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Hadronic contributions to the anomalous magnetic moment of the muon
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We present a new, completely revised calculation of the muon anomalous magnetic moment a� �
�g� � 2�=2 comparing it with the more recent experimental determination of this quantity; this furnishes
an important test of theories of strong, weak, and electromagnetic interactions. These theoretical
determinations give the very precise numbers, 1011 � a� � 116 591 806� 50� 10�rad� � 30�‘� ‘�
�Theory; no �� and 1011 � a� � 116 591 889� 49� 10�rad� � 30�‘� ‘� �Theory; �� to be compared
with the experimental number, 1011 � a� � 116 592 080� 60. In the theoretical evaluations, the first
quantity does not, and the second one does, use information from � decay. The first errors for the
theoretical evaluations include statistical plus systematic errors; the other ones are the estimated errors due
to incomplete treatment of radiative corrections and the estimated error in the light-by-light scattering
contribution. We thus have a significant mismatch between theory and experiment. We also use part of the
theoretical calculations to give a precise evaluation of the electromagnetic coupling on the Z, �	QED�M2

Z�,
of the masses and widths of the (charged and neutral) rho resonances, of the scattering length and effective
range for the Pwave in �� scattering, and of the quadratic radius and second coefficient of the pion form
factor.
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I. INTRODUCTION

The anomalous magnetic moments of electrons and
muons provide one of the more impressive tests of the
standard model of strong, weak, and electromagnetic in-
teractions. The electron anomaly ae receives only marginal
contributions from weak and strong interactions, being
dominated by electromagnetic (QED) radiative correc-
tions. The agreement between theory and experiment is
such that, if we turn it around, the experimental value of ae
provides the more precise determination of the fine struc-
ture constant 	 [1].

For the muon magnetic moment, the recent precise
measurements [2] of the muon anomaly a� constitute
one of the more impressive tests not only of electroweak
interactions, but of strong interactions as well. After these
measurements, the world average value for a� � �g� �

2�=2 is

10 11 � a� � 116 592 080� 60 �Experiment�: (1.1)

Considering that theory also gives the value of the mag-
netic moment itself (and not only the anomaly) the agree-
ment of theory and experiment that we will describe
represents a precision of one or two parts in a billion.
Nevertheless, and as we will see, there remains a discrep-
ancy at the level of 2:3� to 3:3�.

The electromagnetic and weak contributions to a� have
been calculated with great accuracy [3]:

10 11 � a��QED� � 116 584 719� 1:8;

1011 � a��Weak� � 152� 3:
(1.2)

Combining this with (1.1), we find the experimental num-
ber for the hadronic contributions to a�,
05=71(7)=073008(14)$23.00 073008
10 11 � a��Hadr� � 7209� 60 �Experiment�: (1.3)

The evaluation of this quantity, a��Hadr�, from theory will
be the main subject of the present note; we will find

1011�a��Hadr�

�

�6935�50�10�rad��30�‘�‘� �No ��

7018�49�10�rad��30�‘�‘� �With ��:
(1.4)

The numbers above depend on whether or not one includes
information on � decay, which is probably the more reli-
able result as it is the one that incorporates more informa-
tion: see our text below for details. In the errors, ‘‘rad’’ and
‘‘‘� ‘’’ refer, respectively, to estimated errors due to
uncalculated radiative corrections and light-by-light scat-
tering contributions. The results in (1.4) take into account
all the more recent e	e� annihilations data and e� scat-
tering data. At the end of the present article we will com-
ment on the degree of agreement of theory and experiment,
compare our results with those of other recent calculations,
and discuss the possible reasons for the discrepancy be-
tween (1.3) and (1.4).

We also will give a summary of the results that some of
the calculations imply for the electromagnetic coupling on
the Z, �	QED�M2

Z�, for the masses and widths of the (charged
and neutral) rho resonances, for the scattering length and
effective radius for the Pwave in pion-pion scattering, and
for the quadratic radius and second coefficient of the pion
form factor.

II. THE HADRONIC CONTRIBUTIONS TO a�:
THE O��2� PIECE

To order 	2, the contributions to a��Hadr� can be rep-
resented by the diagram shown in Fig. 1. As has been
-1  2005 The American Physical Society
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FIG. 1. The order 	2 hadronic contributions to the muon
magnetic moment. The blob represents an arbitrary hadronic
state. The wavy lines are photons.

1More details about the solution of the Omnès-Muskhelishvili
equations can be found in [7] and, applied to our present case, in
[6].
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known for a long time, they can be written in terms of the
cross section for e	e� annihilation into hadrons as fol-
lows. We first write

a�2�� �Hadr� � 12�
Z 1

4m2�
dsK�s� Im"�s�;

K�s� �
	2

3�2s
K̂�s�; K̂�s� �

Z 1

0
dx

x2�1� x�

x2 	 �1� x�s=m2�
:

(2.1a)

Here " is the hadronic part of the photon vacuum polar-
ization function. Then, we can express Im" in terms of the
ratio of (lowest order) cross sections for e	e� annihilation
into hadrons over annihilation into muons:

R�s� �
��0��e	e� ! hadrons�

��0��e	e� ! �	���
;

��0��e	e� ! �	��� �
4�	2

3s
;

a�2�� �Hadr� �
Z 1

4m2�
dsK�s�R�s�:

(2.1b)

Therefore, the situation is, in principle, simple: we take
the experimental cross section for e	e� ! hadrons, insert
it into (2.1b) and the value for a�2�� �Hadr� will follow. In
practice, however, things are more complex. The experi-
mental numbers for the cross section e	e� into hadrons
present (relatively) large errors and we have, therefore,
interest to supplement these with more precise theoretical
formulas whenever possible. As a matter of fact, by so
doing we are able to diminish the error in the theoretical
calculation almost by a factor of 2.

