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Description of gluon propagation in the presence of an A2 condensate
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There is a good deal of current interest in the condensate hAa�A
�
a i which has been seen to play an

important role in calculations which make use of the operator product expansion. That development has
led to the publication of a large number of papers which discuss how that condensate could play a role in a
gauge-invariant formulation. In the present work we consider gluon propagation in the presence of such a
condensate which we assume to be present in the vacuum. We show that the gluon propagator has no on-
mass-shell pole and, therefore, a gluon cannot propagate over extended distances. That is, the gluon is a
nonpropagating mode in the gluon condensate. In the present work we discuss the properties of both the
Euclidean-space and Minkowski-space gluon propagator. In the case of the Euclidean-space propagator
we can make contact with the results of QCD lattice calculations of the propagator in the Landau gauge.
With an appropriate choice of normalization constants, we present a unified representation of the gluon
propagator that describes both the Minkowski-space and Euclidean-space dynamics in which the hAa�A

�
a i

condensate plays an important role.

DOI: 10.1103/PhysRevD.71.074007 PACS numbers: 12.38.Aw, 12.38.Lg
I. INTRODUCTION

Recently studies making use of the operator product
expansion (OPE) have provided evidence for the impor-
tance of the condensate hAa�A

�
a i [1–3]. (There is a sugges-

tion that such a condensate may be related to the presence
of instantons in the vacuum [4].) The importance of that
condensate raises the question of gauge invariance and
there are now a large number of papers that address that
and related issues [5–19]. We will not attempt to review
that large body of literature, but will consider how the
presence of an hAa�A

�
a i condensate modifies the gluon

propagator and the vacuum polarization function in
QCD. We may mention the work of Kondo [7] who was
responsible for introducing a BRST-invariant condensate
of dimension two,

Q �
1

�

�Z
d4xTr

�
1

2
A��x�A��x� � �ic�x� � �c�x�

��
;

(1.1)

where c�x� and �c�x� are Faddeev-Popov ghosts, � is the
gauge-fixing parameter, and � is the integration volume.
Kondo points out that Q reduces to A2min in the Landau
gauge, � � 0. Here the minimum value of the integrated
squared potential is A2min, which has a definite physical
meaning [7].

For recent discussion of the role of various vacuum
condensates in QCD one may refer to Refs. [20,21]. (In
these works the value given for the gluon condensate is
ress: casbc@cunyvm.cuny.edu

05=71(7)=074007(13)$23.00 074007
h��s=��G2i � 0:009� 0:007 GeV4.) In our early work
[22] we assumed that the gluon condensate carried little
or zero momentum. The vector potential of the theory was
divided into a condensate field, Aa

��x�, and a fluctuating
field, Aa

��x�. The field Aa
��x� is independent of x and has

zero vacuum expectation value in our model.
We define an order parameter, �20, in a covariant gauge:

hvacjAa
��0�A

b
��0�jvaci � �

�ab

8

g��
4
�20: (1.2)

The field tensor for QCD is given by

Ga
���x� � @�Aa��x� � @�Aa��x� 
 gfabcAb��x�Ac��x�:

(1.3)

We insert

Aa��x� � Aa
� 
Aa

��x� (1.4)

into Eq. (1.3) and define

Ga
���x� � Ga

�� 
 Ga
���x�; (1.5)

where

G a
�� � gfabcAb

�Ac
� (1.6)

is the condensate field tensor. We stress that, if the zero-
momentum mode is macroscopically occupied, A

�
a and

G
��
a may be treated as classical fields. However, we must

maintain global color symmetry and Lorentz invariance
when using such fields.

As noted above, in our model [22], the gauge-invariant
condensate parameter hvacj:g2� ~�2�Ga

���0�G
��
a �0�:jvaci
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is related to the condensate parameter,
hvacj:g2� ~�2�Aa��0�A

�
a �0�:jvaci. This relation follows from

our assumption that the condensate is in a zero-momentum
mode. Since we have a phenomenological value for
hvacj:g2� ~�2�Ga

���0�G
��
a �0�:jvaci, obtained from QCD

sum-rule studies [23], we can obtain a value for
hvacj:g2� ~�2�Aa��0�A

�
a �0�:jvaci by the following procedure.

Using the assumption that the condensate carries zero
momentum, we identify the condensate contribution as

1

4�2
hvacj:g2� ~�2�Ga

���0�G
��
a �0�:jvaci

�
1

4�2
hvacj:g2� ~�2�G�

a �0�Ga
��0�:jvaci (1.7)

�
1

4�2

�
X
fabcfab

0c0 hvacjg4� ~�2�Ab
��0�A

c
��0�A

�
b0 �0�A

�
c0 �0�jvaci:

(1.8)

We may write

hvacjAb
��0�A

c
��0�A

�
b0 �0�A

�
c0 �0�jvaci

�
�40

�32��34�
g��g���bc�b0c0 
 g��g���bb0�cc0


 g�
�g�

��bc0�cb0 �: (1.9)

We have previously calculated matrix elements of this
type by several methods. In one work we calculated matrix
elements of the condensate potential after constructing
jvaci as a coherent state in the temporal gauge [24]. In
another work [22] we wrote Aa

��0� � �0�a�, where
�a��

�
a � �1. In the latter scheme �a� was averaged over

the gauge group when calculating matrix elements of
products of condensate fields. (One way to check the factor
(32)(34), which appears in the denominator of Eq. (1.9), is
to set b � c, � � �, � � �, and b0 � c0 and sum over
identical indices.) We may insert the vacuum state between
the operators to obtain

hvacjAb
��0�A

�
b �0�jvacihvacjA

�
b0 �0�A

b0
� �0�jvaci � �40:

(1.10)

This then agrees with the result obtained when evaluating
the right-hand side of Eq. (1.9).

