �s; t� ’

s!1
t fixed

P�s; t� 
 P0�s; t�;

P�s; t� � 3P4P�t�
1
 4P�t�

2
ebt�s=ŝ�4P�t�;

P0�s; t� � 3P0

4P0 �t��1
 4P0 �t��
4P0 �0��1
 4P0 �0��

ebt�s=ŝ�4P0 �t�;

4P0 �t� � 4"�t�: (B1)

For exchange of unit isospin, we write

ImF�It�1�
�� �s; t� ’

s!1
t fixed

"�s; t�; "�s; t� � 3"�t��s=ŝ�
4"�t�:

(B2a)

In the present paper we have taken a formula slightly
different from that in Ref. [5], viz.,

3"�t� � 3"�0�
1
 4"�t�

1
 4"�0�
�1
 d"t�ebt ’

t!0
3"�0��1
 c"t�;

c" � b
 d" 

40
"�0�

1
 4"�0�
: (B2b)

In Ref. [5], where we took an expression from Rarita et al.
[18], solution 1a, assuming the t dependence to be equal for
�� and �N scattering [see below, Eq. (B7)]. Our expres-
sion now, (B2b), is simpler. As we will show below, we can
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fix its parameters (for small values of t) without assuming
the equality of �� and �N.

For exchange of isospin two,

ImF�It�2�
�� �s; t� ’

s!1
t fixed

R2�s; t� � 32ebt�s=ŝ�
4"�t�
4"�0��1:

(B3)

This last amplitude corresponds to double rho exchange;
the expression we use for it at t � 0 is rather arbitrary,
since little is known about it. Fortunately, it has almost no
influence in the calculations.

Following the analysis of Ref. [5], the trajectories are
taken as follows:

4P�t� ’
t
0
4P�0� 
 40

Pt; 4"�t� ’
t
0
4"�0� 
 40

"t

1

2
400
"t2;

(B4)

and one has

4"�0� � 0:52� 0:02; 40
" � 0:90 GeV�2;

400
" � �0:3 GeV�4; 4P�0� � 1;

40
P � �0:20� 0:10� GeV�2:

(B5)

Moreover, in the present paper, we have taken the follow-
ing values for the parameters of the residues:

3P � 2:54� 0:03; 3P0 � 1:05� 0:02;

32 � 0:2� 0:2; b � �2:4� 0:2� GeV�2;

3" � 3"�0� � 1:02� 0:11; d" � �2:4� 0:9� GeV�2:

(B6)

The parameters for P, P0 are like in Ref. [5]. Those for the
rho trajectory are as improved below.

The Pomeron and P0 parameters are well fixed from
factorization and (besides �� cross sections) by �N, NN
data, down to kinetic energies ’ 1 GeV; but some extra
words will be added on the rho residue, 3"�t�. This quan-
tity was obtained in Ref. [5] in a mixed manner: 3" �

3"�0� was found fitting high energy �� data, improving
the error with the help of the sum rule (5.2). The t depen-
dence of 3"�t� was taken as in solution 1a of Rarita et al.
[18] assuming it to be identical for �� and �N scattering.
Thus, we wrote

3"�t� � 3"�0���1:5
 1�ebt � 1:5�

�
1
 4"�t�

1
 4"�0�
’
t!0
3"�0��1
 c"t�;

c" � 2:5b

40
"�0�

1
 4"�0�
:

(B7)

This, in fact, is similar to (B2b) and (B6) for small values
of jtj, as we will check below.

There are other possibilities for the t dependence of the
rho residue. We could have chosen solution 1 of Rarita et
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FIG. 16. The t dependence of the different Regge residues,
3�t�=3�0� (Refs. [18,19]): Rarita et al., solution 1 and solution
1a: the fits from Rarita et al. (assuming equal slope for �N and
��). Froggatt and Petersen: from fits to �� dispersion relations
at fixed t. Palou and Yndurain; diffraction factor: actually, from
the Veneziano model, including a diffraction factor ebt; b �
2:4 GeV, as in Eq. (B7). The residue given in (B6) would lie
between ‘‘Palou and Yndurain diffraction factor’’ and ‘‘Rarita et
al. solution 1a’’ (closer to the second).
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al. [18] or we could have taken a Veneziano-type formula
with a diffractive factor included, writing

"�s; t� � 3"�t��s=ŝ�
4"�t�;

3"�t� � 3"�0�
��1� 4"�t�� sin�4"�t�

��1� 4"�0�� sin�4"�0�

� ebt ’
t!0
3"�0��1
 c"t�;

c" ’ b
 6E4
0
"�0�:

(B8)

Another possibility is afforded by the t dependence ob-
tained by Froggatt and Petersen [19] from an analysis of
�
�� dispersion relations at fixed t. These authors take

3"�t� � 3"�0�
sin�4"�t�

sin�4"�0�
�1� t=t"�e

bFPt; (B9)

with t�1
" � �2:2 GeV�2, bFP � 0:8 GeV�2. This gives a

slope for the residue of about half the value of solution 1a
of Rarita et al.

