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The article contains general formulas for the production of J � 3=2 resonances by neutrinos and
antineutrinos. It specializes to the P33�1232� resonance whose form factors are determined by theory and
experiment and then are compared with experimental results at low and high energies. It is shown that the
minimum in the low Q2 region is a consequence of a combined effect from the vanishing of the vector
form factors, the muon mass and Pauli blocking. Several improvements for the future investigations are
suggested.
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I. INTRODUCTION

One pion production is a process, which, along with the
quasielastic scattering and DIS, contribute to the total cross
section of neutrino interactions with nuclei. If the pion is
absorbed in the nuclear medium of the target, this process
constitutes the major background to the quasielastic pro-
cess. It is known that the one pion production proceeds
through resonance production, the leading contribution
coming from ��� resonance. In the coming era of long
baseline neutrino experiments the cross section of this
process needs to be calculated with high accuracy. At the
same time one must identify and separate the coherent
component.

Theoretical and experimental study of one-pion neutrino
production was performed in 70’s. A comprehensive ex-
perimental study, including the Q2 � dependence of the
differential neutrino cross section, was made in two experi-
ments at ANL and BNL. Below we represent the data from
these two and other experiments and fit them with theo-
retical formulas.

Theoretically the model of Rein and Segal [1] is often
used to estimate the neutrino production of the resonances.
This model is based on the quark harmonic oscillator
model for the form factors developed by Feynman,
Kislinger and Randal [2]. Another approach is to parame-
trize the neutrino-nucleon-resonance vertex with phe-
nomenological form factors. The cross section is usually
expressed in terms of helicity amplitudes [3,4] with de-
tailed formulas given in Ref. [5]. After the discovery of
neutrino oscillations the production of resonances by
muon- and tau-neutrinos was studied again [6–10] as a
means for extracting oscillation parameters. The calcula-
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tions have been done, neglecting the muon mass, which is a
valid approximation for Q2 � m2

�.
Since the time of the ANL and BNL experiments, it is

known that there is a difference between the data and
theoretical predictions in the region of small Q2 (Q2 <
0:1 GeV2). Nowadays it appears that the same problem
revealed itself in new experiments (K2K and MiniBooNE).
In this region of Q2 the results can be influenced by the
muon mass, Pauli blocking and coherent pion production.
In this article we take into account the nonzero muon mass
and Pauli blocking and calculate the cross sections inde-
pendently. We decided to calculate the cross section, mak-
ing use of the phenomenological form factors. Numerical
and analytical comparisons show, that our results agree
with the standard formulas.

The formulas we present here follow closely the notation
from deep inelastic scattering where the cross section is
given in terms of structure fuctions W i�Q2; ��, with the
leptonic variables occurring in multiplicative factors. The
mass of the muon occurs in the multiplicative factors and
also enters indirectly when we define the accessible region
of phase space. We compare our results with the production
of ��� resonance, where only the amplitude with isospin
3=2 contributes.

The plan of the paper is as follows. In Sec. II we collect
general formulas for the production of resonances with
J � 3=2. These formulas, together with those in the
Appendix A, enable the reader to write a program and
produce the cross section. We give values for the coupling
constants and form factors, which are frequently used. In
Sec. III the production of the P33�1232� resonance is
compared to available data, including muon mass effects.
Finally, in Secs. IV and V we highlight special properties
and point out interesting features to be investigated in the
experiments.
-1  2005 The American Physical Society
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II. RESONANCE PRODUCTION

In this article we discuss experiments in which the
reaction

�� ~k�p� ~p� ! ��� ~k0����� ~p0� ! ��p�� (2.1)

is studied. We adopt standard kinematics with the defini-
tions

q � k� k0; Q2 � �q2; W2 � p02

and compute the cross section d�
dQ2dW

. The mass of the

resonance is not restricted to a specific value but allowed
to vary within an interval proportional to the width.
Consequently we let W vary and write the cross section
with formulas analogous to deep inelastic scattering. The
cross section is now written as

d�
d	dE0

�
G2

16�2 cos
2�C

E0

E
L��W

�� (2.2)

withmN the mass of the nucleon in the target, MR the mass
of the resonance and the leptonic tensor