Now, using Eq. (1.9) in Eq. (1.8), we find

1

4�2
hvacj:g2� ~�2�Ga

���0�G
��
a �0�:jvaci

�
9

�4��34��2
�g2� ~�2��20�

2; (1.11)

from which we obtain

g2� ~�2��20 � 1:34�GeV�
2: (1.12)
074007
(Here we use the renormalization point ~�2 ’ 1 GeV2.) We
will make use of these results in the following.

In this work we discuss the form of the gluon propagator
in some detail. We also contrast the structure of the propa-
gator in QCD and QED. In this comparison the distinction
between theories with and without boson condensates is
particularly clear. A characteristic of a theory with con-
densates is the appearance of a term proportional to
g���

4�k� in the gluon propagator. This term describes the
macroscopic occupation of the zero-momentum mode and
provides a covariant representation of the effect of the
condensate in modifying the structure of the propagator.

The organization of our work is as follows. In Sec. II we
review the introduction of the vacuum polarization tensor
in the case of QED. In Sec. III we discuss the vacuum
polarization tensor for QCD and in Sec. IV we review the
Schwinger mechanism for dynamical mass generation for
gauge fields [25]. In Sec. V we define a dielectric function
for QCD and present the results of our calculation of that
quantity. In Sec. VI we provide values of the gluon propa-
gator in both Euclidean and Minkowski space and make
some comparison to the propagator obtained in lattice
simulations of QCD. In Sec. VII we discuss the variation
of our parameters that may be made while still providing a
fit to the QCD lattice data. Finally, Sec. VIII contains some
further discussion and conclusions.
II. THE PHOTON PROPAGATOR AND THE
DIELECTRIC FUNCTION IN QED

In this section, we review standard results for the photon
propagator in QED. (This material is available in the
standard textbooks.) The propagator may be written as

iDem
���k� � �i

�
�g�� � k�k�=k2�

k2�1��1em�k2��



�k�k�
�k2 
 i��2

�
; (2.1)

where�1em�k2� is a finite quantity with the following limits
(to order �),

�1em�k2� � �
�
15�

k2

m2
; k2 ! 0; (2.2)

�
�
3�
ln
�
�k2

m2

�
�
5�
9�

; k2 ! �1: (2.3)

It is useful to define the dielectric function,

��k2� � 1��1em�k2�� (2.4)

so that

��k2� !
�
1


�
15�

k2

m2

 � � �

�
; k2 ! 0; (2.5)
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and

��k2� !
�
1�

�
3�
ln
�
�k2

m2

�


5�
9�


 � � �

�
; k2 ! �1:

(2.6)

A charge placed in the vacuum gives rise to a potential,

V� ~k� �
e

�� ~k2�j ~kj2
; (2.7)

which, for small distances, behaves as

V� ~k� !
e

1� �
3� ln�

~k2

m2
� 
 � � ��j ~kj2

: (2.8)

This is the standard result, which indicates that QED
becomes strongly coupled at short distances. We make
the observation that Dem

�!�k� has a pole at k2 � 0. We
make this apparently trivial observation, since we wish to
demonstrate that in our model there is no corresponding
pole in the gluon propagator in QCD—that is, the gluon
becomes massive via the Schwinger mechanism [25].

For completeness, we note that the polarization tensor
has the form

�em
���k� �

�
g�� �

k�k�
k2

�
�em�k�

� �g��k2 � k�k���em
1 �k� (2.9)

and we have

iDem
���k� � iD0

���k� 
 iD0
���k�i�

��
em�k��iDem

���k�;

(2.10)

where

iD0
���k� � �i

�
�g�� � k�k�=k2�

k2 
 i�



�k�k�
�k2 
 i��2

�
: (2.11)

It is also useful to rewrite Eq. (2.10) as

iD���k� � iD�0�
���k� 
 iD�0�

���k�

�

�
i��k�

1���k�=k2

�
��
iD�0�

���k�: (2.12)

The term �i�k�k�=�k
2 
 i��2� is common to both sides.

Therefore we may put

D T
���k� � �g�� � k�k�=k

2�DT�k�; (2.13)

D �0�T
�� �k� � �g�� � k�k�=k2�D

�0�
T �k�; (2.14)

with

D T�k� �
1

k2 ���k� 
 i�
; (2.15)

and
074007
D �0�
T �k� �

1

k2 
 i�
; (2.16)

to obtain the relation�
��k2�

1���k2�=k2

�
� D�0�

T �k���1DT�k� �D�0�
T �k��

� D�0�
T �k���1:

(2.17)

The left-hand side of Eq. (2.17) is related to the time-
ordered product of the currents,�

g�� �
k�k�

k2

��
��k2�

1���k2�=k2

�

� i
Z
d4xeik�xhvacjTj��x�j��0��jvaci: (2.18)

Note that ��k2� is the irreducible self-energy, while the
matrix element of the time-ordered product of the currents
gives rise to a reducible form.

