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Generalized parton distribution functions and the nucleon spin sum rules
in the chiral quark soliton model
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The theoretical predictions are given for the forward limit of the unpolarized spin-flip isovector
generalized parton distribution function �Eu � Ed��x; �; t� within the framework of the chiral quark
soliton model, with full inclusion of the polarization of Dirac sea quarks. We observe that ��Hu �Hd� �
�Eu � Ed���x; 0; 0� has a sharp peak around x � 0, which we interpret as a signal of the importance of the
pionic q �q excitation with large spatial extension in the transverse direction. Another interesting indication
given by the predicted distribution in combination with Ji’s angular momentum sum rule is that the
�d quark carries more angular momentum than the �u quark in the proton, which may have some relation
with the physics of the violation of the Gottfried sum rule.
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I. INTRODUCTION

A distinguishable feature of the chiral quark soliton
model (CQSM) as compared with many other effective
model of baryons, like the naive quark model or the MIT
bag model (at least in its most primitive version), is that it is
a field theoretical model which takes account not only of
three valence quarks but also of infinitely many Dirac sea-
quark degrees of freedom [1,2]. As emphasized by
Diakonov in his recent review [3], this feature is essential
in explaining the so-called ‘‘nucleon spin crisis’’ [4,5] as
well as the quite large experimental value of the 
N sigma
term [6,7], what he calls the two stumbling blocks of the
naive quark models. In fact, the nucleon spin sum rule
within the CQSM was first derived in [2]. It was shown
there that the sizable amount of the nucleon spin comes
from the orbital angular momentum carried by Dirac sea
quarks. How the CQSM can explain the huge experimental
value of 
N sigma term is also very interesting. It predicts
that only a small portion of the large 
N sigma term is due
to the main constituents of the nucleon, i.e. the three
valence quarks, and the dominant contribution originates
from the Dirac sea quarks [8,9]. Moreover, it was recently
found that the Dirac sea contribution to the 
N sigma term
resides in a peculiar delta-function type singularity at x �
0 in the chiral-odd twist-3 distribution function e�x� of the
nucleon [10–13]. Also clarified there is that this delta-
function singularity of e�x� is a rare manifestation of the
nontrivial vacuum structure of QCD, characterized by the
nonzero quark condensate, in a baryon observable. The
superiority of the CQSM manifests even more drastically
in high-energy observables. It is almost only one effective
model that can give reliable predictions for the quark and
antiquark distribution functions of the nucleon satisfying
the fundamental field theoretical restrictions like the pos-
itivity of the antiquark distribution functions [14–20].
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Coming back to the nucleon spin problem, we claim that
the CQSM already gives one possible solution to it. The
physical reason why this model predicts small quark spin
fraction, or large orbital angular momentum is clear. It is
connected with the basic nucleon picture of this model, i.e.
‘‘rotating hedgehog.’’ Naturally, this unique nucleon pic-
ture takes over that of the Skyrme model. Immediately
after the EMC measurement, Ellis, Karliner, and Brodsky
showed that this unique model predicts �� � 0, i.e. van-
ishing quark spin fraction [21]. An important difference
between these two intimately connected models (the
Skyrme model as an effective pion theory and the CQSM
as an effective quark model) should not be overlooked,
however. In the CQSM, �� receives small but definitely
nonzero contribution from the three valence quarks form-
ing the core of the nucleon. (Another way to get �� � 0 is
the generalization of the Skyrme model so as to include the
short range fields like the vector mesons [22].)

At any rate, an interesting solution to the nucleon spin
puzzle, provided by the chiral soliton picture of the nu-
cleon, emphasizes the importance of the orbital angular
momentum of quark and antiquarks [2]. On the other hand,
there is another completely different scenario giving a
possible solution to the nucleon spin puzzle. It claims
that the small quark spin fraction is compensated by the
large gluon polarization (or the gluon orbital angular mo-
mentum.) Which scenario is favored by nature is still an
unsolved question, which must be answered by some ex-
periments in the future. An experimental test of the first
scenario has been thought to be an extremely difficult task,
because the quark orbital angular momentum in the nu-
cleon was not believed to be an experimentally observable
quantity. The situation has changed drastically after Ji’s
proposal [23–26]. He showed that the quark total angular
momentum and also the quark orbital angular momentum
in the nucleon can in principle be extracted through the
measurement of the deeply virtual Compton scattering
(DVCS) cross sections in combination with analyses of
the standard inclusive reactions. The key quantity here is
-1  2005 The American Physical Society
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the unpolarized spin-flip generalized parton distribution
function Eq�x; �; t� appearing in the DVCS cross section
formula. Especially interesting in the context of the above
argument is its forward limit Eq�x; 0; 0� �
limt!0;�!0E

q�x; �; t�. It satisfies the following second mo-
ment sum rule:

1

2

Z 1

�1
x�fq1 �x� � Eq�x; 0; 0�� dx � Jq; (1)

which is widely known as Ji’s angular momentum sum rule
[23–26]. Here fq1�x� is the standard unpolarized quark (and
antiquark) distribution function of flavor q, while Jq is the
total angular momentum of quarks (and antiquark) with
flavor q. Since fq1�x� is already well known, the new
experimental knowledge of Eq�x; 0; 0� would completely
determine Jq. Combining it with the available knowledge
of the longitudinal quark polarization ��, together with
the relation