L�� � Tr	���1� �5�k6 ��k6
0�

� 4�k�k
0
� � k�k

0
� � g��k � k

0 � i"��� k
�k0 �

(2.3)

The hadronic tensor is defined as
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W �� �
1

2mN

X
hpjJ��0�j�ih�jJ��0�jpi!�W2 �M2

R�

� �W 1g
�� �

W 2

m2
N

p�p� � i"���"p�q"
W 3

2m2
N

�
W 4

m2
N

q�q� �
W 5

m2
N

�p�q� � q�p��

� i
W 6

m2
N

�p�q� � q�p�� (2.4)

where the sum implies a sum over the � polarization states
and an averaging over the spins of the target. The integra-
tion over phase space of the �was carried out and gives the
one-dimentional !� function. Sometimes it is convenient
to use other variables for resonance production

d�

dQ2dW
�

�W
mNEE

0

d�
d	dE0

(2.5)

Since the � resonance has an observable width, the !�
function should be replaced by its resonance representation

!�W2 �M2
R� �

MR�R
�

1

�W2 �M2
R�

2 �M2
R�

2
R

: (2.6)

It is known that resonance production dominates neutrino
reactions in the few GeV energy region. The formalism we
present in this section is general and holds for various
resonances. Later on, when we relate the structure func-
tions to the form factors, we specialize to distinct final
states.

The hadronic matrix element differs from resonance to
resonance and contains vector and axial form factors. A
convenient parametrization for the ��� resonance is the
following
h���jJ�jpi �
���
3

p
� "�p

0�d"�u�p�

with d"� � g"�
�
CV3
mN

q6 �
CV4
m2
N

�p0 � q� �
CV5
m2
N

�p � q� � CV6

�
�5 � q"

�
CV3
mN

�� �
CV4
m2
N

p0� �
CV5
m2
N

p�
�
�5

� g"�
�
CA3
mN

q6 �
CA4
m2
N

�p0 � q�
�
� q"

�
CA3
mN

�� �
CA4
m2
N

p0�
�
� g"�CA5 � q"q�

CA6
m2
N

: (2.7)
In the square of the matrix element also appears the
Rarita-Schwinger projection operator

j �ih �j � S�"

� 	p6 0 �MR�

�
�g�" �

1

3
���" �

1

3MR

����p0" � p0��"� �
2

3M2
R

p0�p0"
�
:

(2.8)
With these preliminaries the hadronic tensor takes the
form

W �� �
3

2

1

2mN
Tr	� �d���S�"d

"��p6 �mN��!�W
2 �M2

R�

(2.9)

with � �d��� � �0�d
�����0 and then parametrized accord-

ing to (2.4). This way we define the relative normalization
between the structure functions and the form factors. The
factor 3 comes from the isospin coefficient for � and the
1=2 from the averaging over the initial spins of the target.
-2



RESONANCE PRODUCTION BY NEUTRINOS: J � 3=2. . . PHYSICAL REVIEW D 71, 074003 (2005)
The results of the calculation are summarized in the
Appendix A.

The remaining problem consists in writing the cross
section in terms of form factors and specifying their nu-
merical strength and Q2-dependence. The cross section
assumes the standard form which includes now the mass
of the muon.

d�

dQ2dW
�
G2

4�
cos2�C

W

mNE2

�
W 1�Q2 �m2

��

�
W 2

m2
N

�
2�k � p��k0 � p� �

1

2
m2
N�Q

2 �m2
��

�

�
W 3

m2
N

�
Q2k � p�

1

2
q � p�Q2 �m2

��

�

�
W 4

m2
N

m2
�
�Q2 �m2

��

2
� 2

W 5

m2
N

m2
��k � p�

�
(2.10)

The dependence on the muon mass agrees with the one in
Ref. [11]. The structure functions are also expressed in
terms of the form factors. This is straightforward and for
P33�1232� resonance leads to the relations given in the
Appendix A. For final states with opposite parity, like
D13�1520�, the �5 matrices in the current-nucleon-
resonance vertex will appear as multiplicative factors to
the axial (and not the vector) form factors. The effect of
this change to Eqs. (A1)–(A6) is the replacement ofmNMR
by �mNMR.