We remark that the equation for the vector potential is�
�g��� 


�
1�

1

�

�
@�@�

�
A��x� � �j��x�: (2.19)

Thus

@�j
��x� �

1

�
��@�A

��x��: (2.20)

However, in QED we have

@�j��x� � 0 (2.21)

as an operator relation from which it follows that

��@�A��x�� � 0 (2.22)

is an operator relation.
Since the current is explicitly conserved in QED,��k2�

is independent of the gauge-fixing parameter. In general,
we can write

j��x� � j�T �x� 
 j�L �x�; (2.23)

where

j�T �x� �
�
g�� � @�

1

�
@�
�
j��x�; (2.24)

and

j�L �x� � @�
1

�
@�j��x�: (2.25)

We see from Eq. (2.21) that j�L �x� � 0 in QED.
In the case of QCD the situation is more complicated

since current conservation does not appear at the operator
level in a covariant gauge. Gauge fixing breaks the general
local gauge invariance of the theory. (However, gauge
fixing is necessary for covariant quantization, since with-
out such a procedure one finds that the momentum con-
-3
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jugate to Aa0�x� is zero.) In QCD one usually uses path-
integral quantization. That formalism leads to the intro-
duction of ghost fields. These fields insure unitarity for the
gluon channels.

Here we will follow Lavelle and Schaden [26] and define
the nonperturbative gluon propagator

D nonpert
�� �k2� � D���k

2� �Dpert
�� �k2�: (2.26)

The nonperturbative propagator is transverse in any cova-
riant gauge. That is a consequence of the Slavnov-Taylor
identities which state that the full and the perturbative
longitudinal propagators are the same in any covariant
gauge. Therefore, the difference appearing in Eq. (2.26)
yields a purely transverse result. In the following discus-
sion we will consider the calculation of the nonperturbative
gluon propagator and insure that our propagator is
transverse.
III. COVARIANT QUANTIZATION IN QCD

Consider the Yang-Mills Lagrangian for a SU�3� color
theory without quarks. We have

L �x� � �
1

4
Ga
���x�G

��
a �x� �

1

2�
�@�A

�
a �x��2

� @� ��a�x�@
��a�x�


 gfabc@� ��a�x��b�x�A
�
c �x��; (3.1)

where �a�x� and ��a�x� are ghost fields and � is a gauge-
fixing parameter. Now with

G��
a �x� � @�A�a�x� � @�A�a �x� 
 gfabcA�b �x�A

�
c �x�;

(3.2)

and using Eq. (3.1), we have

@�G
��
a �x� 


1

�
@��@�A

�
a �x�� � j��x�

� �gfabcAb��x�G
��
c �x�

� gfabc@� ��b�x���c�x�;

(3.3)

which we write as�
�g��� 


�
1�

1

�
@�@�

��
Aa��x� � �J�a �x�; (3.4)

where

J�a �x� � �gfabcAb��x�G
��
c �x� � gfabc@��A

�
b�x�A

�
c �x��

� gfabc@� ��b�x���c�x�: (3.5)

Note that J�a �x� is conserved in the classical theory. We
write

J�a �x� � J�T;a�x� 
 J�L;a�x� (3.6)

using definitions analogous to those in Eqs. (2.24) and
074007
(2.25). Then

@�J
�
a �x� � @�J

�
L;a�x� (3.7)

and

@�J
�
a �x� �

1

�
��@�A

�
a �x��: (3.8)

As in QED, the constraints imposed by current conserva-
tion in the physical Hilbert space can be maintained by
calculating with JaT;��x� instead of Ja��x�. [We remark that
the ghost fields do not contribute to JaT;��x�.] Note that

�A�T;a�x� � J�T;a�x�; (3.9)

1

�
@��@�A�L;a�x�� � J�L;a�x�; (3.10)

and

1

�
��@�A�L;a�x�� � @�J

�
L;a�x�; (3.11)

which also follows from Eqs. (3.7) and (3.8).
We may also write

g�� � k�k�=k2�
�

��k2�

1���k2�=k2

�
�ab

� g��k2 � k�k��
�
�1�k

2�

1��1�k
2�

�
�ab

� i
Z
d4xeik�xhvacjTJ�T;a�x�J

�
T;b�0��jvaci; (3.12)

where the polarization tensor is defined as

���
ab �k� � �g�� � k�k�=k2���k2��ab; (3.13)

� �g��k2 � k�k���1�k
2��ab: (3.14)

The division of the field into transverse and longitudinal
parts does not have the same utility in QCD as in QED,
since J�T;a�x� and J�L;a�x� have a nonlinear dependence on
the gluon field. Therefore, the field equations do not sepa-
rate into transverse and longitudinal equations in the case
of QCD. The quantities ��k2� and �1�k2� are defined in
terms of conserved currents, J�T;a�x�. If we work with J�a �x�
rather than J�T;a�x�, the ghost fields will insure that���

ab �k�
has a transverse structure. However, if one does not insure
the constraint h j@�A

�
a �x�j i � 0, one finds a dependence

on the parameter � in��k2�. While the presence of ghosts
insure unitarity relations, they do not serve to impose the
constraint @�A

�
a �x� � 0. Our calculation corresponds to a

diagrammatic analysis, made in the Landau gauge, with
condensate ghosts added to insure the transverse nature of
���
ab �k� [26].
-4



(c)

FIG. 1. (a) Calculation of the gluon self-energy in the conden-
sate. The first term shows the origin of the gluon mass term in the
mean-field approximation. The dashed line refers to a conden-
sate gluon of zero momentum. In the second part of (a) we show
a contribution to the (irreducible) polarization tensor in the
single (condensate) loop approximation. (b) Diagrams which
contribute to the polarization tensor in QCD. The wavy line is
a gluon, the solid line is a quark, and the third diagram represents
the gluon field. (c) Some corrections to the diagrams of (b) due to
the presence of a gluon condensate.
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IV. DYNAMIC MASS GENERATION VIA THE
SCHWINGER MECHANISM