A. The low energy region, s�0:8 GeV2

In the region below s � 0:8 GeV2, that we may call
‘‘rho region,’’ experimental data have in fact improved
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substantially in the last years due to the more recent
measurements, especially at Novosibirsk [4,5]. Here the
important contributions are those of the omega resonance
(for which experimental data and the Gounnaris-Sakurai
method may be used; see below and Ref. [6]) and the two-
pion contribution, which is the one that may be made more
precise using theory, and also the one that we will discuss
in more detail because it provides the bulk of a��Hadr�.
Here one profits from the fact that the two-pion contribu-
tion can be expressed in terms of the pion form factor F�

Im"2��s� �
1

48�

�
1�

4m2�
s

�
3=2

jF��s�j2; (2.2)

and F� may be determined from fits to data on e	e� ! 2�
and, using analyticity, also data from �e! �e scattering,
i.e., at spacelike s. What is more, we may use (with due
caution; see below) data on � decay, �� ! ����0, related
to F� by isospin invariance.

We will for the moment work in the approximation of
neglecting electroweak corrections to F�; we will discuss
this further in Sec. II B. In this approximation, the proper-
ties of F��s� that allow us an improved calculation are the
following:
(i) F
-2
��s� is an analytic function of s, with a cut from
4m2� to infinity.
(ii) O
n the cut, the phase of F��s� is, because of
unitarity, identical to that of the P wave in ��
scattering, �11�s�, and this equality holds until the
opening of the inelastic threshold at s � t0 (Fermi-
Watson final state interaction theorem).
(iii) F
or large s, F��s� ’ 1=s. Actually, one knows the
coefficient of this behavior, but we will not need it
here.
(iv) F
��0� � 1.

The inelastic threshold occurs, rigorously speaking, at

s � 16m2�. However, it is an experimental fact that inelas-
ticity is negligible until the quasitwo body channels
!�; a1� . . . are open. In practice one can take

t0 ’ 1 GeV
2;

and fix the best value for t0 empirically. It will be t0 �
1:1 GeV2, and the dependence of our results on t0 is very
slight.

The properties (i—iv) can be taken into account with the
Omnès-Muskhelishvili method.1 We construct a function
J�s� with the proper phase and asymptotic behavior by
defining
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J�s� � e1��
1
1�t0�=�

�
1�

s
t0

�
�1��11�t0�=��t0=s

�
1�

s
t0

�
�1

� exp
�
s
�

Z t0

4m2�
dt

�11�t�
t�t� s�

�
: (2.3a)

We have written the dispersion relation with one subtrac-
tion to ensure that J�0� � 1. The singular integral is under-
stood to be calculated replacing s! s	 i�, � > 0, �! 0.
We then define the function G by

F��s� � G�s�J�s�; (2.3b)

and it follows from properties (i–ii) that G�s� is analytic
with only the exception of a cut from t0 to infinity, as we
have already extracted the correct phase below s � t0.

We can apply the effective range theory to parametrize
the phase �11. According to this, the function

 �t� �
2k3

t1=2
cot�11�t�; k �

������������������
t� 4m2�

p
2

(2.4a)

is analytic in the variable t except for two cuts: a cut from
�1 to 0 and a cut from t � t0 to 	1. To profit from the
analyticity properties of  we will make a conformal trans-
formation. We define

w �

��
t

p
�

������������
t0 � t

p

��
t

p
	

������������
t0 � t

p :

When t runs the cuts, w goes around the unit circle. We
may therefore expand  in a power series convergent in-
side the unit disc. In fact, because we know that the Pwave
resonates (which implies a zero of  ) it is convenient to
expand not  itself, but the ratio  �t�=�m2! � t� �  ̂�t�.
Here m! is the mass of the rho resonance; so we write,

 �t� � �m2! � t� ̂�t� � �m2! � t�fb0 	 b1w	 � � �g:

(2.4b)

The Pwave, I � 1�� scattering length, a11, is related to
 by

a11 �
1

m� �4m
2
��
;

experimentally, a11 ’ �0:038� 0:003�m�3
� , a condition that

may be incorporated into the fit. Note, however, that we do
not assume the values of m!;*!. We only require that  
has a zero and will let the fits fix its location and residue. It
turns out that, to reproduce the width and scattering length,
and to fit the pion form factor as well, only two b0, b1 are
needed in (2.4b).

We now turn to the function G�s�. This function is
analytic except for a cut from s � t0 to 	1. The confor-
mal transformation

z �
1
2

����
t0

p
�

�������������
t0 � s

p

1
2

����
t0

p
	

�������������
t0 � s

p
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maps this cut plane into the unit circle. So we may write the
expansion,

G�s� � 1	 c1�z	 1=3� 	 c2�z2 � 1=9� 	 � � � ; (2.5)

which takes into account the condition G�0� � 1 order by
order. We will only need two terms in the expansion, so we
have c1; c2 as free parameters. This means that, altogether,
we have the five parameters,

m!; b0; b1; c1; c2;

to fit 158 experimental points.
One can then use the formulas just discussed and fit the

experimental data on F��s�, after we have taken into
account the !� ! interference (which includes the !!
2� piece). This we do with the Gounnaris-Sakurai method.
We write

Fall� �s� � Fbare� �s� �
1	 � M2

!

M2
!�s

1	 �
;

M! � m! � i*!=2;

(2.6a)

where Fbare� is the form factor we would have in absence of
!� ! interference andm! the (real) omega mass. We take
the values of m!, *! from the particle data tables (PDT)
[8] and find

j�j � �18� 1� � 10�4; arg� � 12� 3�: (2.6b)

The fit improves when using the 2002 Novosibirsk data [4];
there is better agreement with the data of Barkov et al. [4],
in particular, for the larger values of s. The parameters of
the fit are, however, similar to what we found in Ref. [6]
using the old (1999) Novosibirsk data, as we shall see. It
should be noted that, in these data, electromagnetic cor-
rections have been extracted; we give the details of the
procedure in Sec. II B below.

The result of the contribution to the hadronic part of the
muon anomaly is now, fitting the e	e� annihilation data
[4,5],

1011 � a�2�� �s � 0:8 GeV2� � 4707� 21;

&2=dof � 91=�114� 7�:
(2.7)

The fact that the &2=dof is substantially smaller than unity
means that there is some room for displacement of the
central value given in (2.7).

