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Chiral symmetry breaking and stability of strangelets
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We discuss the stability of strangelets by considering dynamical chiral symmetry breaking and
confinement. We use a U�3�L �U�3�R symmetric Nambu-Jona-Lasinio (NJL) model for chiral symmetry
breaking supplemented by a boundary condition for confinement. It is shown that strangelets (finite
number of strange quarks) with baryon number A & 103 is the lowest quark droplets. For the observables,
we obtain the masses and the charge-to-baryon number ratios of the strangelets. These quantities are
compared with the observed data of the exotic particles.
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I. INTRODUCTION

The strange matter, containing the u, d and s quarks, has
been considered to be the ground state of QCD at finite
density [1–3], and expected to play an important role in the
astrophysical phenomena such as the quark stars and the
early universe [4]. It is also interesting that droplets of the
strange matter (strangelets) could be a candidate of the
dark matter. There is also a possibility to observe strange-
lets in the relativistic heavy ion collisions.

The physics of the quark matter is interesting in many
respects. However, it is difficult to describe its properties
directly from QCD. Until now, the stability of the strange
matter has been discussed by using effective models of
QCD. In the early stage, the MIT bag model was used with
an assumption that the strange matter could be treated as a
system of free fermi gas in a bag [1–3,5]. There, the
strange matter becomes stable than the ud quark matter
due to the large number of degrees of freedom by including
the strangeness as the quark density increases. In these
works, not only the bulk quark matter, but also the strange-
let of finite size has also been studied. It was then shown
that the strangelets could be more stable than the normal
nuclei.

The MIT bag model has an advantage that it is a simple
and useful model for various applications with quark con-
finement. However, we believe the existence of another
important ingredient in QCD, which is the chiral symmetry
and its spontaneous breaking [6]. It is known that the
Nambu-Jona-Lasinio (NJL) model is one of the useful
effective models for chiral symmetry breaking. It has
been shown by using the NJL model that the strange matter
cannot be absolutely stable [7–9]. The pattern of chiral
symmetry restoration in the finite density quark matter is
different for the ud quarks and the s quarks. The chiral
symmetry for the ud quarks is sufficiently restored at stable
densities (nB ’ 2� 3n0B), while that for the s quarks is still
largely broken. Then, the transition from the ud quark
matter to the strange matter by weak process is disfavored
because of the large dynamical quark mass in the strange
quark sector. This result is qualitatively very different from
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the results of the absolute stability obtained in the MIT bag
model, in which only current quark masses are used.

Though the strange matter of infinite volume was dis-
cussed by taking into account dynamical chiral symmetry
breaking [7–9], the strangelet with finite volume is not
discussed yet. In this paper, we study the stability of the
strangelet by considering dynamical chiral symmetry
breaking. In Sec. II, we formulate the Lagrangian to de-
scribe dynamical chiral symmetry breaking supplemented
by the confinement, which is treated approximately by a
boundary condition. In Sec. III, numerical results are
shown and we discuss the stability of the strangelet and
present several observables. In Sec. IV, we conclude the
present study and make discussions.

II. FORMULATION

We consider a finite size system of a quark droplet, in
which quarks are interacting through a four-point interac-
tion of the NJL model. In order to incorporate a finite size
system, first, we introduce the MIT bag boundary condition
and prepare a set of quark wave functions. Using this basis
set, we solve the Hartree equation with the NJL type
correlation. Therefore, our model Lagrangian for the
strangelet is given by [10,11]

L � � �i@6 �m0� �
G
2

X8
a�0

	� � �a �2 � � � i�5�
a �2


� � M ��r� R�; (1)

where  � �u; d; s�t is the quark field and m0 �
diag�m0

u; m
0
d; m

0
s� current quark mass matrix. The second

term of Eq. (1) is the four-point quark interaction invariant
under U�Nf�L �U�Nf�R symmetry, in which �a (a �

0; . . . ; 8) are the Gell-Mann matrices normalized by
tr�a�b � 2�ab. In our formulation, we do not consider
U�1�A breaking for simplicity.