Jq � Lq �
1

2
��; (2)

this opens up the possibility to extract the quark orbital
angular momentum in the nucleon purely experimentally.
Very recently, Ossmann et al. reported a very interesting
calculation of Eq�x; 0; 0�, or more precisely the isoscalar
combination Eu�x; 0; 0� � Ed�x; 0; 0�, within the frame-
work of the CQSM [27]. They found that the contribution
of Dirac sea quarks to Eu�x; 0; 0� � Ed�x; 0; 0� dominates
over that of the three valence quarks in the small x region.
Especially interesting is their finding that the Dirac sea
contribution to Eu�x; 0; 0� � Ed�x; 0; 0� has a 1=x singular-
ity around x � 0 in the chiral limit. Because of this pecu-
liar feature, it turns out that the Dirac sea term gives
negligible contribution to the first moment, i.e.R
1
�1�E

u�x; 0; 0� � Ed�x; 0; 0�� dx, or equivalently to the iso-
scalar anomalous magnetic moment sum rule, while it
gives a sizable contribution to the second moment sum
rule, i.e.

R
1
�1 x�E

u�x; 0; 0� � Ed�x; 0; 0��dx, or to the quark
angular momentum sum rule. They also investigated the
second moment sum rule for Eu�x; 0; 0� � Ed�x; 0; 0�
within the CQSM, and confirmed that it reduces to the
nucleon spin sum rule first derived in [2]. This was an
expected result, since, in the CQSM, any physical observ-
ables, including the nucleon spin, is saturated by the quark
field alone (the quark intrinsic spin and the quark orbital
angular momentum in the present case), and since it is
already known that the model satisfies the energy momen-
tum sum rule as well [15]. Although only the flavor singlet
combination appears in the total nucleon spin sum rule, we
also need the independent isovector combination
Eu�x; 0; 0� � Ed�x; 0; 0�, to make a flavor decomposition
of the quark angular momentum. The isovector combina-
tion Eu�x; 0; 0� � Ed�x; 0; 0� has already been addressed
partially, but in an incomplete way [28–30]. The purpose
of the present study is to carry out more complete inves-
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tigation of this quantity. We shall show the results of exact
numerical calculation of this quantity without recourse to
the derivative expansion type approximation [28,29]. We
also investigate the first and the second moment sum rule
of Eu�x; 0; 0� � Ed�x; 0; 0�, which is expected to give valu-
able information on the theoretical consistency of the
model.

The paper is organized as follows. In Sec. II, we briefly
summarize some basic properties of the unpolarized gen-
eralized parton distribution functions (GPDF) necessary
for our later discussion. Section III is devoted to the
theoretical analyses of the unpolarized GPDF based on
the CQSM. The main concern here is the first and the
second moments of the isovector spin-flip unpolarized
GPDF E�I�1��x; �; t�, which we know has intimate connec-
tion with the nucleon isovector magnetic moment and the
isovector combination of the quark spin fraction of the
nucleon. Next, in Sec. IV, we shall present the CQSM
predictions for the forward limit E�I�1��x; 0; 0� of the iso-
vector spin-flip unpolarized GPDF. We also show the de-
tailed numerical contents of the first and the second
moment sum rules of this quantity. Finally, we summarize
our findings in Sec. V.

II. GENERAL PROPERTIES OF THE
UNPOLARIZED GPDF

Here, we briefly summarize some important features of
the unpolarized quark generalized parton distribution func-
tions Hq�x; �; t� and Eq�x; �; t� with flavor q, which are
necessary for later discussion. They are defined by

Z d�
2

ei�xhP0; s0j � q

�
�
�n
2

�
6n q

�
�n
2

�
jP; si

� Hq�x; �; t� �U�P0; s0�6nU�P; s�

� Eq�x; �; t� �U�P0; s0�
i���n���

2MN
U�P; s�: (3)

Here (and hereafter) we omit the light-cone gauge link, for
brevity. We use the standard notation,

� � P0 � P; t � �2; � � �
1

2
n � �; (4)

with n the lightlike vector satisfying the relations.

n2 � 0; n � �P0 � P� � 2; (5)

It is a well known fact that the first moments of Hq�x; �; t�
and Eq�x; �; t� reduce to the Dirac and Pauli form factors,
respectively

Z 1

�1
Hq�x; �; t� dx � Fq1 �t�; (6)

Z 1

�1
Eq�x; �; t� dx � Fq2�t�: (7)

For convenience, we introduce the isoscalar and isovector
-2
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combinations as follows:

H�I�0��x; �; t� � Hu�x; �; t� �Hd�x; �; t�; (8)

H�I�1��x; �; t� � Hu�x; �; t� �Hd�x; �; t�; (9)

and similarly for E�I�0��x; �; t� and E�I�1��x; �; t�. (In the
present paper, we neglect the strange quark degrees of
freedom, and confine to the two flavor case.) The forward
limit ��! 0; t! 0� of the first moment sum rule then
gives

Z 1

�1
H�I�0��x; 0; 0� dx � 3; (10)

Z 1

�1
H�I�1��x; 0; 0� dx � 1; (11)

Z 1

�1
E�I�0��x; 0; 0� dx � �u � �d � 3��p � �n�

� 3��I�0�; (12)

Z 1

�1
E�I�1��x; 0; 0� dx � �u � �d � �p � �n � ��I�1�:

(13)

Here �u and �d stand for the anomalous magnetic moments
of the u- and d quarks, while �p and �n are those of the
proton and neutron. The first moment sum rule of E�x; 0; 0�
has especially interesting physical interpretation. Namely,
E�x; 0; 0� gives the distribution of the nucleon anomalous
magnetic moments in the Feynman momentum x space not
in the ordinary coordinate space. Also noteworthy is the
second moment sum rule given as