The values of 3"�t�, both 3"�0� and t dependence, are
given by Regge fits with less precision than other quanti-
ties; a few determinations (including the ones mentioned
here) are shown in Fig. 16. The variation from one estimate
to another in the range necessary for Roy equations, �t ’
0:6 GeV2, is very large, and even at jtj ’ 0:1 GeV2 there
are noticeable differences.

Fortunately, we can at least check the correctness
(within errors) of the values of 3"�t� given in Ref. [5] at
t � 0 and t � 4M2

� ’ 0:08 GeV2, and even improve
them. In fact, apart from the sum rule (5.2), the fulfillment
of the dispersion relation (3.5) fixes with good accuracy
3"�0�, and combinations of both values 3"�0� and
3"�4M

2
�� enter in the evaluations, using the Froissart-

Gribov representation, of two quantities, a1, b1, that
can also be determined by other methods, independent of
the Regge assumptions. The ensuing equality of the two
estimates each for a1, b1 given in Eqs. (6.2) and (6.4)
fixes c", as we will see below. Thus, if, for example,
we had taken the Veneziano-type t dependence of Palou
and Ynduráin [19] [i.e., as in (B8) without the exponential
factor ebt) we would have obtained b1 
 3� 10�3M�5

� ,
quite incompatible with determinations from the pion
form factor or the sum rule (6.8). Even if we include a
diffraction factor as in (B8), the values of a1, b1 following
from the Froissart-Gribov representation vary by more
than 1�.
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One can in principle fix the parameters for ��
scattering from other processes profiting from factoriza-
tion, which allows one to improve the poor precision of the
�� data. This is all right for the P, P0 poles because here
we can use data from �N and �pp
 pp, scattering which
are very precise and to which only these two poles, plus the
rho pole for �N, contribute. The situation is different for
the coupling of the rho pole to ��. Direct fits to �� data
are not precise and, to use factorization, one has to incor-
porate (besides �N) proton, antiproton and neutron scat-
tering data. The last presents important systematic errors
because the data have to be extracted from scattering on
deuterons. The large number of trajectories that contribute
to these processes also make the analysis unreliable; for
example, some existing fits have very likely their rho
trajectory contaminated by pion exchange, which is not
negligible at the lower energy range. Because of this, we
will now give a new determination of 3"�0� and d" inde-
pendent of Regge fits.

To obtain 3"�0�, we rewrite the dispersion relation (3.7)
as
ReF�It�1��s;0� �
2s� 4M2

�

�
P:P:

Z 1:422 GeV2

4M2
�

ds0
ImF�It�1��s0;0�

�s0 � s��s0 
 s� 4M2
��

�
2s� 4M2

�

�

Z 1

1:422 GeV2
ds0

ImF�It�1��s0;0�

�s0 � s��s0 
 s� 4M2
��
:

(B10)

We evaluate the left hand side for values of s1=2 from threshold to 925 MeV, at intervals of 25 MeV, using low energy
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experimental data, via the parametrizations6 given in Sec. II. In this region, s1=2 � 0:925 GeV, the uncertainties due to the
middle energy S0 and P waves are not very important. If we write in the right hand side of (B10)

ImF�It�1��s0; 0� � 3"�0��s0=ŝ�4"�0�; s � 1:422 GeV2;

and fix 4"�0� � 0:52 from factorization or deep inelastic scattering, we may fit 3"�0� and find a very precise number,

3"�0� � 1:06� 0:10: (B11)

This is quite compatible with the value 3"�0� � 0:94� 0:14 that we obtained from fits to �� cross sections in Ref. [5].
The result (B11) is robust; if we double the errors of the parameters for the P and S0 waves between 1 and 1.42 GeV, where
(as discussed in the main text) one has larger uncertainties, and repeat the fit, we get the same value.

As for c", we can use the values of a1, b1 obtained from the analysis of the pion form factor [9], together with the
Froissart-Gribov representation of the same quantities. We rewrite Eq. (6.1) as

a1 �

����
�

p
��2�

4M���1
 3=2�

Z 1:422 GeV2

4M2
�

ds
ImF�It�1��s; 4M2

��

s3
�

����
�

p
��2�

8M���1
 3=2�

Z 1

1:422 GeV2
ds

ImF�It�1��s; 4M2
��

s3
: (B12a)

