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We study the electromagnetic properties of a system that consists of an electron background and a
neutrino gas that may be moving or at rest, as a whole, relative to the background. The photon self-energy
for this system is characterized by the usual transverse and longitudinal polarization functions, and two
additional ones which are the focus of our calculations, that give rise to birefringence and anisotropic
effects in the photon dispersion relations. Expressions for them are obtained, which depend on the
neutrino number densities and involve momentum integrals over the electron distribution functions, and
are valid for any value of the photon momentum and general conditions of the electron gas. Those
expressions are evaluated explicitly for several special cases and approximations which are generally
useful in astrophysical and cosmological settings. Besides studying the photon dispersion relations, we
consider the macroscopic electrodynamic equations for this system, which involve the standard dielectric
and permeability constants plus two additional ones related to the photon self-energy functions. As an
illustration, the equations are used to discuss the evolution of a magnetic field perturbation in such a
medium. This particular phenomena has also been considered in a recent work by Semikoz and Sokoloff
as a mechanism for the generation of large-scale magnetic fields in the early Universe as a consequence of
the neutrino-plasma interactions, and allows us to establish contact with a specific application in a well
defined context, with a broader scope and from a very different point of view.
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I. INTRODUCTION AND SUMMARY

This work is concerned with the electromagnetic prop-
erties of a medium that consists of a matter background,
such as an electron plasma, and a neutrino gas that moves,
as a whole, relative to the matter background. Technically,
the quantity of interest to us is the photon self-energy, from
which the dispersion relations of the photon modes that
propagate in the medium can be obtained, and from which
other macroscopic quantities of physical interest can be
determined.

Some aspects of this composite system were studied in
Ref. [1] using the methods of real-time finite temperature
field theory (FTFT) [2] which, from a modern point of
view, provides a natural setting for studying the problems
related to the propagation of photons in a medium. Largely
stimulated by the work of Weldon [6–8], a convenient
technique employed in FTFT is to carry out the calcula-
tions in a manifestly covariant form. As is by now familiar,
this is implemented by introducing the velocity four-vector
u� of the medium, in terms of which the thermal propa-
gators are written in a covariant form. In this way, covari-
ance is maintained, but quantities such as the photon self-
energy depend on the vector u� in addition to the kine-
matic momentum variables of the problem. Generally, for
practical purposes the vector u� is set to �1; ~0� in the end,
which is equivalent to having carried out the calculation in
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the rest frame of the medium from the beginning, and this
is usually the relevant physical situation.

However, as noted in Ref. [1], the system we are con-
sidering provides an example for a novel application of
FTFT. A distinctive feature of this system is that the matter
background on one hand, and the neutrino gas on the other,
each is characterized by its own velocity four-vector. Thus,
if we denote by u� the velocity four-vector of the matter
background, and by v� the corresponding one for the
neutrino gas, then we can take the matter background to
be at rest, so that

u� � �1; ~0�; (1.1)

but we must keep

v� � �v0; ~V�: (1.2)

Therefore, the physical quantities such as the photon self-
energy depend on the momentum variables and u� as
usual, and in addition on the vector v�. This additional
dependence can have physical effects that cannot be pro-
duced by the stationary background alone.

The focus of attention in Ref. [1] was the effect that the
collective neutrino-plasma interactions could have on the
stability of such systems [9,10], in analogy with the stream
instabilities that are familiar in plasma physics research,
examples of which are discussed in many textbooks [11].
The calculation was focused on the contribution to the
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FIG. 1. A class of diagrams that contribute to the photon self-
energy in the presence of a neutrino background. The filled circle
in diagram (a) represents the neutrino electromagnetic vertex
that is induced by the interactions with the electron background
[22–27], which can be determined by calculating the off-shell
amplitude corresponding to diagrams (b) and (c) [28].
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FIG. 2. A class of diagrams that contribute to the photon self-
energy in the presence of a neutrino background. The double
electron line represents the thermal electron propagator, with the
effects of the neutrino gas taken into account.
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FIG. 3. One-loop diagrams for the electron self-energy in a
neutrino gas.
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photon self-energy from the set of diagrams represented in
Fig. 1.