The last term in Eq. (1) has been used in the MIT bag
model to impose quark confinement [12–14]. Assuming
that the strangelet has a spherical shape, the step function
��r� R� is introduced, where R is the bag radius. That
term represents a quark mass term with M for the exterior
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region and quarks are confined in the region r < R by
taking the limit M ! 1. It is well known that the last
term of Eq. (1) breaks chiral symmetry explicitly at the
bag surface. In order to recover chiral symmetry there, we
need to introduce the chiral field (pion) which is coupled to
the quarks at the bag boundary. This leads to the condition
of the chiral bag model, in which the pion cloud exists
outside of the bag, and the vacuum structure is modified in
the bag due to the pion-quark coupling which is known as
the chiral Casimir effect [15]. We assume this pion cloud
effect is small for large bag system considered in this
paper.

The parameters in Eq. (1), such as the coupling constant
G, a three dimensional momentum cut-off � (see Eq. (6)
below) and the current masses m0

u � m0
d and m0

s are deter-
mined so as to reproduce the pion mass m� � 0:139 GeV,
the pion decay constant f� � 0:093 GeV and the averaged
mass of the nucleon and the delta mN�� � 1:134 GeV.
This mass is used to fix the dynamical quark massm


u in the
vacuum by mN�� ’ 3m


u. We obtain the parameter set
G�2 � 4:7, � � 0:6 GeV and m0

u � m0
d � 5:9�

10�3 GeV. In this paper, we consider the current mass of
the strange quark m0

s as a free parameter. We show the
results by setting m0

s � 0:1 GeV. Other choices of m0
s

within a reasonable range do not affect our final
conclusions.

Now, let us investigate chiral symmetry breaking in a
quark bag. We assume that the quark bag contains suffi-
cient number of quarks, where the following approxima-
tions will work. As usual, in the NJL interaction term in
Eq. (1), we adopt the mean field approximation � �qq�2 !
2 �qqh �qqi � h �qqi2, where q � u; d and s, and solve the
following gap equation

mq � m0
q � 2Gh �qqi: (2)

Here we need to solve this equation for a finite quark
system in a spherical bag. This requires a treatment of
quark states in the quark bag with discretized energy levels,
which is rather complicated. In order to simplify the nu-
merical calculations, first we take the mean field mass mq

as a constant value independent of the position of the
quarks. Then, we introduce momentum integral with a
density of states for the evaluation of h �qqi, which is ap-
proximately obtained by the multiple reflection expansion
(MRE) [5,16]. It is expressed by a smoothed function,

 MRE�p;m; R� � 1�
6�2

pR
fS�p=m� �

12�2

�pR�2
fC�p=m�

� � � � ; (3)

where p is the momentum, m the dynamical quark mass
and R the radius of the quark bag. The second and third
terms in Eq. (3) are the correction terms by the surface and
curvature effects. The functions fS and fC are given by
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fS�x� � �
1

8�

�
1�

2

�
arctanx

�
; (4)

fC�x� �
1

12�2

�
1�

3x
2

�
�
2
� arctanx

��
:

In the limit m! 0, fS and fC become constants;

lim
m!0

fS�p=m� � 0; (5)

lim
m!0

fC�p=m� � �
1

24�2 :

By using the MRE method, the energy density & in a
strangelet with a radius R is given as [11],

& �
X

q�u;d;s

�
�mq �m0

q�
2

4G

� '
Z �

pFq

������������������
p2 �m2

q

q
 MRE�p;mq; R�

p2dp

2�2

�
� &0; (6)

where the integral is modified by the density of state (3).
Note that the dynamical quark mass mq in Eq. (6) is
determined self-consistently by Eq. (2) as stated below.
In Eq. (6), ' � Nspin � Ncolor � 6 is the degrees of degen-
eracy of spin and color, and � in the integral is a three
dimensional momentum cutoff. The value pFq is the Fermi
momentum which is determined by