The term in J�a�x�, �g2fabcfcdeAb��x�A
�
d �x�A

�
e �x�, will

give rise to a gluon mass term if there is a gluon condensate
in the QCD ground state. We find a contribution to the
conserved (transverse) current of the form

J�a �x� � �m2G

�
g�� � @�

1

�
@�

�
Aa

��x�; (4.1)

where

m2G �
9

32
g2� ~�2��20: (4.2)

This corresponds to a contribution to the polarization
tensor of the form

�ab
���k� � �ab�g�� � k�k�=k

2�m2G; (4.3)

with m2G � 614 MeV, if we use Eq. (1.12). [See Fig. 1]. It
is, therefore, useful to define

�1�k2� �
m2G
k2



�A�k

2�

k2
; (4.4)

where the second term does not have a pole as k2 ! 0. We
also have

��k2� � m2G 
�A�k
2�: (4.5)

The appearance of a pole at k2 � 0 in �1�k2� defines the
Schwinger mechanism [25].

It is also useful to subtract the quantity given in Eq. (4.1)
from the current and define

Ĵ �a �k� � J�a �k� 
m2G�g
�� � k�k�=k2�Aa

��k� (4.6)

in momentum space. Then we have�
�k2�m2G��g

���k�k�=k2�

1

�
k�k�

�
Aa

��k���Ĵ�a �k�:

(4.7)

We now write a first-order propagator as

iD�1���
ab �k� � �i

�
g�� � k�k�=k2

k2 �m2G

 �

k�k�

�k2 
 i��2

�
�ab;

(4.8)

and also write

iD�k2� � iD�1��k2� 
 iD�1��k2�
�
i�A�k

2�

1� �A�k2�
k2�m2G

�
iD�1��k2�;

(4.9)

where

D �1��k2� � �k2 �m2G�
�1; (4.10)
074007
and

D �k2� � �k2 �m2G ��A�k
2���1: (4.11)

Thus we see that, after absorbing the mass term in D�1�
��,

the quantity �A�k
2� is related to the time-ordered product

of the ĴaT;��x�:

g�� � k�k�=k2�
�
�A�k

2�

1� �A�k2�
k2�m2G

�
�ab

� i
Z
d4xeik�xhvacjTĴ�T;a�x�Ĵ

�
T;b�0��jvaci: (4.12)
-5
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Equation (4.12) is a generalization of Eq. (2.18) and re-
flects the presence of a condensate in the QCD vacuum
which makes the gluon massive. We also remark that, after
gauge fixing, the theory with ghost fields has a form of
gauge invariance—the BRST gauge symmetry. This sym-
metry allows one to derive the analog of the QCD Ward
identities in QCD—the Slavnov-Taylor identities. (We
note that the ghost condensate introduced in Ref. [26] is
BRST invariant.)
FIG. 2. The dielectric constant ��k2� � 1�
m2G
k2 


4�2

k2�m2G
� is

shown. The singularity at k2 � 0 reflects the operation of the
Schwinger mechanism [25]. (Here we see how the infrared
singularities of the theory lead to nonpropagation of gluons in
the QCD vacuum, a result which has long been conjectured to be
true.)
V. THE GLUON PROPAGATOR AND THE
DIELECTRIC FUNCTION IN QCD

One is tempted to write the analog of Eq. (2.1) in the case
of QCD. However, if there is a gluon condensate present,
there is an essential modification to be considered. We
recall that we found it useful to divide Aa��x� into a con-
densate field, Aa

��x�, and a fluctuating field, Aa
��x�. (We

made the assumption that the condensate field is in the
zero-momentum mode and therefore, A

�
a �x� is independent

of x.)
Thus, in coordinate space, we have

iDab
���x; x0� � hvacjTAa��x�Ab��x0��jvaci (5.1)

� hvacjAa
�Ab

�jvaci 
 hvacjTAa
��x�Ab

��x0��jvaci (5.2)

� �
g��
4
�20

�ab
8


 hvacjTAa
��x�Ab

��x0��jvaci: (5.3)

Our expression for the gluon propagator in momentum
space is then

iDab
���k� � �

g��
4
�20

�ab
8

�2��4��4��k�

� i
�
�g�� � k�k�=k2�

k21��1�k2��

 �

k�k�
�k2 
 i��2

�
:

(5.4)

We see the first characteristic difference when we compare
Eq. (5.4) with Eq. (2.1), that is, the presence of a delta
function. Whether such a term is present depends on
whether or not one has a ground-state condensate in the
zero-momentum mode.

We can define a QCD dielectric function:

��k2� � 1��1�k
2��: (5.5)

As noted earlier, the Schwinger mechanism refers to the
fact that, if ��k2� has a pole at k2 � 0, the gluon has a
dynamical mass and the pole at k2 � 0 in Dab

���k� disap-
pears. In an earlier work we found that m2G � �9=32�g2�20.
As we will see in this work

��k2� �
�
1�

m2G
k2



4�2

k2 �m2G

�
(5.6)

where �2 � �3=32�g2�20. (Thus m2G � 3�2.) The result
074007
given in Eq. (5.6) follows from the calculation of the
diagrams in Fig. 1 subject to the constraints required in
the covariant formalism. The quantity ��k2� defined in
Eq. (5.6) is shown in Fig. 2. It is interesting to note that
if the Schwinger mechanism is operative, that is, if there is
a pole in ��k2� at k2 � 0, one needs an additional singu-
larity to avoid having a zero in ��k2�. Such a zero would
imply that gluons could go on-mass-shell, a clearly unsat-
isfactory result. It is gratifying that at the next level of
approximation (one condensate-loop) one finds the neces-
sary singular term that maintains the relation ��k2� � 0.