The result in (2.7) may be improved, which we will do in
two steps. First of all, we remark that, because our for-
mulas for F��s� are valid for spacelike as well as timelike
s, we can use information not only from e	e� annihilation
[4,5] but also from �e scattering [9], which gives F��s� for
negative s. We record the results of two recent evaluations,
made using this method. We have our evaluation here,
-3
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�e	e�; �e�: 1011 � a�2�� �s � 0:8 GeV2� �

8><
>:
4750� 19 �TY; fixed norm�; &2

dof �
172
159�7

4715� 20� 25 �TY; float norm�; &2

dof �
134

161�10 :
(2.8a)
The errors in the first number here do not include system-
atic errors in e� scattering, which is the reason for the
largish &2=dof. In the second set, the first error is the
statistical error, the second the systematic one. We take
into account the systematic errors, both in e	e� data [4]
and in the e� data [9] as in Ref. [6], by including a factor
1	 � in the normalization of each set of data and allowing
� to float. We find

�e��Ref: 7� � �1:3� 0:2�%;

�e	e��Akhmetshin; Ref: 4� � ��0:4� 0:6�%;

�e	e��OLYA; Barkov; Ref: 4� � �0:5� 0:9�%;

(2.8b)

the fit is depicted in Fig. 2. The only � that is not compat-
ible with zero is �e�. In fact, we left its value arbitrary; that
|F
π(

t)
|2

FIG. 2. The fit to the pion form factor data in the timelike and s
included.
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the result we found is consistent with the value quoted in
Ref. [9] itself, �e� ’ 1%, is a nontrivial test of the quality
of data in this reference (in particular, of their estimate of
systematic errors) and of the consistency of our fitting
procedure.

Then, we have a recent result by Colangelo and collab-
orators [10],

�e	e�; �e�: 1011 � a�2�� �s � 0:8 GeV2� � 4679� 30:

(2.9)

The evaluation of Colangelo and collaborators, Eq. (2.9),
includes the four-pion cut and imposes the P wave phase
shift as given by chiral-dispersive evaluations [11]. This
last feature, however, makes the Colangelo result vulner-
t (GeV2)

pacelike regions; the more recent (2002) Novosibirsk data are

-4
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able to possible defects of the chiral-dispersive evaluation,
such as those discussed in Ref. [12].

A way to improve the precision of (2.7) is to include
information on � decay [13] in the fit. We consider the
weak vector current correlator, related to � decay, and
expand it as

"V
�� � i

Z
d4 xeip�xh0jTV	

� �x�V��0�j0i

� ��p2g�� 	 p�p��"V�t� 	 p�p�"S�t�;

v1 � 2� Im"V; t � p2: (2.10a)

We can then write

v1�
1

12

��
1�

�m�	 �m�0�
2

t



�

�
1�

�m�	 	m�0�
2

t

�
3=2

jF���
� �t�j2: (2.10b)

To compare with the experimentally measured quantity,
which involves all of Im"V

��, we have to neglect the scalar
component "S, which is proportional to �md �mu�

2, and
thus very small. Moreover, F���

� only equals F� in the limit
of exact isospin invariance. We also have complications
due to radiative corrections, that we will discuss in
Sec. II C.

One can take into account isospin breaking effects, at
least partially, by realizing that the mass and widths of the
!0 and !� can be different [6]. One finds,

�e	e�; �e; ��: 1011 � a�2�� �s � 0:8 GeV2�

�

�
4793� 17�St�; &2

dof �
283
241�9 ; �TY�

4798� 17�St� � 25�Sys�; &2

dof �
245

244�13 ; �TY; Sys�;

(2.11a)

depending on whether or not one takes into account sys-
tematic normalization errors. We unify the normalization
of the tau decay data taking into account the relevant
branching ratios, as given in the particle data tables [8].

In the second set of numbers in (2.11), we have, as in
(2.8), taken into account systematic errors by allowing
floating normalization by a factor 1	 � of the various
data sets. We find,

�e��Ref: 7� � �1:0� 0:2�%�1%�;

�e	e��Akhmetshin; Ref: 4� � �0:4� 0:5�%�0:6%�;

�� � ��1:4� 0:5�%�0:7%�;

�e	e��OLYA; Barkov; Ref: 4� � �2:0� 0:8�%�4%�:

(2.11b)

In square brackets we give the estimate of the normaliza-
tion errors as given by the experimental groups themselves,
except for � decay, where the number 0.7% is taken from
the particle data tables. The only case where the value we
find for � exceeds the expectations is for � decay data,
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although the difference is very small, 0:7� 0:5%. We will
discuss this again in Sec. II C.

The best number in (2.11a), of course, is the second,
4798� 31. The fact that the &2=dof is still a bit larger than
unity can be traced partly to the size of ��, that we discuss
in Sec. II C, and partly to a discrepancy between the tau
decay data of OPAL and of ALEPH and CLEO. This is
seen very clearly if we give the individual values for the
ratio of &2 to number of experimental points of the various
sets of data, which we do for the second fit in (2.11a), i.e.,
including systematic errors:

e��NA7;Ref: 7�: 42=45;

e	e��Ref: 4�: 108=113;

� decay�Aleph;Ref: 11�: 19=21;

� decay�Cleo;Ref: 11�: 32=30;

� decay�Opal;Ref: 11�: 40=31:

(2.11c)

A remarkable feature of (2.11c) is that it shows that in-
cluding information from tau decay in the fit does not spoil
the quality of the fit of the pure e	e� data.

B. Radiative corrections for the e�e� case

We next devote a few words to discuss electromagnetic
radiative corrections, a subject of crucial importance given
the precision of the more recent data, but not always very
clear in the existing literature.