'
Z pFq

0
 MRE�p;mq; R�

p2dp

2�2 � nq; (7)

for a given quark number density nq for each flavor q �

u; d and s. In Eq. (6), the last term &0 is the energy density
in the chirally broken vacuum of infinite volume

&0 �
X

q�u;d;s

�
�m


q �m0
q�

2

4G
� '

Z �

0

��������������������
p2 �m
2

q

q p2dp

2�2

�
;

(8)

wherem

q is the dynamical quark mass in the vacuum. Note

that the energy density (6) is written as a sum of the kinetic
energy of the valence quarks and the effective bag constant
just as in the MIT bag model,

& �
X

q�u;d;s

'
Z pFq

0

������������������
p2 �m2

q

q
 MRE�p;mq; R�

p2dp

2�2 � Beff ;

(9)

where the effective bag constant is defined by

Beff �
X

q�u;d;s

�
�mq �m0

q�
2

4G

� '
Z �

0

������������������
p2 �m2

q

q
 MRE�p;mq; R�

p2dp

2�2

�
� &0:

(10)
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Note that the effective bag constant Beff depends on the
quark density, which is different from the bag constant B in
the MIT bag model. Then, by taking @&=@mq � 0, the gap
Eq. (2) is written as;

mq � m0
q � 2G'

@
@mq

Z �

pFq

������������������
p2 �m2

q

q
 MRE�p;mq; R�

�
p2dp

2�2 : (11)

We mention that the dynamical quark mass depends not
only on the Fermi momentum, but also on the quark bag
radius R. It is a characteristic feature of a finite size system.

Now, by the energy density (9), the total energy of the
strangelet with a radius R is given by

E � &V � Ec �
+
R
; (12)

where V � �4�=3�R3 is the volume of the strangelet. By
assuming a uniform charge distribution in the strangelet,
the Coulomb energy Ec is given by

Ec ’
3

5

e2Q2

R
; (13)

where the total electric charge is given by Q �
2
3Nu �

1
3Nd �

1
3Ns with Nq being the number of each

quark, q � u; d and s. The last term of Eq. (12) is a
phenomenological zero point energy of the bag.
Physically, this expresses the subtraction of the center of
mass motion of the finite system. We adopt + ’ 2:04 in the
following calculation [17]. This term is negligible for
strangelet of our interest with A * 100.

We obtain the energy of strangelet in the following way.
First, we give a baryon number A and a strangeness frac-
tion rs � Ns=�Nu � Nd � Ns� with Nu � Nd. Then, for
several radii R, we solve the gap Eq. (11) and obtain the
dynamical quark massmq in the cavity, which is a function
of the radius R. Then we find the minimum of the energy
(12) with respect to the radius R.

We consider that the present mean field approximation
approach should be valid for the baryon number A larger
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FIG. 1. The energy density &q as a function of the dynamical qua
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than a certain value. This is because the MRE is valid when
a sufficient number of states are contained. For smaller
baryon number, we need to treat the discretized levels
explicitly.
III. NUMERICAL RESULT

A. Chiral restoration in a cavity

The confinement term in our model Lagrangian (1) is
responsible for the effects of the finite volume of the
strangelet. In this subsection, we investigate dynamical
chiral symmetry breaking in an empty cavity without
valence quarks.

In Fig. 1, we show the energy density (6) as a function of
the dynamical quark mass in the empty cavity with several
radii for ud and s quarks (dashed lines). For comparison,
the energy density of the bulk vacuum without the bound-
ary condition is also plotted in the same figure (solid lines).
Minimum points of the energy density provide the dynami-
cal quark masses. Concerning the ud quark sector in the
bulk vacuum, we obtain the dynamical quark mass
mu � 0:378 GeV. On the other hand, in the cavity, the
dynamical quark masses are mu � 0:322, 0:258 and
5:9� 10�3�� m0

u� GeV for R � 20, 11:5 and 8 fm, re-
spectively. We see that the dynamical quark mass becomes
smaller as the radius decreases. This shows that chiral
symmetry in the cavity tends to be restored. It is also true
for the s quark sector. In the bulk vacuum, we obtain the
dynamical quark mass ms � 0:539 GeV, while we find
ms � 0:361, 0:175 and 0:1�� m0

s� GeV for the radius R �
5:0, 3:1 and 2:5 fm, respectively.