We do not have all the terms contributing to ��k2�. For
example, there will be terms of order g2��20=k

2� or
g2 ln��20=jk

2j� in the deep-Euclidean region. The origin
of such terms may be seen in Fig. 1, where we have shown
how the presence of the condensate can lead to (power)
corrections to the asymptotic behavior of the polarization
tensor in the region k2 ! �1.

We also note that the only way to form a small parameter
in this model is to construct the ratio g2�20=��k

2�� which
is small for large spacelike k2. The nonperturbative analy-
sis is clearly not an expansion in a small parameter. That is
characteristic of nonperturbative approximations, in gen-
eral. Usually it is difficult to find a completely satisfactory
organizational principle for a nonperturbative expansion.
One that is extensively used is a loop expansion. The zero
loop or ‘‘tree approximation’’ corresponds to the mean-
field approximation. This approximation is used exten-
sively in field theory and many-body physics. In our analy-
-6
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sis the first term in Fig. 1(a) is identified as the ‘‘tree’’ or
mean-field approximation. That approximation is suffi-
cient to generate the gluon mass via the Schwinger mecha-
nism. The second term in Fig. 1(a) may be thought of as a
(condensate) one-loop correction to the mean-field ap-
proximation. It is, of course, interesting that we find non-
propagation of gluons already in the one-loop
approximation. Increasing the number of condensate loops
increases the number of factors of g2�20 which appear in
the numerator of the terms which make up ��k2�. That is, at
the tree level, we obtain the m2G=k

2 term and at the one-
loop level, we find the term �4�2=�k2 �m2G�.

We now wish to obtain the contribution to���
ab �k� in the

Landau gauge of the form

�g�� � k�k�=k2�
�
�4�2k2

k2 �m2G

�
(5.7)

displayed above. Various elements of our analysis are
depicted in Figs. 3–5 which are taken from Ref. [27].

Combining the above result with Eq. (4.3), the mean-
field plus the one (condensate) loop result for the polariza-
tion tensor is

�ab
���k� � �ab�g�� � k�k�=k

2�

�
m2G �

�4�2k2

k2 �m2G

�
: (5.8)
FIG. 3. Diagrammatic representation of various elements of
our model. Note that the dashed line contributes for k� � 0. (See
Ref. [27] for further details.)
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We had

�ab�g
�� � k�k�=k2�

�
��k2�

1� ��k2�
k2�m2G

�

� i
Z
d4xeik�xhvacjTĴ�T;a�x�Ĵ

�
T;b�0��jvaci: (5.9)

From our definition of Ja��x�, we find

Ja��x� � gfabcA�b �x�@�A
c
��x� � 2A

�
b �x�@�A

c
��x�

� Ac��x�@
�Ab��x��


 g2fabcfa
0b0cAb��x�A

�
b0 �x�A

a0
� �x��: (5.10)

We insert

Aa��x� � Aa
��x� 
Aa

��x� (5.11)

into the last expression to obtain

Ja��x� � gfabcA
�
b �x�@�A

c
��x� � 2A

�
b �x�@�A

c
��x�

� Ac
��x�@�Ab

��x�� 
 gfabcA
�
b �x�@�A

c
��x�

� 2A�
b �x�@�A

c
��x� �Ac

��x�@�Ab
��x��


 g2fabcfa
0b0cAb

��x� 
Ab
��x��A

�
b0 �x�


A�
b0 �x��A

a0
� �x� 
Aa0

� �x��: (5.12)

Since we are here working to order �g2�20�, we will drop
the last term of Eq. (5.12) at this point. [However, we note
that it is responsible for the term proportional to m2G in
Eq. (5.8).] Thus, we may use the approximation

�J a��x� � gfabcA�
b @�A

c
��x� � 2A

�
b @�A

c
��x�


 Ab
�@�Ac

��x�� (5.13)

for the calculation to be made here. (Note that, in the last
term, we have interchanged b and c and changed the sign
of that term.) We maintain the constraint

h m j @� �J
�
a �x� j  ni � 0; (5.14)

and implement that constraint by using only the conserved
current, ĴaT;��x�, in our calculation. We can define the
projection operator

P T
�� � g�� � @�

1

�
@�; (5.15)

which in momentum space has the form

P T
�� � g�� � k�k�=k

2�: (5.16)

We have

Ĵ aT;��x� � P T
��J

�
a �x�: (5.17)

Thus, using Eq. (5.13), we find

ĴaT;��x� ’ gf
abcA

�
bP

T
��@

�Ac
��x� � 2A

�
bP

T
��@�A

�
c �x�


 PT��A
�
b @

�Ac
��x��: (5.18)
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FIG. 5. Diagrammatic representation of various elements of
the polarization tensor used in this work. The first diagram on the
right-hand side is responsible for the gluon mass term. [The
vertex functions in the second two terms are to be expressed in
terms of the full gluon propagator, iDab

���k�.]