1

2

Z 1

�1
x�H�I�0� � E�I�0���x; 0; 0� dx � J�I�0� � Ju � Jd;

(14)

which is known as Ji’s quark angular momentum sum rule
[23–26]. Here, Ju � Jd represents the total quark (spin and
orbital angular momentum) contribution to the nucleon
spin. The forward limit of Hq�x; �; t� is known to reduce
to the standard unpolarized distribution function, which is
rather precisely known by now. On the other hand, the
forward limit of Eq�x; �; t� is believed to be extracted from
the analysis of the so-called deeply virtual Compton scat-
terings on the nucleon target [23–26]. This means that the
total quark angular momentum fraction of the nucleon spin
can be determined purely experimentally. Subtracting the
known value of the quark intrinsic spin fraction ���I�0� of
the nucleon. we can thus know the quark orbital angular
momentum fraction of the total nucleon spin as well.
Furthermore, making a different flavor combination (iso-
vector combination) from (14), one expects another sum
rule:
074001
1

2

Z 1

�1
x�H�I�1� � E�I�1���x; 0; 0� dx � J�I�1� � Ju � Jd:

(15)

Thus, with combined use of the isoscalar and isovector sum
rule, one would make a complete flavor decomposition of
the quark total angular momentum.
III. UNPOLARIZED GPDF IN THE CQSM

The theoretical expressions of H�x; �; t� and E�x; �; t� in
the CQSM were already given in several previous papers
[27–30], so that we do not repeat the detailed derivation
here. We describe only some main features and differences
for the sake of later discussion. Here we closely follow the
notation in [27], and introduce the quantities

M �I�0�
s0s �

Z d�
2


ei�xhP0:s0j � 
�
�
�n
2

�
6n 

�
�n
2

�
jP; si;

(16)

M �I�1�
s0s �

Z d�
2


ei�xhP0; s0j � 
�
�
�n
2

�
!3 6n 

�
�n
2

�
jP; si:

(17)

The relations between these quantities and the generalized
parton distribution functions H�x; �; t� and E�x; �; t� are
obtained most conveniently in the Breit frame. They are
given by

M�I�0�
s0s � 2"s0sH

�I�0�
E �x; �; t�

�
i#3kl�k

MN
��l�s0sE

�I�0�
M �x; �; t�; (18)

M�I�1�
s0s � 2"s0sH

�I�1�
E �x; �; t�

�
i#3kl�k

MN
��l�s0sE

�I�1�
M �x; �; t�; (19)

where

H�I�0=1�
E �x; �; t� � H�I�0=1��x; �; t� �

t

4M2
N

E�I�0=1��x; �; t�;

(20)

E�I�0=1�
M �x; �; t� � H�I�0=1��x; �; t� � E�I�0=1��x; �; t�:

(21)

These two independent combinations of H�x; �; t� and
E�x; �; t� can be extracted through the spin projection of
M�I� as [27,28]

H�I�
E �x; �; t� �

1

4
trfM�I�g; (22)

E�I�
M �x; �; t� �

iMN#
3bm�b

2�2
?

trf�mM�I�g; (23)
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where ‘‘tr’’ denotes the trace over spin indices, while
�2

? � �2 � ��3�2 � �t� ��2MN��
2. Now, the right-

hand side (rhs) of (22) and (23) can be evaluated within
the framework of the CQSM. Here, we briefly describe the
basic features of the CQSM leading to the theoretical
expressions given below. The CQSM is a relativistic
mean field theory with hedgehog assumption which breaks
the rotation symmetry in addition to the translational sym-
metry at the mean field level. Two zero-energy modes must
be taken into account to recover these symmetries. To
recover the translational invariance, we use an approximate
method which projects on the nucleon state with given
center-of-mass momentum P by integrating out the shift
x of the soliton center-mass coordinate [14,15],

hP0j � � � jPi �
Z
d3xei�P

0�P��x � � � : (24)

Naturally, this procedure is justified only when the soliton
is heavy enough and its center-of-mass motion is non-
relativistic. Another zero-energy mode corresponds to the
soliton rotational motion. As usual, the velocity of this
time-dependent rotation is assumed to be much slower
than that of the intrinsic quark motions in the mean field
[1,2]. This allows us to evaluate any nucleon observables in
a perturbation theory with respect to the soliton rotational
velocity �. This then leads to the following general struc-
ture of the theoretical expressions for nucleon observables
in the CQSM. The leading contribution just corresponds to
the mean field prediction, which is independent of �. The
next-to-leading order term takes account of the linear
response of the intrinsic quark motion to the rotational
motion as an external perturbation, and consequently it is
proportional to �. Here we confine ourselves to the mean
field results [O��0� contribution] to the above GPDF. This
leading term contributes to the isoscalar combination of
HE�x; �; t�, while it contributes to the isovector combina-
tion of EM�x; �; t�:

H�I�0�
E �x;�;t��MNNc

Z dz0

2


X
n�0

eiz
0�xMN�En�

Z
d3x�y

n �x�

��1�+0+3�e�i�z
0=2�p̂3ei��xe�i�z

0=2�p̂3�n�x�;

(25)