The determination of the form factors follows from
general principles and experimental results. We begin
with the vector form factors. The conserved vector current
hypothesis gives the relation CV6 � 0. The remaining form
factors also occur in electroproduction where it has been
established that the M1� multipole dominates. Recent data
determine the contribution from the electric multipole E2

to be �� 2:5% and from the scalar multipole �� 5%
[12]. We shall assume the dominance of the magnetic
dipole which gives

CV3 � 1:95; CV4 � �CV3
mN

W
; CV5 � 0:

The numerical value is obtained from the data in electro-
production after an isospin rotation. Electroproduction data
lead to a Q2 � dependence faster than the dipole [9]

CV3 �Q
2� �

CV3 �0�

�1�Q2=M2
V�

2

1

1�Q2=4M2
V

;

with MV � 0:84 GeV. This functional dependence indi-
cates that the size of the resonance is larger because of the
mesonic cloud surrounding the resonance and its Fourier
transform gives a steeper function of Q2.

Among the axial form factors the most important con-
tribution comes from CA5 whose numerical value is related
to the pseudoscalar form factor CA6 by PCAC. We shall use
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the values

CA5 �0� �
f�g����

3
p � 1:2; CA4 � �

CA5
4
;

CA3 � 0; CA6 � CA5
m2
N

Q2 �m2
�

(2.11)

with g� � 15:3 GeV�1, f� � 0:97m� and

CA5 �Q
2� �

CA5 �0�

�1�Q2=M2
A�

2

1

1�Q2=3M2
A

; (2.12)

The value for CA4 was found to give a small contribution to
the cross section and the dipole form factor for CA5 is again
modified. The form factor CA3 is set to zero as suggested by
early [13–15] dispersion calculations. It remains to intro-
duce the functional form for the width of the resonance

� � �0

�
p��W�

p��MR�

�
�2l�1�

; (2.13)

with l � 1 for P33�1232� resonance. A partial width of the
form

� � �0
p��W�

p��MR�
(2.14)

was also used [5,9], but now Eq. (2.13) is preferable since it
is required by the partial wave analysis.

With these results and those in the Appendix A, one has
a complete set of formulas with which to proceed to
analyze the electromagnetic and weak production of the
P33 resonance.
III. EXPERIMENTAL RESULTS

A detailed experimental study, including the Q2 �
dependence of the differential neutrino cross section, was
made in two experiments: using the Argonne National
Laboratory 12 ft bubble chamber (ANL) [16] and the
Brookhaven National Laboratory 7 ft bubble chamber
(BNL) [17,18]. In both experiments the neutrino spectrum
was peaked at approximately 1 GeV. We calculate the
cross section for the reaction �p! ����� ! ��p��

weighted over the neutrino spectrum.
The BNL experiment observed a peak in the differential

cross section d�=dQ2 at about Q2 � 0:175 GeV2 as
shown in Fig. 1, where experimental data are presented
in arbitrary units. We computed the Q2 � distribution with
the form factors described above and MA � 1:05 GeV.
The results are shown in Fig. 1. The theoretical curve
d�=dQ2 has a peak at Q2 � 0:085 GeV2.

It is evident that the agreement between theory and
experiment atQ2 > 0:2 GeV2 is satisfactory for both func-
tional forms of the resonance width (2.13) and (2.14). For
the overall scale, we normalize the area under the theoreti-
cal curve for Q2 > 0:2 GeV2 to the corresponding curve
under the data. It is also evident that the muon mass brings
-3
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FIG. 2. The cross section d�=dQ2, calculated for the ANL
neutrino energy distribution. The full lines are for m� �

0:105 GeV, the dashed lines are for the approximation m� � 0.
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FIG. 1. The cross section d�=dQ2, calculated for the BNL
neutrino energy spectrum and compared with the experiment for
the running width (2.13) (a) and (2.14) (b)1(b). The full lines are
for the case m� � 0:105 GeV, the dashed lines are for the
approximation m� � 0.
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an additional decrease in the region of small Q2 where the
Pauli suppression is also significant, but the data are still
slightly lower than the theoretical curve.