There are, in fact, two separate questions here. First, we
have the radiative corrections to the hadronic part of the
photon vacuum polarization, which affect Fig. 1 by adding
photon corrections (depicted below, in Fig. 6). These give
corrections to a� of order 	3 and will be considered later,
in Sec. III. Second, we have the matter of the radiative
corrections that have to be taken into account when ex-
tracting the pion form factor from experimental data. These
come about for the following reason: the form factor that
verifies the analyticity and unitarity properties necessary to
carry out our analysis in Sec. II A is defined by

hpjJ��0�jp0ijelectroweak interactions�0

� �2���3�p� p0��F���p� p0�2�; (2.12)

i.e., only strong interactions are taken into account for the
expectation value of the electromagnetic current J�.

This quantity F� has thus to be extracted from the
experimentally measured cross sections for e	e� !
�	��, which include all sorts of radiative corrections.
To first (relative) order in 	, these are the following: (1)
Corrections to the e	e�- vertex, or photon radiation by
the incoming e	; e�. These are pure QED effects readily
calculated and taken into account as a matter of course in
experimental analyses. (2) Vacuum polarization correc-
tions to the photon propagator. These are known in terms
of Im" and also can be subtracted easily. They are explic-
-5
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FIG. 3. Diagrams subtracted for evaluating the pion form
factor contribution in a2��s � GeV2� but included in the
O�	3� contribution to a��Hadr�. The blob represents the pion
form factor, to zero order in electroweak interactions, as defined
in Eq. (2.12).

2There also is a significant difference between data from e	e�

and tau decay for 0:8 GeV2 < s < 1:1 GeV2 which, however,
affects very little the result for a��s � 0:8 GeV2�.

3We take, however, equal P wave scattering lengths for �	��

and �0��. We have checked that the influence of this is
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itly taken into account in the second paper in Ref. [4]. (3)
Corrections to the �	��- vertex or photon radiation by
the outgoing pions (Fig. 3). We now say a few words about
the last.

Radiation of hard photons by the outgoing pions, as in
Fig. 3(b), is excluded by the experimental cuts applied
when analyzing e	e� ! �	�� scattering, which require
the angle between the momenta of �	; �� to be close to
180�. One is thus left with the soft photon radiation and
vertex correction shown in Fig. 3(a). They can be calcu-
lated under the assumption that one can factorize the pion
form factor and, given the actual values of the experimental
cuts applied to the momenta of the �	; ��, this correction
turns out to be very small. In this approximation, the
corrections have been evaluated long ago and are, fortu-
nately, explicitly given and extracted in the 2002 version of
the Novosibirsk data (Ref. [4]).

From this analysis it follows that, for the e	e� !
�	�� case, one can subtract all corrections and really
obtain F�, as defined in Eq. (2.12), from data with an error
that is only of order 	2. This is the quantity to which we
can apply our theoretical analysis, as we did at the begin-
ning of the present section.

A problem with the evaluation of the radiative correc-
tions here, however, is that, as noted, one is using a model
with elementary pions, in which the form factor is included
by hand (factorized). This may cause errors (for example,
due to rescattering of the pions or dependence of the form
factor on the off-shell pion mass), whose size (likely small,
since the correction itself is small) we will estimate when
discussing the case of tau decay in the next subsection.
073008
We should here note that the radiative corrections to the
�	��- vertex or photon radiation by the outgoing pions
will have to be considered again when we consider con-
tributions to a� due to photon vacuum polarization of
O�	3�. This we will do in Sec. III.

C. Comment on combining results using e�e�!�� and
	!
��, and on radiative corrections for 	 decay

In some recent papers much ado is made about the
difference in the pion form factor, in the region near and
above the rho resonance, depending whether it its extracted
from e	e� ! �� or from �! ���. In fact, this differ-
ence is expected. To begin with, jF�s�j2 grows almost by a
factor 50 around the rho.2 Thus, even a small difference
between the masses and widths of !� and !0 will imply a
large difference in the form factors. This matter was
studied carefully in Ref. [6], which discussion we summa-
rize and update now.

The values for the anomaly in the rho region that one
obtains depending what one fits, is, with only statistical
errors,

10 11 � a�2�� �s � 0:8 GeV2�

�

�
4707� 21 �from e	e� ! �� only�

4820� 11 �from �! ��� only�:

(2.13)

For the tau, we have &2=dof � 87=�83� 5�. The two
numbers in Eq. (2.13) are well outside each other’s error
bars and it is, therefore, dangerous to combine them in a
direct manner. What, however, one can do, is to fit simul-
taneously e	e� ! �� and �! ��� data allowing for
different values of the parameters m!, b0, b1 (and there-
fore, also different rho widths3) but with the same Omnès-
Muskhelishvili function G�s� in Eq. (2.3b). As discussed in
Ref. [6], we expect isospin breaking effects to be small for
G�s� since its imaginary part is different from zero only for
s > 1:1 GeV2.

Of course, when calculating a��s � 0:8 GeV2� one uses
the parameters m!, b0, b1 determined from the fit to
e	e� ! ��, even if we use tau decay data to help fix
G: we should perhaps emphasize that the result reported in
(2.11) is not an average of e	e� and � results but an
evaluation of e	e� ! ��, using information on G�s�
from tau decay.

This use of different masses and widths for !�, !0 is not
sufficient to remove the discrepancies between the form
factors obtained from e	e� and � decay. A reason for at
negligible.
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least part of the remaining discrepancy is that the experi-
mental number given in Ref. [13] for � decay includes also
the radiative decay; that is to say, one does not measure the
quantity ��! ���� but, in fact, ��! ���� 	 ��!
���	 -� 	 higher orders. So we should discuss radiative
corrections also for tau decay.

First of all, we must make more explicit what we used in
our fits. We take the experimental numbers for the decay
�! ��� including an eventual photon. The correspond-
ing width we denote by *exp��! ����0�-��, and we
divide this by the experimental decay rate for �!
��e�e, plus eventual gammas, *exp��! ��e�e�-��.
However, and as in the case of e	e� annihilation, we
would like to have the quantity F���

� with electroweak
interactions set to zero. Therefore, we should correct the
ratio

*exp��! ����0�-��

*exp��! ��e�e�-��

to obtain the quantity

*�0���! ����0�

*�0���! ��e�e�
;

where the *�0� are evaluated to lowest order in electroweak
interactions.