E�I�1�
M �x; �; t� �

2iM2
NNc

3��?�2

�
Z dz0

2


X
n�0

ei�z
0�xMN�En�

Z
d3x�y

n �x�

� �1� +0+3��� ���3

� e�i�z
0=2�p̂3ei��xe�i�z

0=2�p̂3�n�x�: (26)

As shown by several previous papers, the first moments of
the above GPDF reduce to the following forms [27–30]:
074001
Z 1

�1
H�I�0�
E �x; �; t� dx �

Z
d3xei��xNc

X
n�0

�y
n �x��n�x�;

(27)

Z 1

�1
E�I�1�
M �x; �; t� dx �

2iMNNc
3��?�2

Z
d3x

X
n�0

�y
n �x�

� �1� +0+3��� ���3ei��x�n�x�:

(28)

Here the symbol
P
n�0 denotes the summation over the

occupied (the valence plus negative-energy Dirac sea)
single quark orbitals in the hedgehog mean field. These
expressions are slightly different from the ones given in
several previous studies [27–29]. In these studies, on the
basis of the large Nc argument, the left-hand side (lhs) of
(18) is replaced by H�I�0��x; �; t�, while the lhs of (19) is
replaced by E�I�1��x; �; t�, since the remaining terms are
subleasing in Nc. Here, we retain these subleading terms
because of the reason explained shortly. The rhs of these
equations are the known theoretical expressions of the
Sachs form factor and the isovector magnetic form factor
within the CQSM, i.e.

Z 1

�1
H�I�0�
E �x; �; t� dx � Gu

E�t� �Gd
E�t� � 3G�I�0�

E �t�;

(29)

Z 1

�1
E�I�1�
M �x; �; t� dx � Gu

M�t� �Gd
M�t� � G�I�1�

M �t�:

(30)

The reason why we did not drop the subleading terms Nc in
the lhs of (18) and (19) is as follows. If we did so, we would
have obtained the relations

Z 1

�1
H�I�0��x; �; t� dx � 3G�I�0�

E �t�; (31)

Z 1

�1
E�I�1��x; �; t� dx � G�I�1�

M �t�; (32)

which contradicts the first moment sum rule expected on
the general ground, i.e.

Z 1

�1
H�I�0��x; �; t� dx � 3F�I�0�

1 �t�; (33)
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Z 1

�1
E�I�1��x; �; t� dx � F�I�1�

2 �t�: (34)

The first case would make little difference, because the
difference between F�I�0�

1 �t� and G�I�0�
E �t� is small under

the circumstance in which the soliton center-of-mass mo-
tion is nonrelativistic. This is not the case with the differ-
ence between F�I�1�

2 �t� and G�I�1�
M �t�, as seen from the

experimentally known relations:

F�I�1�
2 �t � 0� ’ �p � �n ’ 3:7; (35)

G�I�1�
M �t � 0� ’ 1� ��p � �n� ’ 4:7; (36)

although the anomalous magnetic moment term dominates
over the Dirac moment term both from the viewpoint of the
Nc counting as well as numerically. Next, we consider the
forward limit of (25) and (26) . The forward limit of (25)
gives

H�I�0�
E �x;0;0� �MNNc

Z dz0

2


X
n�0

eiz
0�xMN�En�

�
Z
d3x�y

n �x��1�+0+3�e�iz0p̂3�n�x�

�MNNc

�
X
n�0

hnj�1�+0+3�"�xMN�En� p̂3�jni:

(37)

The rhs precisely coincides with the expression of the
isoscalar unpolarized quark distribution in the CQSM
[28], i.e. we confirm that

H�I�0�
E �x; 0; 0� � f�I�0�

1 �x�: (38)

It is already known that the model expression for f�I�0�
1 �x�

satisfies the quark number and the energy momentum sum
rules [14,15]:

Z 1

�1
f�I�0�
1 �x� dx � 3; (39)

Z 1

�1
xf�I�0�

1 �x� dx � 1: (40)
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The forward limit of (26) reduces to

E�I�1�
M �x; 0; 0� �

1

3
M2
NNc

Z dz0

2


X
n�0

eiz0�xMN�En�
Z
d3x

��y
n �x��x̂� ��3�1� +0+3�e�iz0p̂3�n�x�

�
1

3
M2
N � Nc

X
n�0

hnj�x̂� ��3�1� +0+3�

� "�xMN � En � p̂3�jni: (41)

The first moment of this quantity gives

Z 1

�1
E�I�1�
M �x; 0; 0� dx � �

MN

9
Nc

X
n�0

hnj�x̂� �� � �jni:

(42)

The rhs precisely gives the theoretical expression for the
isovector magnetic moment in the CQSM. (It is not the
anomalous magnetic moment part.) This is basically a
known fact [28], but what we emphasize here is that
E�I�1�
M �x; 0; 0� is interpreted to give the distribution of (iso-

vector) nucleon magnetic moment in the Feynman x space
not in the ordinary coordinate space.