In the ANL experiment the data are with large bins ofQ2

and the maximum of d�=dQ2 is at a larger value of Q2.
The formalism described so far determines the cross sec-
tion including the absolute normalization. For MA �
1:05 GeV and the modified dipole in Eq. (2.12) we obtain
the curve in Fig. 2(a), which is above the data. The inte-
grated cross section in this case at high energies ap-
proaches 0:7 � 10�38cm2, which is consistent with the
experimental data. The discrepancy in Q2 � dependence
can not be resolved by the overall normalization of the
curve and requires a decrease of MA � 0:84 GeV in order
to obtain the curve in Fig. 2(b). The two curves are without
(dotted) and with (solid curve) the muon mass. The inte-
grated cross section is also decreased approaching at high
energies a constant value of 0:55 � 10�38cm2, which is also
consistent with the data.
074003
An earlier theoretical analysis [10] accounts for the
ANL data by using similar couplings and muon mass
effects. They include nuclear corrections by using deute-
rium wave functions and compare the differential cross
section to the ANL data. Another approach [19] describes
electron and neutrino scattering on various nuclei in terms
of a scaling law abstracted from data and the authors
present several distributions. A direct comparison with
our results is not available and perhaps difficult because
of the different methods.

Another way to reach an agreement with the data is to
replace the dependence (2.12) with a steeper dependence,
for example
CA5 �Q
2� �

CA5 �0�

�1�Q2=M2
A�

2

1

1� 2Q2=M2
A

;

with MA � 1:05 GeV or
-4
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CA5 �Q
2� �

CA5 �0�

�1�Q2=M2
A�

2

�
1

1�Q2=3M2
A

�
2
;

with MA � 0:95 GeV
The theoretical formalism is very close to explaining the

experimental data. There are differences in the BNL and
ANL data, which we can not understand and which must be
resolved by future experiments. In addition there is a sharp
decrease at small Q2 < 0:2 GeV2 which appears to be
persistent. One part of the decrease comes from the Pauli
suppression, which is small for deuterium and another part
from terms depending on the muon mass which are im-
portant for the low energy of the neutrino beam.

One can easily see from Fig. 2, that for low energies, i.e.,
neutrino energy E� 1 GeV, taking into account the non-
zero muon mass reduces the cross section at small Q2 by
approximately 20%. The physical origin of this reduction
is as follows. Firstly, the double differential cross section
d�=dQ2dW changes mainly due to the contribution from
W 5 and W 4 structure functions. Secondly, for eachQ2 we
must integrate this cross section overW. The lower limit of
integration W��Q2� � mN �m� is independent of Q2 and
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FIG. 3. Upper integration limit W��Q
2� forE � 1 GeV and

E � 7 GeV The full lines are for m� � 0:105 GeV, the dashed
lines are for the approximation m� � 0.
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the muon mass. The upper limit of integration, however,
depends on Q2 and the muon mass and is given by

W2
��Q

2� �

�
1

4
s2a2�

�m4
�

s2
� 2

m2
�

s

�
�

�
Q2 �

1

2
m2
�a2�

�
2

� sa�

�
Q2 �

m2
�

2
a�

��
=	a��Q

2 �m2
���;

where s � 2mNE�m2
N , a� � 1�m2

N=s.
The integration limits are shown in Fig. 3 for E �

1 GeV and E � 7 GeV. One could easily notice that tak-
ing into account the muon mass noticeably decreases W�

and implies the reduction of d�=dQ2. This effect dimin-
ishes as the neutrino energy increases. In the rest of the
section the muon mass is taken into account, but not
discussed any more.