The corrections necessary to do this are as follows. We
first have radiative corrections to the leptonic width, that
give

*exp��! ��e�e�-�� � �1	 �e�*�0���! ��e�e�;

�e ’
�
25

4
� �2

�
	
2�

’ �0:004:

This correction was incorporated in the analysis of
Sec. II A.

Then we have the corrections to the hadronic width. We
here have corrections similar to those in Fig. 3(b) and
diagrams similar to those in Fig. 3(a): see Fig. 4. We start
with the first, that is to say, the sum of loop corrections
(plus radiation of a soft photon). As far as we know, this has
not been calculated exactly. However, we may expect this
to be dominated by the short distance piece, since this last
contains a large logarithm, logMZ=m�. This gives the
correction
τ+

ν

π+

π0

τ+

ν

π+

γ

π0

FIG. 4. Radiative corrections to �! ��� decay.
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1	
2	
�
log
MZ

m�
’ 1:019; (2.14)

as has been known from a long time [14]. This piece we
also have extracted in our analysis above. After so doing,
there still remains a piece of the loop correction and a
correction due to soft photon radiation. Since we have
extracted the large logMZ=m� piece, we expect this to be
comparable to the like piece in e	e� ! �� case, and thus
small.

It remains to correct for the ratio

1	 �- �
*��! ���� 	 *��! ���	 -�

*�0���! ����
; (2.15)

with - a hard photon, i.e., a photon with energy larger than
a given E0. This, again, is not known, but one can approxi-
mate it by the infrared logarithmic piece, which gives an
average correction

�- ’
	
�
log
m� � �M��

E0
’ 0:008; (2.16)

the last for 20 MeV � E0 � 80 MeV, and we have ne-
glected terms of O�m�=m��. �M�� is the average invariant
mass of the two pions, that we take equal to m!. Since this
correction plus the remainder (after extracting the loga-
rithm) of the loop correction are not known exactly, we
have not included the correction (2.16) in our evaluations
above: (2.16) will be part of the normalization factor ��.

When we allowed variations of the normalization for tau
decay data [13], multiplying their numbers by 1	 �, and
letting � float, we found the excellent fit reported in (2.11)
with �� � �1:4%. It unfortunately is not possible to
understand all of this as due only to the neglect of radiative
corrections; we have verified that, including �- as given in
(2.16) in the fit only changes �� to �1:2%. We have to
admit that there is a residual discrepancy with the value for
the error in normalization, j��j � 0:7%, given in the par-
ticle data tables; but, the difference is small and, indeed, we
get a fit to all experimental data with a &2 per experimental
point which is essentially unity.

In spite of this, it is clear that here we have not fully
determined radiative corrections; only the logarithms
logMZ, logE0 are exact in Eqs. (2.14) and (2.16).
Moreover, the function G�s� will not be exactly invariant
under isospin and, finally, a correction due to the fact that
mu � md, although likely very small, also exists beyond
the rho. We must thus conclude that our partial ignorance
of isospin violations, very likely dominated by radiative
corrections, implies a possible shift of the central value of
the anomaly. A conservative estimate for these effects
would be the difference between the two values obtained
leaving the � decay normalization fixed, and the same
allowing it to float. This gives the number

:rad�10
11 � a�2�� �s � 0:8 GeV2�� ’ 10: (2.17)
-7
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We will accept the same error for the process e	e� ! ��,
although it is probably smaller here.

D. The region with s>0:8 GeV2

For low energies (say, s < 2 GeV2) and near quark
thresholds, there is no alternative to using experimental
data [15]. Between 0:8 GeV2 and 1:2 GeV2 we fit the
experimental data [4] for the �	�� channel; its contribu-
tion is �229� 3� 3� � 10�11. For other final states ( �KK,
3�, 4�, . . . ) we use the e	e� data of Refs. [5,15], with the
methods of Ref. [6]. For higher energies, s > 2 GeV2, and
away from quark thresholds, we can use QCD formulas
[16], taking into account the more recent values of the
masses of the quarks as well as the strong coupling, 	s. For
the QCD calculations we take the following approxima-
tion: for nf massless quark flavors, with charges Qf, we
write

R�0��s� � 3
X
f

Q2f

�
1	

	s
�

	 �1:986� 0:115nf�
�
	s
�

�
2

	

�
�6:64� 1:20nf � 0:005n2f

� 1:240

�
P
f
Qf�

2

3�
P
f
Q2f�

�
	s
�

�
3
�
:

To this one adds mass and nonperturbative corrections. We
take into account the O�m2� effect for s; c; b quarks with
running masses �mi�s�, which correct R�0� by the amount

�3
X

i�s;c;b

Q2i �m
2
i �s�

�
6	28

	s
�
	�294:8�12:3nf�

�
	s
�

�
2
�
s�1:

(2.18)

The details may be seen in Refs. [6,17].
Adding all the contributions, one has

10 11 � a�2�� �s � 0:8 GeV2� � 2134� 35: (2.19)
µ µ

FIG. 5. A typical diagram for the hadronic light-by-light con-
tributions to the muon magnetic moment.
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This number is almost the same that may be found in
Ref. [6], using the 1999 Novosibirsk data; including the
new data has very little influence in this region.
III. THE HADRONIC CONTRIBUTIONS TO a�:
THE O��3� PIECES

A contribution in a class by itself is the hadronic light-
by-light one, that we label ‘‘‘� ‘.’’ So we split

a�Hadronic;O�	3�� � a�’One blob’ hadronic;O�	3��

	 a�‘� ‘�: (3.1)

We will start by considering the last, given diagrammati-
cally by graphs like that of Fig. 5. This can be evaluated
only using models. One can make a chiral model calcula-
tion (essentially, replacing the hadronic blob by the lightest
hadronic state, a �0), or one can use a constituent quark
model in which we replace the blob in Fig. 5 by a quark
loop. For the chiral model calculation we have to introduce
a cutoff, since the �0 contribution diverges for large vir-
tuality of the photon lines. The result depends on the cutoff
(for the chiral calculation) or on the constituent mass
chosen for the quarks. After the correction of a sign error
in the evaluations of Ref. [18] (see Ref. [19]) we find