XIANGDONG LI AND C. M. SHAKIN PHYSICAL REVIEW D 71, 074007 (2005)
The first term in Eq. (5.18) is equal to zero; the last term in
Eq. (5.18) can be dropped because of the constraint

h nj@�A
�
c �x�j mi � 0: (5.19)

To the order considered, we have

ihvacjTĴ�T;a�x�Ĵ
�0
T;a0 �x

0��jvaci

� ig2fabcfa
0b0chvacjTf�2Ab

�P
��
T @�Ac

��x�g

� f�2Ab0
�0P

�0�0

T @0�
0
Ac0

�0 �x0�gjvaci (5.20)

� ig2fabcfa
0b0chvacjAb

�Ab0
�0 jvaci (5.21)

� f4P��T P�
0�0

T ghvacjTf@�Ac
��x�@

0�0
Ac0

�0 �x0�gjvaci

� ig2fabcfa
0b0c

�
��20

�bb0

8

g�0�

4

�

� f4P��T P�
0�0

T g@�@0�
0
iDcc0

��0 �x; x0��: (5.22)

We write

D cc0
�0�0 �x; x

0� � �cc0D��0 �x; x0�; (5.23)

and find

ihvacjTĴ�T;a�x�Ĵ
�0
T;a0 �x

0��jvaci

�
3

32
g2�20�aa0 4P

��
T P�

0�0

T @�@0�D��0 �x; x0��:
(5.24)

Now introduce

D ��0 �k� � �

� PT��0

k2 �m2G ��A�k2�



�k�k�0

�k2 
 i��2

�
;

(5.25)

and note that @�@0� ! ik���ik�� � k2.

Further, P��T P�
0�0

T PT��0 � P��
0

T , and therefore,

�aa0 �g��
0
� k�k�

0
=k2�

�
�A�k

2�

1� �A�k2�
k2�m2G

�

� �g��
0
� k�k�

0
=k2�

�
�4�2k2

k2 �m2G ���k2�

�
�aa0 ; (5.26)

where �2 � �3=32�g2�20.
FIG. 4. Diagrammatic representation of the equations dete
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Thus

�A�k
2�

1� �A�k2�
k2�m2G

�
� �

�
�4�2k2

k2 �m2G ��A�k
2�

�
; (5.27)

which has the solution

�A�k2� �
�4�2k2

k2 �m2G
: (5.28)

Recall that

��k2� � m2G 
�A�k2�; (5.29)

which then yields Eq. (5.7).
One may ask how our result is related to the result of a

diagrammatic analysis. It may be seen that the result given
here is obtained if one calculates in the Landau gauge and
adds a ghost condensate to maintain the transverse struc-
ture for ����k�. Indeed, Lavelle and Schaden [26] have
used a ghost condensate to enforce the transverse nature of
the nonperturbative part of ����k�. [Recall Eq. (2.26).]
Their calculation is made in the deep-Euclidean region
�k2 ! �1�. Therefore, we can compare our result with
theirs, in the case that a condensate h:A2:i is present, by
taking k2 ! �1 in our result. From Eqs. (5.28) and (5.29)
we have
rmining the vacuum polarization tensor. (See Ref. [27].)
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��k2� 			! m2G �
4

3
m2G k2 ! �1; (5.30)

� �
1

3
m2G; (5.31)

� �
3

32
g2� ~�2��20; (5.32)

which agrees with the result of Ref. [26], when that result is
evaluated in the Landau gauge. [It is interesting to see how
the sign of ��k2� changes as one passes from k2 � 0 to
k2 � �1.]

VI. QCD LATTICE CALCULATIONS AND
PHENOMENOLOGICAL FORMS FOR THE
EUCLIDEAN-SPACE GLUON PROPAGATOR

The form we obtained for the propagator was

D���k� �
�
g�� �

k�k�

k2

�
D�k�: (6.1)

We now write

D�k� �
Z1

k2 �m2 
 4
3

k2m2

k2�m2

: (6.2)

Here Z1 is a normalization parameter which we put equal
to 3.82 so that we may obtain a continuous representation
as we pass from Minkowski to Euclidean space. In Fig. 6
we show D�k� with m2 � 0:25 GeV2. [We remark that
D�k� � 0 when k2 � m2, D�k� � �Z1=m

2 at k2 � 0,
and D�k� ! Z1=k

2 for large k2.] If we choose Z1 �
15:28m2 � 3:82 our result for the propagator will be con-
tinuous at k2 � 0 when we consider both the Euclidean-
space and Minkowski-space propagators.
FIG. 6. The function D�k2� of Eq. (6.2) is shown in Minkowski
space. The value for large k2 is given by Z1=k2 with Z1 � 3:87.
Here m � 0:50 GeV.
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Results for the gluon propagator obtained in a lattice
simulation of QCD are given in Ref. [28]. In that work the
authors also record several phenomenological forms. We
reproduce these forms in the Appendix for ease of refer-
ence. Of these various forms we will make use of model A
of Ref. [28] which has the form

DL�k2� � Z
�

AM2�

�k2 
M2�1
�



1

k2 
M2
L�k2;M�

�
; (6.3)

with

L�k2;M� �

�
1

2
ln�k2 
M2��k�2 
M�2��

�
�dD

; (6.4)

and dD � 13=22. The parameters used in Ref. [28] to
provide a very good fit to the QCD lattice data are

Z � 2:01
4�5; (6.5)

A � 9:84
10�86; (6.6)

M � 0:54
5�5; (6.7)

and

� � 2:17
4�19: (6.8)

Note that M in GeV units is 1.018 GeV. Rather than work
with the lattice data we will use Eqs. (6.3), (6.4), (6.5),
(6.6), (6.7), and (6.8) when we compare our results with the
lattice data. In Fig. 7 we show k2DL�k� of Eq. (6.3) and in
Fig. 8 we show DL�k�. These functions are represented by
the solid lines in Figs. 7 and 8. Note that Eq. (6.2) may be
written in Euclidean space as
FIG. 7. The function �k2EDE�k� is shown. The solid line
represents the QCD lattice data, while the dotted line represents
�k2EDE�k� in the case that DE�k� is given in Eq. (6.14).
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FIG. 9. The function ��2�k��
13=22 is shown. [See Eq. (6.12).]