For the sake of completeness we mention experiments at
high energies. In these cases effects from the muon mass
are diminished so that the levelling of the d�=dQ2 distri-
bution should disappear. The SKAT [20] experiment had
an average neutrino energy of E � 7 GeV. The results are
shown in Fig. 4 together with theoretical curves withMA �
1:05 GeV (which we call case (1)) and with MA �
0:84 GeV (case (2)). There are few experimental points
and the error bars are too large to draw conclusions.

In the FNAL 15-ft bubble chamber [21] experiment data
are available for neutrino energies between 15 and
40 GeV. At such energies the integrated cross section
remains constant with high accuracy, so the exact value
of neutrino energy is not important. The data and the
theoretical curves are presented in Fig. 5.

From the BEBC experiment, obtained with the CERN
wide-band beam, two data sets are available: BEBC-86
[22] with hEi � 24:8 GeV and BEBC-90 [23] (the neu-
trino flux is given in [24]) with hEi � 54 GeV. They are
shown in Fig. 6. A common property is the disappearance
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FIG. 4. The cross section d�=dQ2, calculated for the SKAT
experiment with hEi � 7 GeV for the behavior of the form
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of the flattening of the cross section at small Q2, as
expected.

We conclude, that different experiments, performed with
the help of bubble chambers in the 80’s, show at low Q2 a
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FIG. 6. The cross section d�=dQ2 in experiments BEBC-86
and BEBC-90 for the behavior of the form factors in cases (1)
and (2).
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slightly lower cross section than theoretically predicted.
The experiments described so far are not detailed enough
to allow separation of the form factors and a unique deter-
mination of their Q2 dependence.

Two new experiments K2K and MiniBooNE will be
delivering results. They are both at low neutrino energies
where the muon mass effects should be important. With the
neutrino spectra from [25,26] we predict the
Q2-distributions shown in Figs. 7 and 8, using the axial
form factor in Eq.(2.12). These experiments use medium or
heavy nuclei as targets and nuclear corrections must be
applied, which were left out in our curves (only Pauli
blocking is included).
IV. SPECIAL PROPERTIES

It is evident from our presentation that the cross section
in the � resonance region has several important features
still to be investigated. One of them deals with the structure
of the form factors, especially the axial form factors. We
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FIG. 8. The cross section d�=dQ2, predicted for K2K experi-
ment, W < 1:4 (solid line) and W < 1:6 (dashed line).
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showed that the dominant contribution comes from CA5 and
CA6 . Closely related is the Q2 � dependence of the process,
especially in the small Q2 region, where various effects are
present:
(i) t
d 
σ/

 d
Q

2 , c
m

2 /G
eV

2
d 

σ
/ d

Q
2

, c
m

  /
 G

eV
2

2

FIG. 9.
section.
he mass of the muon is important at low energies,

(ii) n
uclear corrections are also important, like the

Pauli factor. Up to now there is no sign of a possible
distortion of the angular distribution due to charge
exchange effects, and
(iii) e
ffects from the mass of the muon should become
more evident in the MiniBooNE and K2K
experiments.
In order to see the relative importance of the form factors
we computed in Fig. 9(a) the various contributions for
E� � 1 GeV. The dominance of CA5 and CV3 is evident
with the other terms contributing less than 2 �
10�40 cm2=GeV2. As Q2 ! 0 only the CA5 contribution
to d�=dQ2 is dominant and remains large for very small
values of Q2 � 0:01 GeV2 and then turns sharply to zero.
This is caused by the vanishing of the phase space, as we
mentioned earlier. Fig. 9(b) shows the contribution of the
smaller form factors and the sum of them is negative with a
negative valley at Q2 � 0:15 GeV2.
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A similar study for the structure functions is shown in
Fig. 10 for two values of the neutrino energy (E� � 1:0 and
2:0 GeV). We note that the terms from W 4 and W 5 are
negative and W 5 contributes to the sharp decrease of the
cross section at small values of Q2.