10 11 � a�‘� ‘� � 86� 25 �Chiral calculation�: (3.2a)

Earlier calculations with the �0 model, using vector meson
dominance to cure its divergence, gave (HKS [18])

10 11 � a�‘� ‘� � 52� 20 ��0 pole �HKS��: (3.2b)

One also could take the estimate of the �0 pole from
Hayakawa, Kinoshita, and Sanda [18] and add the con-
stituent quark loop, in which case we get

1011 � a�‘� ‘� � 98� 22 �Quark constituent model

	 pion pole�: (3.2c)

One expects the �0-dominated calculation to be valid for
small values of the virtual photon momenta, and the con-
stituent model to hold for large values of the same. Thus,
almost half of the contribution to a�‘� ‘� in the chiral
calculation comes from a region of momenta above
0.5 GeV, where the chiral perturbation theory starts to
fail, while for this range of energies, and at least for the
imaginary part of (diagonal) light-by-light scattering, the
quark model reproduces reasonably well the experimental
data, as measured in photon-photon scattering. In view of
this, we will take here the figure

10 11 � a�‘� ‘� � 92� 30; (3.3)

but we will refrain from combining this error with the
others.

We next turn to the a�’One blob’ hadronic;O�	3�� cor-
rections, which are obtained by attaching a photon or
fermion loop to the various lines in Fig. 1. They can be
-8



µ µ

FIG. 6. The O�	3� hadronic correction a�hvp; -�.

µ µ

π0, η

FIG. 7. The �0-, 6- contributions to a�hvp; -�.
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further split into two pieces: the piece where both ends of
the photon line are attached to the hadron blob, a�hvp; -�,
hadronic vacuum polarization corrections, shown in Fig. 6,
and the rest. So we write,

a�’One blob’ hadronic;O�	3��

� a�hvp; -� 	 a�’One blob’ hadronic, rest�: (3.4)

The last can be evaluated [20] in terms of the hadronic
contributions to the photon vacuum polarization, finding

10 11�a�’One blob’ hadronic, rest���101�6: (3.5)
4In Ref. [6] only the radiation of hard photons was included,
evaluated using the results of Ref. [23]. The fact that this is so
similar to the full result justifies the (expected) smallness of soft
photon plus vertex correction.
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This result has been checked independently recently by the
Marseilles group [21] and in Ref. [22].

The only contribution that requires further discussion is
that depicted in Fig. 6, a�hvp; -�. In principle, this contri-
bution can be evaluated straightforwardly by a general-
ization of the method used to evaluate the O�	2�
contributions. We can write

a�2��Hadr� 	 a�hvp; -� �
Z 1

4m2�
dtK�t�R�2��t�; (3.6)

where
R�2��t� �
��0��e	e� ! hadrons� 	 ��2��e	e� ! hadrons� 	 ��0��e	e� ! hadrons;-�

��0��e	e� ! �	���
:

The notation means that we evaluate the hadron annihila-
tion cross section to second order in 	, and we add to it the
first order annihilation into hadrons plus a photon. For
energy large enough this can be calculated with the parton
model, which leads to a (very small) correction, �2� 1� �
10�11.

Then comes the contribution of small momenta. We start
by discussing the process involving two pions. We calcu-
late the corresponding piece by adding the contribution of
the diagrams in Fig. 3, as given in the 2002 paper by
Akhmetshin et al. [4]. In this way, we find

10 11 � a�hvp; �	��-� � 47:6� 0:3: (3.7)

The number is very close to that obtained in Ref. [6] (46�
9) but the errors have decreased drastically.4 A similar
analysis ought to be made, in principle, for other radiative
intermediate states like 3�	 - and �KK 	 -, which can be
estimated in terms of the corresponding decays of the !
and 5, but they give a contribution below the 10�11 level
and we neglect them. The contribution from �0�0-,
�2:0� 0:3� � 10�11, is taken from Ref. [5].

The lowest energy contributions to ��0��e	e� !
hadrons;-� are those of the intermediate states �0- and
6-, Fig. 7. These contributions were evaluated in detail in
Ref. [6]; we have

1011 � a�hvp; �0-� � 37� 3;

1011 � a�hvp; 6-� � 6� 2:
(3.8)

Collecting all of this, we get the total effect of the states
hadrons	 -, including the loop correction,

10 11 � a�hvp; -� � 95� 6: (3.9)
IV. BYPRODUCTS

A. The electromagnetic coupling on the Z, �QED�M
2
Z�

With a simple change of integration kernel the previous
analysis can be extended to evaluate the hadronic contri-
-9
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bution to the QED running coupling, �	QED�t�, in particular,
on the Z particle, t � M2

Z; this is an important quantity that
enters into precision evaluations of electroweak observ-
ables. By using a dispersion relation one can write this
hadronic contribution at energy squared t as

:had	�t� � �
t	
3�

Z 1

4m2�
ds

R�s�
s�s� t�

;

where R is as in (2.1b) and the integral has to be understood
as a principal part integral. Therefore, we can carry over all
the work from the previous sections as in Ref. [24], with
the simple replacement

K�s� ! �
t	
3�

1

s�s� t�
:

We find, to next to leading order in 	,

10 5 � :had	�M
2
Z� � 2742� 12; (4.1)

or, excluding the top quark contribution,

10 5 �:had	�5��M2
Z� � 2749� 12:

Adding the known pure QED corrections, the running QED
coupling, in the momentum scheme, is

�	 QED�M2
Z� �

1

128:962� 0:016
: (4.2)

The difference with the result in Ref. [24] is minute.
Equation (4.2) may be compared with a recent calculation
of Hagiwara et al. [22], who, using only experimental
073008
e	e� annihilation data at low energy find

�	 QED�M2
Z� �

1

128:954� 0:031
: (4.3)

While the central value is compatible with ours, the error in
(4.3) is twice as large. This shows clearly the advantage of
a thorough use of analyticity as well as of combining
several sets of data (we will discuss this further in
Sec. VI, in connection with the muon anomaly).