For the bl, l � odd,

bl �

����
�

p
��l
 1�

4M���l
 3=2�

Z 1:422 GeV2

4M2
�

ds
�
4ImF�It�1�0 �s; 4M2

��

�s� 4M2
��s

l
1
�

�l
 1�ImF�s; 4M2
��

sl
2

�

�

����
�

p
��l
 1�

4M���l
 3=2�

Z 1

1:422 GeV2
ds
�
4ImF�It�1�0 �s; 4M2

��

�s� 4M2
��sl
1

�
�l
 1�ImF�s; 4M2

��

sl
2

�
;

ImF�It�1�0 �s; t� � @ImF�It�1��s; t�=@ cos�:

(B12b)
The left hand sides in (B12a) and (B12b) are evaluated
using also the experimental phase shifts and inelasticities
as fitted in Sec. II of the present paper and we take, in the
right hand side of (B12a),

ImF�It�1��s; 4M2
�� � 3"�4M

2
���s=ŝ�

4"�4M2
��;

s � 1:422 GeV2;

3"�t� ’ 3"�0��1
 c"t�: An analogous formula may be
written for the right hand side of (B12b). The sum rule
for b1 gives the more precise constraint for c" for two
reasons. First, it depends directly on the derivative of
ImF�It�1��s; t� with respect to t ( cos�), hence c" appears
explicitly; and, second, the low energy contributions to the
left hand side in (B12b) cancel to a large extent, so b1 is
given almost exclusively by the high energy, Regge for-
mulas; cf. Ref. [6].
6Of course, before improving with dispersion relations, or the
reasoning would be somewhat circular. Alternatively, we could
fit simultaneously the parameters for phase shifts and inelastic-
ities and the Regge parameters of the rho, using all three
dispersion relations; the method, quite complicated, would not
give results substantially different from what we get making
independent fits.
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We can fit, with these sum rules for a1, b1, plus the
dispersion relation for It � 1, the parameters 3"�0�, c"
simultaneously. As was to be expected, the value of 3"�0�
is unchanged and, for c", we find the values
c" �

�
�6:0� 2:8� GeV�2 from a1;
�4:7� 0:8� GeV�2 from b1:

(B13)
This is compatible with what one has from solution 1a of
Rarita et al. [18], c" � �6:6� 0:5� GeV�2 in the sense that
they produce similar values for 3"�4M2

��: the decrease in
c" is compensated (within errors) by the increase in 3"�0�,
Eq. (B1), compared with what we used in Ref. [5]. Our
results for c" thus justify the use of the formulas of solution
1a of Rarita et al. [18], for small values of jtj & 0:1 GeV,
as was done in Ref. [6], and the assumption that (in that
range) they are also valid for �� scattering, within errors.

We can also include in the fit the information from ��
scattering data (as discussed in Ref. [5]), since it is com-
patible with what we found now, and the sum rule (5.2),
evaluated with the parameters found in Sec. II here for the
low energy piece. In this case we find what we consider the
best results,
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3"�0� � 1:02� 0:11; c" � �5:4� 0:9� GeV�2:

(B14a)

This implies

d" � �2:4� 0:9� GeV�2: (B14b)

Equations (B14a) and (B14b) provide us with the central
values given in (B6) for d", 3"�0�.
APPENDIX C: ON EXPERIMENTAL PHASE
SHIFTS IN THE RANGE 1:4 GeV’ s1=2’ 2 GeV

As is well known, as soon as the center of mass kinetic
energy in a hadronic reaction, Ekin;c:m:, increases beyond
1 GeV, inelastic processes become important and, for
Ekin;c:m: * 1:3 GeV, they dominate elastic ones. This is
easily understandable in the QCD, ladder version of the
Regge picture, as discussed in Ref. [6]; and indeed, it is
verified experimentally in the hadronic processes �N, KN,
and NN where, for Ekin;c:m: > 1:3 GeV, the elastic cross
section is smaller than the inelastic one and, for Ekin;c:m: >
1:5 GeV, the elastic cross section is less than or about one
half of the inelastic one. There is no reason to imagine that
�� scattering would follow a different pattern. In this case
(large inelasticity), and again as mentioned in Refs. [6,7], it
can be proved theoretically [20] that there is not a unique
solution to the phase shift analysis: some sets of �s and �s
may fit the data; but so would others.

In spite of this, the Cern-Munich experiments7

have produced a set of phase shifts and inelasticities which
go up to s1=2 ’ 2 GeV. These have been used as input in
certain theoretical analyses, notably in those of Refs. [1,2].
Unfortunately, such phase shifts and inelasticities are very
likely to diverge more and more from reality as s1=2

becomes larger and larger than 1:3 GeV ’ 2M� 

1 GeV. This is suggested, besides the theoretical reasons
just mentioned, by the fact that the Cern-Munich phase
shifts and inelasticities contradict a number of physical
properties they should fulfill: we will here mention a few.