Comparison between experiments with neutrino and
antineutrino beams will be interesting. The cross sections
for �p! ��p�� and ��n! ��n�� are related to each
other by changing the sign of the W 3 term, i.e. the axial–
vector interference term. It follows from Fig. 9(a), that the
Q2 � distribution will be, at low energies, very different.
Similarly the difference ��p � � ��n is large at low energies
and becomes smaller at high energies. This property fol-
lows from the fact, that the structure of the form factors
limits the dominant contribution to the low region of Q2.
Furthermore, the value of q � p � �mN remains small in
the resonance region. These two properties together imply
that the contribution from W 2 increases quadratically with
E�, while the vector-axial interference terms grow linearly.
To illustrate this property, we define ratio
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R �

d��p
dQ2 �

d� ��n

dQ2

d��p
dQ2 �

d� ��n

dQ2

(4.1)

and plot it in Fig. 11 as a function of Q2 for three energies.
The theoretical curves terminate at values of Q2 when the
phase space is kinematically not allowed.

The channel ��n! ��n�� was observed in the BEBC-
90 experiment for an average antineutrino energy hE ��i �
40 GeV. Combining neutrino and antineutrino reactions
we plot in Fig. 12 the ration R as a function of Q2. For the
high energies under consideration and the experimentally
accessible region of Q2 < 3:5 GeV this ratio grows slowly
from 0:0 to 0:15.

V. SUMMARY AND CONCLUSIONS

In this article we have calculated general formulas for
the production of J � 3=2 resonances by neutrinos, includ-
ing the muon mass. The formalism is applicable to the
P33�1232�, D13�1520� resonances provided the form fac-
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tors are available. In this article we analyse the production
of P33 resonance and compare it with data that are avail-
able. The analysis of D13�1520� and the other J � 1=2
resonances is left for a future publication.

Combining results from electroproduction and previous
analysis of neutrino production [9] we find again that the
dominant contribution comes from the CV3 �Q

2� and CA5 �Q
2�

form factors. Their dependence in Q2 is faster than the
dipole form factors.

A peculiar feature of the low energy data is a decrease of
the differential cross section, d�=dQ2, as Q2 ! 0. We
presented an analysis including the mass of the muon and
Pauli blocking, both of which bring better agreement with
the data. We have demonstrated that the mass of the muon
restricts the phase space for the process in the low Q2

region. The effects should be observable in the
MiniBooNE and K2K experiments. In the small Q2 region
coherent scattering may also be present and should be
established as a sharp peak in the d�=dQ2dt versus t
distribution, with the four-momentum-transfer squared
given by
t � �q� p��
2 � �

 X
�;�

p?
i

!
2

�

"X
�;�

�Ei � pk
i �

#
2

(5.1)
This formula is based on zero energy transfer to the nucleus
but includes the muon mass [27,28]. Then the incoherent
sum of the two effects must reproduce the data.

It is still interesting to analyse other final state channels
p�0, n��, . . .as well as reactions with antineutrino beams.
In the low energy experiments, W 3�Q2�, which distin-
guishes neutrinos from antineutrinos, is large as it is shown
in Fig. 10. For completeness we also presented results at
higher energies where general trends are already apparent.
For instance, the mass of the muon becomes less important
at higher energies and the contribution from W 3�Q

2� is
smaller.

A similar analysis is possible for the D13�1520� and J �
1=2 resonances P11�1440�, S11�1535�, . . ., where informa-
tion for the vector form factors is now available [29,30]
from Jefferson Lab. experiments. We plan to include this in
the second article of this series.
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APPENDIX: STRUCTURE OF THE HADRONIC
TENSOR

As we have mentioned, the hadronic tensor is parame-
trized in the form (2.4). The functions W 1; . . . ;W 6 have
been calculated from Eq. (2.9) and led to
074003
W i�Q2; �� �
1

mN
Vi�Q2; ��!�W2 �M2

R�
with the Vi�Q2; �� being the following
V1

3
�

�CV3 �
2

m2
N

2

3M2
R

	�q � p�Q2�2�q � p�m2
N� �M2

R��q � p�
2 �Q2m2

N �Q2mNMR�� �
�CV4 �

2

m4
N

2

3
�q � p�Q2�2

� �q � p�m2
N �mNMR� �

CV3C
V
4

m3
N

2

3MR
�q � p�Q2�	�q � p�Q2��q � p�m2

N � 2mNMR� �M2
Rq � p�

�
2

3

��
CA4
m2
N

�
2
�q � p�Q2�2 � �CA5 �

2 � 2
CA4C

A
5

m2
N

�q � p�Q2��	q � p�m2
N �mNMR� (A1)