B. The masses and widths of the rho, the quadratic
radius and second coefficient of the pion, and

the scattering length and effective range parameter
for the P wave in �� scattering

As other byproducts of our analysis we can give very
precise numbers for the masses and widths of the neutral
and charged rho resonances, for the quadratic radius and
second coefficient of the pion form factor, and for the
scattering length, a11, and effective range parameter, b11
(defined as in Ref. [11]) for the P wave in �� scattering.
In what regards the first, we have the following results: for
the charged rho, and in MeV,

TY; �; e�; e	e� GJ�� decay only�
m!� 774:0� 0:4 775:4� 0:4
*!� 147:7� 0:7 149:3� 0:4

&2=dof 1:06 �1:8:

(4.4a)

For the neutral rho,
TY; e	e�; e� TY; �; e�; e	e� GJ�e	e� only�
m!0 773:1� 0:6 773:2� 0:4 772:95� 0:7
*!0 141:7� 1:2 146:0� 0:8 147:9� 0:7

&2=dof 0:9 1:06 �1:7:

(4.4b)

Here TYare our results here, and GJ refers to the results by Ghozzi and Jegerlehner [25]. Clearly, the masses are stable and
well determined, the widths less so.

The quadratic radius and second coefficient of the pion are defined by

F2��t� ’t!0 1	
1

6
hr2�it	 c�t2; (4.5)

and our results allow a precise determination of both quantities. The same is true for a11, b
1
1. We have, for �	��,

TY �Only e	e�; e�� TY �Including � decay� Colangelo
hr2�i �fm2� 0:423� 0:003 0:432� 0:001 0:435� 0:005
c��GeV�4� 3:78� 0:05 3:84� 0:02 � � �

a11�m� � 1� �38:9� 2:3� � 10�3 �37:8� 0:8� � 10�3 �37:9� 0:5� � 10�3

b11�m� � 1� �4:1� 0:7� � 10�3 �4:74� 0:09� � 10�3 �5:67� 0:13� � 10�3:

(4.6)
TY is from our results here and Colangelo from
Refs. [10,11]. The discrepancy between the result for b11
from the pion form factor and that in Ref. [11] had already
been noted in Ref. [12]. The numbers coming from our
calculations for a11, b

1
1, including tau decay data, agree

much better than those not including it with results from
pion-pion scattering, either from phase shifts analyses or
using the Froissart-Gribov representation [12] which is
another reason for preferring the results including tau
decays.

The values of the parameters of our fits are

e	e�;e�: c1 � 0:26� 0:04; c2 � 0:19� 0:13;

b0 � 1:106� 0:009; b1 � 0:23� 0:10; (4.7)

and
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e	e�;e�; �: c1 � 0:24� 0:01; c2 � �0:18� 0:03;

b0 � 1:074� 0:006; b1 � 0:13� 0:04: (4.8)

The numbers bi in (4.8) correspond to �	��; they are the
ones we have used to calculate a��s � 0:8 GeV2�. For
�0�	 we would have

b0 � 1:064� 0:006; b1 � 0:13� 0:03 ��0�	�;

(4.9)

and the ci are as in (4.8). The corresponding scattering
length and effective range parameter are, in units of m�	 ,

a11 � �37:8� 0:8� � 10�3;

b11 � �4:78� 0:09� � 10�3 ��0�	�:
(4.10)
V. COMPARISON OF OUR THEORETICAL
CALCULATIONS WITH EXPERIMENT FOR a�

We return to the magnetic moment of the muon, and
present, in Table I, a summary of our results for a�Hadr�. In
this table we have included our old result from 2002 [6],
and the result of a recent evaluation by Jegerlehner [25] in
which theory is kept to a minimum; for example, only data
are used for s < 0:8 GeV2, and QCD is taken valid only for
energies above 13 GeV. The main interest of this type of
calculation lies in its role as control of the calculations
where a more comprehensive use of theory (as well as extra
experimental information) is made. In the table we also
include the recent experimental value of Ref. [2]. For our
evaluations here, we have separated explicitly the esti-
mated errors due to radiative corrections and the light-
by-light scattering diagram.

From Table I it is clear that there is reasonable agree-
ment among the various theoretical determinations, but
there is a definite distance between the central values
from theory and experiment, at a level between 2:3� and
3:3�, if we add quadratically rad and ‘‘‘� ‘’’ errors to the
other ones. In the remaining of this section we will discuss
possible reasons for this discrepancy.

An obvious reason would be new physics; we will not
discuss this here, since it lies outside the scope of the
present paper; we send the interested reader to the hun-
dreds of papers that have been written discussing this
possibility.
TABLE I. Contributions to the rho region and t
Jegerlehner, Ref. [25]; TY (2002), Ref. [6]; and T

1011 � a��s � 0:8

Jegerlehner � � �

TY (2002), e	e�, e�, � 4774� 51
TY, e	e�, e� 4715� 32� 10�rad
TY, e	e�, e�, � 4798� 31� 10�rad
Experiment
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A second reason is, of course, a displacement of the
experimental result. Since the experimental number in
Eq. (1.1) comes basically from only one experiment, it
could happen that an independent determination would
move it to better agreement with the results of the theo-
retical evaluations.

A third possibility is that the central values of some of
the theoretical evaluations presented here are displaced
with respect to the true values. The more obvious place
where such a displacement may occur is the evaluation of
a�‘� ‘�. The two approximations used to evaluate this
contribution do not have overlapping ranges of validity;
there is a wide region, when the virtualities of some (one)
of the intermediate photons are small, and at the same time
other (others) are large, where neither the one-pion or the
constituent quark approximations need to be valid. In fact,
the only certain result we have on this piece is the coeffi-
cient of the leading chiral logarithm (log2m�) given in
Ref. [26], which is of little practical use. However, it is
not easy to see how one could get the large values neces-
sary for theory and experiment to overlap. In a recent
calculation, using methods somewhat different to previous
ones, Melnikov and Vainshtein [27] find

10 11 � a�‘� ‘� � 136� 25: (5.1)

Although this is larger by a bit more than one sigma (44�
10�11) than the result quoted in (3.3), it is not sufficient to
remove the discrepancy.