In Fig. 2, the dynamical quark mass is shown as a
function of the radius of the cavity. The chiral symmetry
in the ud quark sector is restored at R � 11:5 fm, while
that in the s quark sector is restored at R � 3:1 fm. We see
that the chiral restoration in the s quark is suppressed as
compared with the ud quark. This is due to the large
current mass of the s quark as compared with the ud quark.
The difference in the tendency of the chiral symmetry
restoration in the ud quark sector and the s quark sector
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rk mass mq for various radius R. Left: u quark, right: s quark.
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FIG. 2. The dynamical quark mass mq of the u and s quarks as
a function of the radius R.
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causes the difference in the stability of the ud quark
droplets and the strangelets.

B. Stability of strangelet

Now we discuss the stability of the strangelet. For this
purpose, we add 3A valence quarks in the cavity, and
calculate the energy per baryon number E=A for several
baryon numbers A and the strangeness fractions rs. In order
to simplify the discussions, first, we fix the strangeness
fraction rs � 0 for the ud quark droplets and rs � 1=3 for
the strangelets, respectively. In the case of rs � 1=3, the
Coulomb energy of Eq. (13) vanishes. In this subsection,
we turn off the Coulomb term.

The cavity radius R of a strangelet is determined by the
variation of E=A. In Fig. 3(a), we show the energy per
baryon number E=A as a function of the cavity radius R for
the baryon numbers A � 102; 103 and 104. The minimum
of E=A gives the energy and the radius of the strangelet.
The existence of the minimum is understood in the follow-
ing way. In the total energy (12) with Eq. (9), there are two
terms: the kinetic energy from the valence quarks and the
volume energy BeffV from the effective bag constant. The
0 10 20
R [fm]
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1.6
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 [
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FIG. 3. Left: (a) The energy per baryon number E=A as a function o
(rs � 1=3). Right: (b) The dynamical quark mass mq of the ud and
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kinetic energy decreases, and the volume energy increases
with the bag radius. Hence, we find the equilibrium radius
at a certain radius, being balanced by the kinetic energy
and the volume energy.

For example, for the baryon number A � 104, the energy
per baryon number in the ud quark droplet and the strange-
let are �E=A�ud � 1:27 GeV and �E=A�uds � 1:33 GeV,
respectively. For the baryon number A � 102, the energy
per baryon number in the ud quark droplet and the strange-
let are �E=A�ud � 1:60 GeV and �E=A�uds � 1:48 GeV,
respectively. In our results, the strangelets are more stable
than the ud quark droplets for smaller baryon numbers A &

2� 103. The stability of the strangelets with small baryon
numbers is very much different from the result for the bulk
quark matter, where the strange matter with infinite volume
is not absolutely stable [7–9]. This is because of the effect
of the confinement leading to the restoration of chiral
symmetry in the cavity. In order to show the restoration
of chiral symmetry in the strangelets in Fig. 3(b), the
dynamical quark masses mu and ms of the ud and s quarks
are shown as functions of the cavity radius R. We see that
chiral symmetry of the ud quark and s quark in the
strangelet has a tendency to be restored for small radii as
seen in the empty cavity.