V2

3
� �CV3 �

2 2

3M2
R

Q2	q � p�m2
N �M2

R� �
�CV4 �

2

m2
N

2

3
Q2	q � p�m2

N �mNMR� �
CV3C

V
4

mN

2

3MR
Q2	q � p� �MR �mN�

2�

�
2

3

�
�CA5 �

2m
2
N

M2
R

�
�CA4 �

2

m2
N

Q2

�
	q � p�m2

N �mNMR� (A2)

V3

3
�

4

3MR

�
�
CV3C

A
4

mN
�q � p�Q2� � CV3C

A
5mN

�
	2M2

R � 2mNMR �Q2 � q � p� �
4

3
�q � p�Q2�

�

�
�
CV4C

A
4

m2
N

�q � p�Q2� � CV4C
A
5

�
(A3)

These are the important form factors for most of the kinematic region. As mentioned already, there are two additional
form factors, whose contribution to the cross section is proportional to the square of the muon mass.

V4

3
�

2

3M2
R

�CV3 �
2	�2q � p�Q2��q � p�m2

N� �M2
R�m

2
N �mNMR�� �

2

3

�CV4 �
2

m2
N

�2q � p�Q2�	q � p�m2
N �mNMR�

�
2

3MR

CV3C
V
4

mN
	�2q � p�Q2��q � p�m2

N � 2mNMR� � q � pM2
R� �

2

3

�
�CA5 �

2 m
2
N

M2
R

�
�CA4 �

2

m2
N

�2q � p�Q2�

�
�CA6 �

2

m2
NM

2
R

��Q2 � q � p�2 �Q2M2
R� � 2CA4C

A
5 � 2

CA4C
A
6

m2
N

q � p� 2
CA5C

A
6

M2
R

�M2
R �Q2 � q � p�

�

� 	q � p�m2
N �mNMR� (A4)

V5

3
�

2

3

�CV3 �
2

M2
R

q � p	q � p�m2
N �M2

R� �
2

3

�CV4 �
2

m2
N

q � p	q � p�m2
N �mNMR� �

2

3MR

CV3C
V
4

mN
q � p	q � p� �MR �mN�

2�

�
2

3

�
�CA4 �

2

m2
N

q � p� �CA5 �
2 m

2
N

M2
R

� CA4C
A
5 �

CA4C
A
6

m2
N

Q2 �
CA5C

A
6

M2
R

�q � p�Q2�

�
	q � p�m2

N �mNMR� (A5)

V6 � 0 (A6)
Notice, as it is expected, for the contribution of the
vector form factors the equalities W 5 � W 2 � �q �
p�=Q2 and W 4 � W 2 � �q � p�

2=Q4 �W 1m
2
N=Q

2 are
satisfied.

In terms of the invariant variables, Q2 and W, the scalar
products of the 4-vectors are:

k � p � mNE; q � p � mN�; � �
W2 �Q2 �m2

N

2mN

p � p0 �
1

2
�W2 �Q2 �m2

N�; q � p0 � mN��Q2:
Eq. (2.10) must be compared with the known one from
the Ref. [5]. This can be easily done for a specific case
Q2 ! 0, m� ! 0, when only CA5 contribute to the cross
section. After the integration over W with the help of the
delta-function we obtain

d�

dQ2 �
G2
F

2�
cos2�C�C

A
5 �

2

�
1�

M2
R �m2

N

2mNE

�
�mN �MR�

2

2M2
R

;

that identically coincides with the result, obtained in a
similar way from Ref. [5].
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