Finally, we may have a coincidence of several of the
effects mentioned here, with the bad luck that they add.
VI. COMPARISON WITH OTHER RECENT
CALCULATIONS AND CONCLUDING REMARKS

Our analysis shows that, to get a precise value of a�, it is
certainly necessary to profit from the existence of methods
that allow us to make full use of theory, in particular, for
fitting the pion form factor: the use of robust theory in the
fits produces robust results. It is not very consistent to use
analyticity and unitarity to write the representation (2.1),
and refuse to use exactly the same ingredients to improve
the knowledge of F�. In this sense, it is also important to
take into account the data on F��s� for spacelike s, i.e.,
from e� scattering. This has been deemed inappropriate by
some authors because they (may) contain systematic er-
o the hadronic part of the muon anomaly. See
Y, this article.

GeV2� 1011 � a��Hadr�

6840� 94
6993� 69

� 6935� 50� 10�rad� � 30�‘� ‘�
� 7018� 49� 10�rad� � 30�‘� ‘�

7209� 60
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TABLE II. The lowest order hadronic part of the muon anomaly, including photon corrections
[Eq. (3.9)] and the full a�. See Hagiwara, Ref. [22]; Ezhela, Ref. [28]; Davier (a) and (b),
Ref. [29] (a) and (b); and TY, this article.

1011 � ahad;LO	-� 1011 � a�

Ezhela e	e� 6996� 89 116 591 835� 96
Hagiwara e	e� 6924� 64 116 591 763� 74
Davier (a) e	e� 6847� 70 116 591 693� 78
Davier (b) e	e� 6963� 72 116 591 809� 80
Davier (b) � 7110� 58 116 591 956� 68
TY (2002), e	e�, e�, � 7002� 66 116 591 849� 69
TY, e	e�, e�, � 7027� 49 116 591 889� 58
Experiment 116 592 080� 60

J. F. DE TROCÓNIZ AND F. J. YNDURÁIN PHYSICAL REVIEW D 71, 073008 (2005)
rors. However, if one refrained from taking into account
data afflicted by systematic errors, there would be no data
one could use. Systematic errors can and should be taken
into account as shown, in this particular instance, in
Ref. [6] and in the present article.

In the same vein, we believe that tau decay data can and
should be used, in spite of the fact that the data of the
various tau decay experiments differ in some energy re-
gions by more than 1 standard deviation—doubtlessly
because of systematic errors, as is obvious from (2.11c).
This is particularly important because the errors given in
Eq. (2.8a) for a�2�� �s � 0:8 GeV2� are deceptively small. As
we already commented, the error per experimental point
for e	e� ! ��, fitting only e	e�, e� data, is 89=113 ’
0:79, clearly smaller than unity; while, even imposing tau
decay information, the error per experimental point is [as
reported in Eq. (2.11c)] only of 108=113 ’ 0:97, perfectly
acceptable. This means that acceptable fits— like, indeed,
the one obtained by us using also tau decay data—can be
found outside the nominal error bars in Eq. (2.8a).5

Likewise, when data on F� from the processes e	e� !
�	�� 	 - are forthcoming, they should be incorporated
into the analysis: the safest way to get rid of systematic
errors is to combine data of various, independent experi-
ments, so that the various independent systematic errors
average out. The gain, both in accuracy and robustness that
follows from our methods can perhaps be seen more
clearly if we compare them with other recent evaluations
[22,28,29]—something that we do in Table II (where we
do not include the results of Ref. [25], already discussed
before). Here the stability of our 2002 results against
including new, more precise e	e� data, contrasts with
the variations in the other determinations, in spite of the
fact that our error is substantially smaller.
5One should, however, not forget that the value we needed for
the tau decay normalization error, ��1:4� 0:5�% [cf.
Equation (2.11b)], or ��1:2� 0:5�% if including the estimate
(2.16) for �-, is slightly larger than the expected normalization
error, as given by the particle data tables, 0.7%.
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In short: fitting to the theoretical expressions instead of
integrating directly the data, allows us to compare the
different data samples among them in a fully quantitative
manner. We believe that only using this kind of quantitative
comparisons one can decide if the suggested discrepancies
are meaningful or only apparent, and, if meaningful, if they
are due to systematic errors or to physics. The fact is that
one can fit all the e�, e	e� ! ��, and tau data with a
&2=dof essentially 1. This result is a nontrivial improve-
ment on previous work.

It is, however, not clear to us that one can improve the
results using �� scattering data. If we include in the fit the
experimental numbers for �11, the value of a� increases by
8� 10�11; but this is not necessarily more precise than the
result without including this information. The systematic
errors of �11, due to the fact that one does not scatter real
pions (and thus one has to rely on models), are larger than
the errors in our calculation. And if, like Colangelo and
collaborators [10,11], we input �11 from theoretical analy-
ses (Roy equations and chiral perturbation theory), one is
depending on determinations whose accuracy has been
challenged [12] and is, very likely, too optimistically
estimated.

Apart from this, to get real improvement in the theoreti-
cal predictions for the quantity a��Hadr� it would be, first
of all, necessary to remove the sources of uncertainty
mentioned at the end of Sec. V. Of these, the one stemming
from ‘� ‘ is unlikely to be removed in a satisfactory
manner; and we also have a problem (although less im-
portant numerically) with electroweak radiative correc-
tions to tau decay. If we treat them by considering the
pions as elementary, and factoring out F�, then Sirlin’s
theorem [14] implies that, for �! ���, the logarithmic
piece, logMZ=m� cancels out. It, however, does not cancel
if we consider that, at short distances, the decay is really
�� ! � �ud. This means that the model with elementary
pions fails, for this case of tau decay, and thus that the
chances of removing the uncertainties due to lack of accu-
rate knowledge of the radiative corrections here are
remote.
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As a final comment, we would like again to
bring attention to the mismatch between the experi-
mental and theoretical values for a�; although not yet
definite proof of failure of the standard model, it cannot
be ignored.
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