Now, we turn to our main concern in this paper, i.e. the
second moment of this quantity, which we expect is related
to the isovector part of the quark angular momentum
fraction of the nucleon. Performing a weighted x integral,
we find that

Z 1

�1
xE�I�1�

M �x; 0; 0� dx �
1

3
Nc

X
n�0

hnj�x̂� ��3�1� -3�

� �En � p̂3�jni: (43)

One notices that the second moment of E�I�1�
M �x; 0; 0� can

be decomposed into four parts as

Z 1

�1
xE�I�1�

M �x; 0; 0� dx �
1

3
Nc

X
n�0

hnj�x̂� ��3Enjni

�
1

3
Nc

X
n�0

hnj�x̂� ��3-3Enjni

�
1

3
Nc

X
n�0

hnj�x̂� ��3p̂3jni

�
1

3
Nc

X
n�0

hnj�x̂� ��3-3p̂3jni

� M1 �M2 �M3 �M4: (44)

Using the Dirac equation (here r̂ � x̂=jx̂j)
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Hjni � Enjni; (45)

with

H � � � p̂�M.�cosF�r� � i+5� � r̂ sinF�r��; (46)

the first term can be rewritten as

M1 �
Nc
3

X
n�0

1

2
hnjf�x̂� ��3; Hgjni

�
Nc
3

X
n�0

1

2
hnj � i��� ��3 � 2�� � x̂�3� � p̂jni:

(47)

It is easy to see that this term vanishes identically due to the
hedgehog symmetry. Alternatively, we can use the parity
symmetry to show M1 � 0. The parity also enforces the
fourth termM4 to vanish. In fact, under the parity operation
P , we have

P jni � ��1�Pn jni; (48)

P �x̂� �̂�3P
�1 � ��x� ��3; (49)

P -3P
�1 � �-3; (50)

P p̂3P
�1 � �p̂3 (51)

M. WAKAMATSU AND H. TSUJIMOTO
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with ��1�Pn being the parity of the eigenstate jni, so that
we conclude that

M4 �
Nc
3

X
n�0

hnjP�1P �x̂� ��3

� P�1P-3P
�1P p̂3P

�1P jni

� f��1�Png2��1�3M4 � �M4 � 0: (52)

The third term M3 does not vanish but it can be simplified
in the following way because of the hedgehog symmetry
(generalized spherical symmetry) as

M3 �
Nc
3

X
n�0

hnj�x̂� ��3p̂3jni

�
Nc
3

X
n�0

1

3
hnj�x̂� �� � p̂jni

�
Nc
3

X
n�0

�
�
1

3

�
hnj� � �x̂� p̂�jni

� �
Nc
3

X
n�0

hnj!3L3jni: (53)

Finally, the second term M2 can be rewritten in the follow-
ing manner by using the Dirac equation, commutation
relations of + matrices and isospin matrices, and also the
hedgehog symmetry
M2 �
Nc
3

X
n�0

1

2
hnjf�x̂� ��3-3; Hgjni

�
Nc
3

X
n�0

1

2
hnjf�x̂� ��3-3;� � p̂gjni �

Nc
3

X
n�0

1

2
hnjf�x̂� ��3-3;M.�cosF�r� � +5� � r̂ sinF�r��gjni

� �
Nc
3

X
n�0

hnj!3L3 � !3�3jni �M �
Nc
9

X
n�0

hnjr sinF�r�+0�� � r̂� � r̂�� � ��jni: (54)
Collecting all the four terms, we finally obtain the second
moment sum rule of the form
Z 1

�1
xE�I�1�

M �x; 0; 0� dx � 2
�
�
Nc
3

�X
n�0

hnj!3

�
L3 �

1

2
�3

�
jni

�M �
Nc
9

X
n�0

hnjr sinF�r�

� +0�� � r̂� � r̂�� � ��jni: (55)

The first term of the rhs just coincides with the proton
matrix element of the free field quark angular momentum
operator, or more precisely its isovector part, given by

J�I�1�
f � hp " jĴ�I�1�

f jp "i; (56)

with
Ĵ �I�1�
f �

Z
 y�x̂�!3

�
�x� p̂�3 �

1

2
�3

�
 �x�d3x

� L̂�I�1�
f �

1

2
�̂�I�1�: (57)

In view of Ji’s angular momentum sum rule, we would have
naively expected to get

1

2

Z 1

�1
xE�I�1�

M �x; 0; 0� dx � J�I�1�
f : (58)

Somewhat unexpectedly, however, we find that

1

2

Z 1

�1
xE�I�1�

M �x; 0; 0� dx � J�I�1�
f � "J�I�1�; (59)

with
-6
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"J�I�1� � �M
Nc
18

X
n�0

hnjr sinF�r�

� +0�� � r̂� � r̂�� � ��jni: (60)

This second moment sum rule should be contrasted with
the corresponding sum rule in the isoscalar channel, which
was recently proved in [27] :

1

2

Z 1

�1
xE�I�0�

M �x; 0; 0� dx � L�I�0�
f �

1

2
���I�0� � J�I�0�

f

� 1=2; (61)

which appears to be compatible with Ji’s general sum rule,
considering that the nucleon spin sum rule should be
saturated by the quark field alone in the CQSM [2]. How
should we interpret the above unexpected result for the
isovector case? One may argue that the second moment
need not necessarily reduce to the nucleon matrix element
of the free field angular momentum operator since the
CQSM is anyhow an interacting theory of quark fields. In
fact, the above derivation of the sum rule (59) indicates that
the cause of the "J�I�1� term can be traced back to the
dynamical generation of the effective quark mass and the
formation of the symmetry breaking mean field containing
the scalar product of � and r̂. At least, one can say that,
since the "J�I�1� term is proportional to the dynamically
generated quark mass M, it vanishes in the perturbative
vacuum, although it is meaningless to consider the chiral
soliton if the QCD vacuum is perturbative. We recall that a
similar breakdown of the second moment sum rule, ex-
pected on the general ground of QCD, occurs also in the
case of chiral-odd twist-3 distribution functions e�x� of the
nucleon. From the general QCD analysis, one expect that
the second moment of the isoscalar part of e�x� satisfies the
following sum rule in the chiral limit [10],

Z 1

�1
xe�I�0��x� dx � 0: (62)

In the CQSM, however, we obtain [12,13],

Z 1

�1
xe�I�0��x� dx �

M
MN

Nc
X
n�0

hnj
1

2
�U�Uy�jni; (63)

with U � ei��r̂F�r�. It is indicative that the violation of the
QCD sum rule is again proportional to the dynamical quark
mass M, which would vanish in the perturbative vacuum
[13].