As we have remarked above, one would expect domi-
nant inelastic cross sections above s1=2 
 1:5 GeV; but the
Cern-Munich elastic cross sections are larger or compa-
rable to the inelastic ones up to s1=2 � 2 GeV. What is
worse, the �
�� inelastic cross section of Cern-Munich,
alone of all hadronic cross sections, decreases as the
kinetic energy increases between 1 and 1.7 GeV, as shown,
for example, in Fig. 7 in the paper of Hyams et al. [11(a)].
As happens for 6N,�N,KN, orNN scattering, and indeed
as is also seen in other experimental analyses for ��
scattering [4], we expect a leveling off of the total cross
section for Ekin;c:m: > 1:3 GeV: but the Cern-Munich total
cross section for �
�� scattering decreases roughly like
7Hyams et al. and Grayer et al., Refs. [11(a),11(b)].
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1=s up to 2 GeV. In fact, the Cern-Munich elastic cross
section agrees well with that found in other experiments
(such as those in Ref. [4]), but their total cross section is
smaller by a factor 
2 than those in Refs. [4], at the higher
part of the energy range: the Cern-Munich results certainly
misrepresent the total cross section. From all this it follows
that the Cern-Munich phases and inelasticities are not
reliable in that energy region.

Second, the combination of � and � for both P and S0
waves at energy * 1:8 GeV is incompatible with QCD
results for the electromagnetic form factor of the pion,
and also with Regge behavior, which requires all phases
to go to a multiple of � at high energy, and the real part of
the partial wave amplitudes for isospin 0, 1, to be positive.
The phase �1 is also incompatible with QCD results for the
electromagnetic form factor of the pion. In fact, the phase
of this form factor behaves like

�form factor�s� ’ �
	
1


1

logs=t̂



; s� .2; t̂
.2;

. is the QCD parameter (see, e.g., Ref. [21]). One may
take this to hold for s * 3 GeV2 (s1=2 > 1:6 GeV). If one
had negligible inelasticity for the P wave somewhere in the
region 1:6 GeV & s1=2 & 2 GeV, as the Cern-Munich data
seem to imply, the form factor and partial wave would have
the same phase at such energies, and thus the same behav-
ior should hold for �1�s�, �form factor�s�. But the phase
which the Cern-Munich experiment gives clearly contra-
dict this behavior around 1:8 GeV; there the Cern-Munich
phase �1 stays consistently below �, while, as just shown,
it should be above.

Third, for the process ���� ! ����, we would ex-
pect large inelasticity as soon as the production ���� !
"�"� is energetically possible, and therefore large inelas-
ticity for the S2, D2 waves for s1=2 � 2M". This, in
particular, occurs in any theoretical model. It is therefore
not possible to extrapolate these phases above 
1:45 GeV
as being elastic. In fact, the extrapolation used in
Refs. [1,2] for the D2 wave is clearly incorrect above

1:4 GeV as the corresponding j��2�2 �s�j grows linearly
with swhile, from Regge theory (and also from low energy
fits, see Fig. 7), one expects it to go to zero. Thus, besides
the general problem for the cross sections we have indi-
vidual problems for each of the S0, S2, P, and D2 phases.

Finally we would like to mention that both the Regge
picture and the values of the experimental cross sections
for all hadronic processes indicate that the number of
waves that contribute effectively to the imaginary part
(say) of the scattering amplitudes grows with the kinetic
energy as Ekin=., for Ekin upwards of 1 GeV . We thus
expect 2 to 3 waves (for fixed isospin) at Ekin 
 1 GeV,
and almost double this, 4 or 5 waves, at Ekin 
 1:7 GeV. In
fact, for�� scattering at this energy, the contribution to the
total cross section of the F wave is as large as that of the P
-30



8We would like to emphasize that what has been said should
not be taken as implying criticism of the Cern-Munich experi-
ment which, for s1=2 & 1:4 GeV, produced what are probably the
best determinations of phase shifts and inelasticities. Above
1:4 GeV, they did what they could: it is for theorists to realize
that this was not enough to produce acceptable phase shifts and
inelasticities at these higher energies.
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wave, the D0 wave is as large as the S0 wave and the
contribution of the D2 wave is actually larger than that of
the S2 wave. The partial wave series with only two waves
per isospin channel is not convergent, and the approxima-
tions, like those of Refs. [1,2,11], that neglect higher waves
at such energies have yet another reason for being unreal-
istic [14].

Because of all this, it follows that use of the Cern-
Munich phases and inelasticities must lead to a rather
distorted imaginary part of the �� scattering amplitude
above s1=2 
 1:4 GeV. It is thus not surprising that authors
like those in Refs. [1,2,15], who fix their Regge parameters
074016
by balancing them above 2 GeV with Cern-Munich phase
shift analyses below 2 GeV, get incorrect values for the
first.8
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