Note that ��2�0��13=22 � 1:81.

FIG. 8. The function �DE�k� is shown. The solid line repre-
sents the QCD lattice data, while the dotted line represents
�DE�k� of Eq. (6.14). [See Fig. 7.]

FIG. 10. For k2 > 0 the solid line represents k2D�k2� with
D�k2� given by Eq. (6.2). Here, Z1 � 3:82. For k2 < 0 we
show k2DE�k

2�, where DE�k
2
E� is given by Eq. (6.14) with Z2 �

2:11.
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DE�k� � �
Z1

k2E 
m2 � 4
3

k2Em
2

k2E
m
2

: (6.9)

This form is useful for k2E < 1 GeV
2 and we therefore

consider various phenomenological forms which may be
used to extend Eq. (6.9) so that we may attempt to fit the
lattice result over a broader momentum range. To that end,
we make use of Ref. [29]. The authors of that work define
the Landau gauge gluon propagator as

hAa��k�Aa��k0�i � V��k
 k0��ab
�
��� �

k�k�
k2

�
Z�k2�

k2
;

(6.10)

with

Z�k2� � !
�

k2

"2QCD 
 k2

�
2�
���k2���0; (6.11)

and 0 � �13=22. [We do not ascribe any particular sig-
nificance to Eq. (6.11). We use Eq. (6.11) as a phenome-
nological form which could be replaced by a form which
provides a better fit to the data within the context of our
model at some future time. We believe Eq. (6.11) is useful,
since it is a simple matter to remove the first term of that
equation and introduce a propagator that has the small k2

behavior of our model.]
The authors of Ref. [29] introduce two choices for ��k2�

of Eq. (6.11). We use their form for �2�k2�:

�2�k
2� �

��0�

lne
 a1�
k2

"2QCD
�a2�

: (6.12)

In their analysis they put � � 0:5314, "QCD � 354 MeV,
��0� � 2:74, a1 � 0:0065, and a2 � 2:40. (Here, we have
not recorded the uncertainties in these values which are
074007
given in Table 2 of Ref. [29].) As we proceed, we will
change these values somewhat. As a first step we remove
the first factor in Eq. (6.11) and write

Z�k2� � Z2��2�k
2���0: (6.13)

We now use a1 � 0:0080 and a2 � 2:10 rather than the
values given above. In Fig. 9 we show ��2�k��

13=22 as a
function of k, using our modified values of a1 and a2.

We now define

DE�kE� � �
Z2���k2���0

k2E 
m2 � 4
3

k2Em
2

k2E
m
2

: (6.14)

The function �k2DE�kE� is shown in Fig. 7 as a dotted line.
-10



FIG. 11. Same as Fig. 10 except that D�k2� is shown.

FIG. 13. Variation of the parameter Z2 of Eq. (6.2). (See the
caption of Fig. 12.) Here the dotted line is calculated with our
original choice of Z2 � 2:11. The dashed line is for Z2 � 2:12
and the dash-dot line is calculated with Z2 � 2:10. (For these
results m � 0:500 GeV.)

FIG. 12. Variation of the mass parameter of Eq. (6.2). [See
Fig. 7] Here the heavy lines define the range of variation of the
lattice data corresponding to the parameters and uncertainties
given in Eqs. (6.5), (6.6), (6.7), and (6.8). The dotted line
corresponds to the choice m � 0:500 GeV. The dashed line
corresponds to m � 0:548 GeV and the dash-double-dotted
line corresponds to m � 0:520 GeV. (Beyond k � 1 GeV these
various mass parameters yield essentially the same result.)
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In this calculation we have put Z2 � 2:11. We find a good
representation of the lattice result for kE < 2 GeV.

In Fig. 8 we compareDE�kE�with the result of the lattice
calculation which is represented by the solid line. In
Fig. 10 we combine our results in Minkowski and
Euclidean space and show the values of k2D�k2� for both
positive and negative k2 values. For positive k2 we useD�k�
of Eq. (6.2) and for negative values of k2 we use DE�k

2
E� of

Eq. (6.14). Equality of these functions at k2 � 0 implies
Z1 � Z2���0��13=22, or Z1 � 1:81Z2. [In our work we have
used Z1 � 3:82 and Z2 � 2:11. See Eqs. (6.2) and (6.14).]
In Fig. 11 we show D�k2� rather than k2D�k2�, which was
shown in Fig. 10.

VII. VARIATION OF PARAMETERS

In this section we investigate how changes in the choice
of the parameters"QCD,m, and Z2 of Eqs. (6.12) and (6.14)
affect our results. To carry out this analysis we consider the
uncertainties in the parametrization of the data by
Eqs. (6.3) and (6.4). These uncertainties are given in
Eqs. (6.5), (6.6), (6.7), and (6.8). We consider the maximum
and minimum ranges for the parameters and calculate
�k2D�k�. The two heavy lines in Figs. 12–14 denote the
range of values of �k2D�k� consistent with the QCD lattice
data.