In Fig. 4(a), we show explicitly the energy per baryon
number E=A as a function of the baryon number A for
ud quark droplets and strangelets. We show the results
of the strangelets with the baryon number more than
ten, which would be treated by the mean field approxima-
tion. In Fig. 4(a), it is shown that the strangelets are more
stable than the ud quark droplets for the baryon number
A & 2� 103. It is generally expected that the strange
matter can be more stable than the ud quark matter,
when the dynamical quark mass of s quark ms is smaller
than the Fermi energy &F;u of the ud quark. When this
relation is satisfied, the weak transition from ud quarks to s
quarks can occur by the weak processes u! d� e� � 'e
and u� d! u� s. In Fig. 4(b), we compare ms and &F;u
in the ud quark droplets. It is shown that ms < &F;u is
satisfied in the quark droplets with A & 2� 103.
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f the radius R for the ud quark droplet (rs � 0) and the strangelet
s quarks in the strangelets with rs � 1=3.
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FIG. 4. Left: (a) The energy per baryon number E=A as a function of the baryon number A. The solid line for the strangelets
(rs � 1=3) and the dashed line for the ud quark droplets (rs � 0). Right: (b) The dynamical quark mass mu and ms of the u and s
quarks, and the Fermi energy &F;u of the u quark in the ud quark droplets with rs � 0.
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C. Observables

When we consider that the strangelets are formed in the
QCD phase transition in the early universe and/or in the
explosions of the strange stars, the remaining strangelets
could be observed in the cosmic rays. They would be
observed as exotic particles with a large mass and a small
electric charge. In order to identify such heavy particles,
the charge-to-baryon number ratio is an important quantity.
In this subsection, we discuss the observables of the
strangelets. In order to give a realistic discussion, we
switch on the Coulomb term (13).

In the previous subsection, we have fixed the ratio of s
quarks to be rs � 0 and 1=3. In the following, we consider
a variation of the energy (12) with respect to rs. When the
Coulomb term is switched on, we obtain a fraction number
of each flavor due to competition of the Fermi energy and
the Coulomb energy. The resulting energy per baryon
number E=A is plotted in Fig. 5. We also show the result
without the Coulomb term, which has been discussed in the
previous subsection. Here, we see that the strangelets with
A & 2� 103 are not affected by the Coulomb energy, since
the strangelets are almost neutral objects. On the other
10
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10
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10
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with Coulomb energy
without Coulomb energy

FIG. 5. The energy per baryon number E=A of quark droplets
with the Coulomb energy. The result of no Coulomb energy is
also plotted for comparison.
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hand, the ud quark droplets with A * 2� 103 obtain
some energy by the Coulomb repulsion.

We discuss quark number fraction in the quark droplets.
The number fraction ru � Nu=3A, rd � Nd=3A and rs for
u, d and s quarks are plotted as a function of the baryon
number A in Fig. 6. For the baryon number A & 2� 103,
we see that each quark number fraction is close to the
number 1=3. There, the Coulomb energy is a dominant
term. Indeed, we see that the ud quark droplets with
A * �103 have number fraction of ru ’ 1=3 and rd ’
2=3 to minimize the Coulomb energy.

Once the number fraction rq (q � u, d and s) is ob-
tained, the number of quarks Nq are also obtained. Then,
the electric charge Q of the strangelets are calculated from
Q � 2

3Nu �
1
3Nd �

1
3Ns. In Fig. 6, we show also the

charge-to-baryon number ratio Q=A as a function of the
baryon number A. The electric charge of the strangelet is a
few percents of that of the normal nuclei. Such strangelets
can have large baryon number, since the Coulomb energy
is negligible. Thus, our results show that the strangelets
would be exotic particles with small charge-to-baryon
number ratio as compared with the normal nuclei.
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FIG. 6. The quark number fraction rq (q � u, d and s) and the
electric charge Q=A of the quark droplets as a function of the
baryon number A.
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TABLE I. The baryon number A and the charge-to-baryon
number Q=A from cosmic ray experiments. See also [4].

Baryon number A Charge-to-baryon number Q=A

A� 350� 450 0:03� 0:04 [18]
A� 460 0:043 [19]
A > 1000 0:046 [20]
A� 370 0:038 [21,22]
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Let us compare our theoretical results and the existing
data which was reported in the observation of exotic par-
ticles in the cosmic rays. We show the baryon number and
the charge-to-baryon number ratio of the observed parti-
cles in Table I. The baryon numbers A of these exotic
particles are from the order of hundreds to thousands.
The charge-to-baryon number Q=A is around 0.04. It is
interesting that these observed values are very close to our
theoretical results. These exotic particles are candidates of
strangelets.