From the practical viewpoint, only the lhs of (59) is
observable, and neither of J�I�1�

f nor "J�I�1� is observable.
We therefore take the following viewpoint, although it is
not absolutely mandatory. The second moment of
E�I�1�
M �x; 0; 0� gives the isovector quark angular momentum

fraction of the interacting theory (it is the CQSM in the
present context):
074001
1

2

Z 1

�1
xE�I�1�

M �x; 0; 0� dx � J�I�1� � Ju � Jd: (64)

Although somewhat arbitrary, this sum rule combined with
(61) allows us to carry out the flavor decomposition of the
quark angular momentum fraction in the nucleon. In any
case, the most important quantity here is E�I�1�

M �x; 0; 0�,
since it is the quantity which can be directly measured
through the DVCS experiments. In the next section, we
perform a numerical calculation of E�I�1�

M �x; 0; 0� without
recourse to the derivative expansion type approximation.
We also evaluate J�I�1�

f and "J�I�1� in the rhs of (59)
directly without any notion of distribution functions. This
allows us to check the validity of the sum rule (59) within
the model, thereby providing us with a nontrivial check for
our numerical result for E�I�1�

M �x; 0; 0�.
IV. NUMERICAL RESULTS AND DISCUSSION

The most important parameter of the CQSM is the
dynamical quark mass M, which plays the role of the
quark-pion coupling constant, thereby controlling basic
soliton properties [1,2]. Here we use the value M �
375 MeV, which is favored from the analysis of nucleon
low energy observables. The model is an effective theory
which is defined with an physical cutoff. We use here the
double-subtraction Pauli-Villars regularization scheme
proposed in [31]. (Naturally, this is not the only way of
introducing regularization. More sophisticated regulariza-
tion scheme is proposed in [32].) In this scheme, the most
nucleon observables are regularized through the subtrac-
tion.

hOireg � hOiM �
X2
i�1

cihOi�i : (65)

Here hOiM denotes the nucleon matrix element of an
operator O evaluated with the original action of the
CQSM having the mass parameter M, while hOi�i stands
for the corresponding matrix element obtained from hOiM

by replacing the parameter M with the Pauli-Villars cutoff
mass �i. To remove all the ultraviolet divergences of the
theory, the parameters ci and �i must satisfy the conditions

M2 �
X2
i�1

ci�
2
i � 0; (66)

M4 �
X2
i�1

ci�4
i � 0: (67)

We further impose two additional physical conditions,
which amounts to requiring that the model reproduces
the empirically known value of the vacuum quark conden-
sate as well as the correct normalization of the pion kinetic
term in the corresponding bosonized action. This gives
-7
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FIG. 1. The CQSM prediction for E�I�1�
M �x; 0; 0�. The long-

dashed and dash-dotted curves here stand for the contribution
of the valence quarks and of the Dirac sea quarks, while their
sum is represented by the solid curve.
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h �  ivac �
NcM

3

2
2

X2
i�1

ci

�
�i

M

�
4
ln
�
�i

M

�
2
; (68)

f2
 �
NcM

2

4
2

X2
i�1

ci

�
�i

M

�
2
ln
�
�i

M

�
2
: (69)

These four conditions (66)–(69) are enough to fix the four
parameters c1; c2;�1, and �2. Fixing M and f
 to be 375
and 93 MeV, respectively, we find

c1 � 0:399 37; c2 � �0:006 61; (70)

�1 � 627:653 MeV; �2 � 1589:45 MeV: (71)

As usual, the numerical calculations in the CQSM are
carried out by using Kahana-Ripka’s discretized momen-
tum basis [33,34]. Our main task here is to evaluate
E�I�1�
M �x; 0; 0� given by (41) making use of the Kahana-

Ripka basis, which turns out not so easy. The cause of
difficulty lies in the following fact. First, the appearance of
the momentum operator p̂3 in the delta function enforces
us to work in the momentum representation. On the other
hand, the matrix element in (41) contains the coordinate
operator x̂. This coordinate operator becomes a differential
operator in the momentum representation, which is, how-
ever, incompatible with the whole calculation scheme of
the CQSM making use of the discretized momentum basis.
To circumvent this difficulty, we insert a complete set of
states jm0i as follows:

E�I�1�
M �x; 0; 0� �

1

3
M2
N � Nc

X
n�0

X
m0�all

hnj�x̂� ��3

� �1� +0+3�jm0ihm0j"�xMN � En

� p̂3�jni: (72)

This complete set can in principle be chosen at will. It can
be the eigenstates of the full Dirac Hamiltonian H as the
states jni are so, or it can be the eigenstates of the free
Dirac Hamiltonian H0 given by

H0 � � � p̂� .M: (73)

We choose here the latter. The grand spin K0 of the states
jm0i need not be the same as the grand spin K of the states
jni, but the finite rank nature of the operator �x̂� ��3 �
�1� +0+3� restricts the value of K0 to be K, K � 1, or K �
2. The advantage of the expression (72) is that the first and
the second matrix elements can, respectively, be evaluated
in the coordinate representation and the momentum
representation.