As a next step we consider variation of the mass pa-
rameter we have used. In Fig. 12 the dotted line corre-
sponds to m � 0:500 GeV, the original value we have
used. The dashed line corresponds to m � 0:548 GeV
and the dash-double-dotted line corresponds to m �
0:520 GeV. Some improvement in the fit is obtained if
m � 0:520 GeV when compared to our original choice of
m � 0:500 GeV. Note that variation in the parameter m
only affects the fit for k � 1 GeV. Beyond that value the
various choices made for m yield essentially the same
result.
074007
Results obtained upon variation of the parameter Z2 are
shown in Fig. 13. There the dotted line corresponds to our
original choice of Z2 � 2:11. The dashed line results when
Z2 � 2:12 and the dash-dot line is calculated for Z2 �
2:10. The original choice of Z2 � 2:11 appears most sat-
isfactory in terms of the fit at small and large values of k.
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FIG. 14. Variation of the parameter "QCD of Eq. (6.2). (See the
caption of Fig. 12.) The value used previously was "QCD �

0:354 GeV. Here the dash-dot line is calculated for "QCD �

0:380 GeV, the light solid line has "QCD � 0:400 GeV, and the
dotted line is for "QCD � 0:450 GeV.
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In Fig. 14 we exhibit the effects obtained when the
parameter "QCD is varied. The original value of "QCD
used was 0.354 GeV. Increasing this value to 0.380 GeV
(dash-dot line) or to 0.400 GeV (light solid line) yields
reasonable fits to the data. Increasing "QCD to 0.400 GeV
leads to a less satisfactory fit to the data with several points
outside of the acceptable range. (See Fig. 14.)

We conclude that only relatively small variations of our
parameters m, "QCD, and Z2 are acceptable. The relatively
small uncertainties in the values for k < 0:6 GeV constrain
the possible variation of the parameters used to fit the
lattice data.
VIII. DISCUSSION

In this work we have developed nonperturbative approx-
imations for the description of the gluon condensate and
have calculated the form of the gluon propagator. The
approximation used may be thought of as a condensate-
loop expansion. Since the condensate is assumed to be in
the zero-momentum mode, the loop expansion does not
require loop integrals, but leads to algebraic relations. Our
results are obtained in the Landau gauge. [Note that ghosts
are introduced to maintain the transverse character of
����k� in Ref. [26].] We are able to make some contact
with lattice calculations of the gluon propagator, which are
made in the Landau gauge. We find that our value for the
dynamical gluon mass, mG ’ 600 MeV, is in accordance
with the results of recent lattice calculations. We have also
seen that our results agree with those of Lavelle and
Schaden, if one evaluates our propagators in the deep-
Euclidean region �k2 ! �1� [26].
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In our work, confinement of quarks and gluons and
chiral symmetry breaking are related to a single condensate
order parameter �g2�20�. This result is consistent with the
fact that in lattice simulations of QCD, deconfinement and
chiral symmetry restoration take place at the same tem-
perature. In this connection, we note that there is no
threshold value of �g2�20�. For any finite value of this
parameter, we find chiral symmetry breaking and nonpro-
pagation of quarks [30] and gluons.

In this work we have provided a representation of the
gluon propagator in both Euclidean and Minkowski space.
The Minkowski-space propagator has only complex poles
and that implies that the gluon is a nonpropagating mode in
the QCD vacuum. Our analysis takes into account the
important condensate hA�a Aa�i which is responsible for
mass generation for the gluon. Our work has some relation
to that of Cornwall [31] who obtained a gluon mass of
500� 200 MeV in his analysis. Cornwall also suggested
that ‘‘quark confinement arises from a vertex condensate
supported by a mass gap.’’

In recent work, Gracey obtained a pole mass of the gluon
of 2:13"MS in a two-loop renormalization scheme [32]. If
we put "MS � 250 MeV, the mass obtained at two-loop
order in Ref. [32] is 532 MeV, which is close to the value of
500 MeV used in the present work. (We remark that in
Ref. [22] we obtained a gluon mass of 530 MeV, if we
made use of Eq. (3.18) of that reference, which includes the
effect of including various exchange terms in our analysis
of the relevant matrix elements.)

APPENDIX

For ease of reference we record various semiphenome-
nological forms which are meant to represent the
Euclidean-space gluon propagator.

Gribov [33]:

DL�k2� �
Zk2

k4 
M4
L�k2;M�: (A1)

Stingl [34]:

DL�k2� �
Zk2

k4 
 2A2k2 
M4
L�k2;M�: (A2)

Merenzoni et al. [35]:

DL�k2� �
Z

�k2�1
� 
M2
: (A3)

Cornwall I [31]:

DL�k2� � Z
�
k2 
M2�k2�� ln

�
k2 
 4M2�k2�

"2

��
�1
; (A4)

where

M�k2� � M
�ln�k2
4M2

"2
�

ln�4M
2

"2
�

�
�6=11

: (A5)
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Cornwall II [36]:

DL�k2� � Z
�
k2 
M2� ln

�
k2 
 4M2

"2

��
�1
: (A6)

Cornwall III [36]:

DL�k2� �
Z

k2 
 Ak2 ln� k
2

M2� 
M2
: (A7)

Model A [28]:

DL�k2� � Z
�

AM2�

�k2 
M2�1
�



1

k2 
M2
L�k2;M�

�
: (A8)
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The parameters for model A are given in Eqs. (6.5), (6.6),
and (6.7). Model B [28]:

DL�k2� � Z
�

AM2�

�k2�1
� 
 �M2�1
�



1

k2 
M2
L�k2;M�

�
:

(A9)

Model C [28]:

DL�k2� � Z
�
A

M2
e��k2=M2�� 


1

k2 
M2
L�k2;M�

�
: (A10)
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