In Fig. 7, we show the radius R of the strangelet and the
ud quark droplet as a function of the baryon number A. The
relation between R and A is expressed approximately by

R � r0A1=3; (14)

with some constant r0. We obtain r0 ’ 0:57 fm and 0:76 fm
for the strangelets and the ud quark droplets, respectively.
The baryon number density is estimated as nB �
A=�4�R3=3� � 7:6n0B and 3:2n0B for the strangelets and
the ud quark droplets, respectively. Here, we use the value
of the normal nuclear matter density n0B � 0:17 fm�3. The
strangelets and the ud quark droplets are extremely com-
pact objects.

So far, we have not included electrons in our discussion.
We show that the electrons play only minor role in the
strangelets. From Fig. 6, the electric charge of the strange-
lets are at most Q ’ 52 for A � 2� 103, due to small
Q=A ’ 0:026. Assuming an electron around the strangelets
with such electric charge, the de Broglie wave length of the

electron is estimated by the energy of the electron Ee �������������������
p2 �m2

e

p
� e2Q=r; where p is the momentum of the
10
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FIG. 7. The radius R of the strangelet as a function of the
baryon number A.
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electron, me � 0:51 MeV the mass of the electron and r
the distance from the strangelet. Then, we find that the de
Broglie wave length of the electron is � ’ 940 fm for A �
2� 103. That is much larger than the radius of the strange-
let, which is shown in Fig. 7. Therefore, the electrons exist
far outside of the strangelet. If the size of the strangelets
could be larger than the electron de Broglie wave length,
we need to consider the electrons in the strangelets.
IV. CONCLUSION

We have discussed the structure of the strangelet by
considering dynamical chiral symmetry breaking. We
have used the NJL interaction for chiral symmetry break-
ing. In addition, we have incorporated the spherical cavity
for the confinement of quarks by the MIT bag boundary
condition. In the mean field approximation in the finite
volume system, we have obtained the gap equation for the
dynamical generation of the quark mass. Then, we have
obtained the energy of the strangelets.

As a result, it is shown that the chiral symmetry is
restored in the cavity at small radii. The dynamical quark
mass becomes small as compared with that in the vacuum
of infinite volume, and the strange quark mass can be
smaller than the Fermi energy of the ud quarks in the
droplet. We have investigated the stability of the strangelet
for several baryon number A and the strangeness fraction
rs � 0 and 1=3. It is shown that the strangelets are more
stable than the ud quark droplets for the baryon number
A & 2� 103 for the s quark current mass m0

s � 0:1 GeV.
Our result does not change qualitatively for the case of
m0
s � 0:18 GeV, in which we obtain the stable strangelets

for A & 0:5� 103 . We obtain the charge-to-baryon num-
ber of the strangelets, which is consistent with the experi-
mental data, reported to be observed in the cosmic rays.

In the present analysis, we obtain E=A larger than that of
ordinary nuclei for all baryon number A. This might cause
a transition of the strangelet to ordinary nuclei and/or hyper
nuclei. The transition to nonstrange quark matter and
ordinary nuclei, however, will be suppressed, because the
process should be accompanied by a weak process with a
large number of strangeness change. On the other hand, the
decay of a strangelet to hadrons with strangeness is pos-
sible in the present results on the masses of quark droplets.
We do believe at this moment, however, we cannot com-
pare our results of the quark droplets with actual hadrons
and nuclei, since we ought to include several correlations
in quark droplets to make a careful study of hadrons and
mesons in the present model. For instance, the color mag-
netic interaction reduces the energy of the strangelet.
Furthermore, the color pairing correlation and even color
flavor locking effects in the quark droplets may affect the
energy of the strangelet [23–25]. It is also interesting to
discuss the effect of the meson clouds in the strangelets
with small baryon number which are expected to be ob-
served in the experiments of heavy ion collisions.
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