The theoretical expression for E�I�1�
M �x; 0; 0� in (41) is

given as the summation over the occupied single quark
orbitals. An alternative but equivalent expression is ob-
tained for it, which is given as the summation over the
nonoccupied quark levels as
074001
E�I�1�
M �x; 0; 0� � �

1

3
M2
N � Nc

X
n>0

hnj�x̂� ��3

� �1� +0+3�"�xMN � En � p̂3�jni: (74)

The equivalence of these two representations is based on a
quite general principle of field theory, i.e. the anticommut-
ing property of two quark field operator with spacelike
separation. It is also known that the Pauli-Villars regulari-
zation preserves this equivalence. For numerical calcula-
tion of E�I�1�

M �x; 0; 0�, it is convenient to use the occupied
form (41) for x > 0, and the nonoccupied form (74) for x <
0. (We recall that the distribution with x < 0 is related to
the antiquark distribution with x > 0.)

Now, we show our numerical result for E�I�1�
M �x; 0; 0�.

The long-dashed and the dash-dotted curves in Fig. 1 stand
for the contributions of the three valence quarks and of the
Dirac sea quarks, respectively. The sum of these two con-
tributions is represented by the solid curve. A remarkable
feature here is that the contribution of the Dirac sea quarks
has a sharp peak around x � 0. This confirms the qualita-
tive result first given in [29]. Here we recall the fact that the
x integral or the first moment of E�I�0�

M �x; 0; 0� gives the
isovector magnetic moment ��I�1� � �p ��n of the nu-

cleon. This denotes that E�I�1�
M �x; 0; 0� gives the distribu-

tion of the nucleon isovector magnetic moment in the
Feynman x space not in the ordinary coordinate space.
The sharp peak around x � 0 therefore means that the
quark and antiquark with small x carry a sizable amount
of isovector magnetic moment of the nucleon. We interpret
this fact as an indication of the importance of the quark
motion in the transverse direction by the following reason.
First, the isovector nucleon magnetic moment mainly
comes from the quark and antiquark orbital motion in the
nucleon, since it is known that the anomalous part domi-
-8



TABLE I. The separate contributions of the valence and the
Dirac sea quarks to the quantities L�I�1�

f , ���I�1�, and J�I�1�
f �

L�I�1�
f � 1

2 �
�I�1� defined in the text.

L�I�1�
f ��I�1� J�I�1�

f

Valence 0:147 0:705 0:5000
Sea �0:265 0:357 �0:087
Total �0:115 1:057 0:413

TABLE II. The separate contributions of the valence and the
Dirac sea quarks to the quantities J�I�1�

f , "J�I�1�, and their sum.

Also shown are the corresponding numbers for 1
2 �R

xE�I�1�
M �x; 0; 0� dx.

J�I�1�
f "J�I�1� J�I�1�

f � "J�I�1� 1
2

R
xE�I�1�

M �x; 0; 0�dx

Valence 0:500 �0:289 0:211 0:210
Sea �0:087 0:077 �0:010 �0:008
Total 0:413 �0:212 0:201 0:202
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nate over the Dirac moment part. Second, the quark and
antiquark with x � 0 has zero velocity in the longitudinal
direction. Accordingly, the large magnetic moment density
concentrated in the small x region must come from the
motion of quark and antiquarks in the plane perpendicular
to the proton spin direction.

The prominent peak of E�I�1�
M �x; 0; 0� around x � 0 can

also be interpreted as the effect of pionic q �q excitation with
large spatial extension. In fact, it has long been known that
the pion cloud around the ‘‘bare’’ nucleon gives a signifi-
cant contribution to the isovector nucleon magnetic mo-
ment. This then indicates that the dominant contribution to
E�I�1�
M �x; 0; 0� in the small x domain originates from the

motion of correlated quarks and antiquarks, the spatial
distribution of which have a long range tail in the trans-
verse direction. The validity of the proposed interpretation
may be tested more definitely, if one could evaluate the so-
called impact-parameter dependent distribution function
defined by [35–39]

"�I�1�
M �x;b?� �

Z d2�?

�2
�2
e�i�?�b?E�I�1�

M �x; 0;��2
?�:

(75)

The rest of this section will be devoted to the numerical
check of the first and second moment sum rule of
E�I�1�
M �x; 0; 0� within the framework of the CQSM. This

is important not only to confirm the precision of our
numerical result for E�I�1�

M �x; 0; 0� but also to verify the
internal consistency of the whole theoretical framework.
We first discuss the first moment sum rule given by (42).
The point is that both sides of this equation can be eval-
uated totally independently. The lhs can be is calculated
numerically integrating the already given E�I�0�

M �x; 0; 0�
over x. On the other hand, the evaluation of the rhs, i.e.
the isovector magnetic moment of the nucleon, has no
trouble, since it is just a nucleon expectation value of a
local operator. Numerically, we have got

Z 1

�1
E�I�1�
M �x; 0; 0� dx ’ 2:07� 1:79 ’ 3:86; (76)

while

�
MN

9
Nc

X
n�0

hnj�x̂��� � �jni � ��I�1�
V

’ 2:05� 1:87

’ 3:92; (77)

which coincides with the precision of about 1%. One may
notice that the theoretical prediction for ��I�1�

V is smaller
than the experimental value ��I�1�

V �exp� ’ 4:7. We how-
ever know that, within the framework of the CQSM, there
is a rotational correction to ��I�1�

V proportional to the
collective angular velocity �, which is known to fill this
074001
gap [40,41]. (We should however recall some controversy
related to this first order rotational correction to some
isovector nucleon observables [42–45].) This first order
rotational correction is naturally expected to contribute
also to E�I�1�

M �x; 0; 0�, thereby to both side of the first mo-
ment sum rule. The calculation of such a higher order
contribution to E�I�1�

M �x; 0; 0� is beyond the scope of the
present paper. Next we turn to the second moment sum rule
of E�I�1�

M �x; 0; 0� given by (59). We first evaluate the first
term of the rhs of (59), i.e. the nucleon matrix element of
the free field angular momentum operator in the isovector
combination. This term consists of the two terms as

J�I�1�
f � L�I�1�

f �
1

2
���I�1�: (78)

Here, L�I�1�
f is the nucleon matrix element of the free field

isovector angular momentum operator, while ���I�1� is
the isovector part of the longitudinal quark polarization.

We show in Table I the separate contribution of the
valence quarks and the Dirac sea quarks to L�I�1�

f ,

���I�1�, and J�I�1�
f . One sees that the valence quark con-

tribution to J�I�1�
f is precisely 1=2 while the Dirac sea

contribution to it is slightly negative.
Next, shown in Table II are the contributions of the

valence quarks and the Dirac sea quarks to the quantity
"J�I�1� in the second moment sum rule as well as the sum
of J�I�1�

f and "J�I�1�. (The numerical values of J�I�1�
f al-

ready given in Table I are also shown for convenience.)
Also shown in this table is a half of the second moment of
E�I�1�
M �x; 0; 0� obtained numerically from the weighted x

integral of it. One confirms that the second moment sum
rule (59) is satisfied with good precision, which in turn
-9
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assures the numerical accuracy of our numerical calcula-
tion of E�I�1�

M �x; 0; 0�. Knowing that the second moment of
E�I�1�
M �x; 0; 0� does not coincide with the nucleon matrix

element of the free field quark angular momentum operator
in the isovector case, we would rather take a viewpoint that
its second moment gives the quark angular momentum in
the interacting theory. This amounts to regarding the sum
of J�I�1�

f and "J�I�1� as the isovector part of the quark

angular momentum fraction J�I�1� of the interacting theory,
which gives

J�I�1� � Ju � Jd ’ 0:202: (79)

The corresponding quark orbital angular momentum frac-
tion can be estimated by subtracting the corresponding
quark spin part 1

2 ��
�I�1� ’ 0:529, which gives

L�I�1� � Lu � Ld ’ �0:327: (80)

Worthy of mention here is the x-distribution of the iso-
vector quark angular momentum. Pushing forward with the
above interpretation, let us identify 1

2 xE
�I�0�
M �x; 0; 0� with

the isovector quark angular momentum distribution
J�I�1��x� � Ju�x� � Jd�x�.

Shown in Fig. 2 is the CQSM prediction for this quantity
1
2 xE

�I�0�
M �x; 0; 0�, or Ju�x� � Jd�x� in the above interpreta-

tion. Here, the distribution in the negative region should be
interpreted as that of antiquarks, i.e. Ju��x� � Jd��x� �
J �u�x� � J �d�x� with x > 0. Then, we observe from this
figure that

Ju�x� � Jd�x�> 0 �for x > 0�; (81)
074001
while

J �u�x� � J �d�x�< 0 �for x > 0�: (82)

The first inequality is nothing surprising, since the proton
contains two u quarks and one d quark as valence particles.
More interesting here is the second inequality, which in-
dicates that the �d quark carries more angular momentum
than the �u quark in the proton. This reminds us of the
violation of the Gottfried sum rule, which has been ac-
cepted by now as a clear evidence of the dominance of the
�d quark over the �u quark in the unpolarized parton distri-
bution functions of the proton. Undoubtedly, the two phys-
ics cannot be completely unrelated.
V. CONCLUSION

To conclude, we have given a theoretical prediction for
the forward limit of the isovector, spin-flip generalized
parton distribution function E�I�1��x; �; t� of the nucleon
on the basis of the CQSM. It has been shown that the
distribution function E�I�1�

M �x; 0; 0� � H�I�1��x; 0; 0� �
E�I�1��x; 0; 0� has a sharp peak around x � 0 generated
by the vacuum polarization of the Dirac sea quark. In
view of the fact that the function E�I�1�

M �x; 0; 0� gives the
distribution of the nucleon isovector magnetic moment in
the Feynman momentum x space, we interpret this sharp
peak around x � 0 as an indication of the importance of
the pionic q �q excitation with large spatial extension in the
transverse direction. Somewhat unexpectedly, we found
that the second moment of E�I�1�

M �x; 0; 0� does not reduce
to the proton matrix element of the free quark angular
momentum operator, but receive a peculiar correction
term. The cause of this correction term seems to be traced
back to the nonperturbative formation of isospin dependent
hedgehog mean field. Still, we advocate a viewpoint that
the second moment of E�I�1�

M �x; 0; 0� gives the isovector
quark angular momentum fraction of an interacting theory,
which leads us to an interpretation of 1

2 xE
�I�1�
M �x; 0; 0� as

the isovector quark (and antiquark) angular momentum
distribution. This then indicates that the �d quark carries
more angular momentum than the �u quark inside the
proton.
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