On the other hand, it was recognized some time ago
[12–15] that the presence of neutrinos induces birefrin-
gence effects in the medium, similar to those that exist in
materials that exhibit natural optical activity [16]. These
effects are a consequence of a new term, denoted by 	P in
Ref. [12], that shows up in the photon self-energy, which is
proportional to the neutrino-antineutrino asymmetry and is
odd under various discrete space-time symmetries.
However, the previous calculations of these effects have
taken into account only the neutrino background. In par-
ticular, for the purpose of determining 	P in Ref. [14], the
background was taken to consist only of neutrinos and
antineutrinos. Therefore, for all the other particles the
vacuum propagator was used in the calculation.

Here we note that, in the presence of neutrinos, there is
an important contribution to the photon self-energy which
is proportional to both the neutrino asymmetry and the
electron number density. It is best specified by referring
to the diagram depicted in Fig. 2. As indicated by the
double line in this diagram, the electron propagator to be
used in the calculation is the dressed propagator with the
correct electron self-energy in the medium. The electron
self-energy includes the effect of the neutrino gas, as
represented by the diagrams shown in Fig. 3. As we
show, this contribution to the photon self-energy is of no
consequence for the instability issues, but it yields a novel
contribution to the optical activity of the system, that can
lead to interesting and significant physical effects. In par-
ticular, we note that the contribution to 	P calculated in
Ref. [14] is proportional to the photon momentum squared
q2. In contrast, the contribution that is determined here has
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no such term, and it is the only one that survives in the q !
0 limit. This feature leads to effects that can manifest
themselves at a macroscopic level, in the static and long
wavelength electromagnetic regime.

In this work we compute the contribution to the photon
self-energy that is proportional to both the neutrino-
antineutrino asymmetry and the electron density, and con-
sider the consequences for the propagation of photons and
for the electromagnetic properties of the medium. The
calculation is based on the application of FTFT to calculate
the photon self-energy diagram shown in Fig. 2, using the
electron propagator that includes the effect of the neutrino-
electron interactions. The implicit assumption is that, in its
own rest frame, the neutrino gas has a momentum distri-
bution function that is parametrized in the usual way. The
presence of the neutrinos gives rise to two additional
polarization functions besides the ordinary longitudinal
and transverse polarization functions the photon self-
energy, that we denote by 	P and 	0

P. A nonzero value
of 	P by itself leads to optical activity effects, while 	0

p

induces anisotropic effects. Aside from the implications for
the photon dispersion relations, the results for the photon
self-energy can be interpreted in terms of the macroscopic
electromagnetic properties of the system. In particular, the
effects due to 	P and 	0

P remain finite in the limit q ! 0,
and therefore they can manifest themselves in macroscopic
effects in the long wavelength and static regimes. As a
specific application, we consider the evolution of a mag-
netic field perturbation in the system, and we arrive at an
-2
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equation for the dynamics of the magnetic field that has
been suggested by Semikoz and Sokoloff [17], in the
context of a mechanism for the generation of large-scale
magnetic fields in the early Universe as a consequence of
the neutrino-plasma interactions. Thus, besides extending
the earlier calculations already mentioned, the present
work makes contact and complements this recent work,
which is based on a treatment using the kinetic equations of
the neutrino-plasma system. The results and formulas we
present are applicable in a variety of situations where the
neutrino interactions with the other background particles
are important, and the method we employ could also be
useful in the study of similar problems that may arise in
other contexts.

A word about the strategy of our calculation is in order.
In principle, the diagrams involved are numerous, and
many of them are shown in Ref. [14]. However our calcu-
lation is simplified for the following reason. Since we are
interested in the terms that contain both the neutrino and
the electron distribution functions, the momentum integra-
tions are effectively cutoff. To order 1=M2

W , we can then
replace the W;Z boson propagators by their local limit, so
that the neutrino-electron interactions can be approximated
by the local Fermi interactions. In that limit, the set of
diagrams that are relevant to extract the contribution that
we are seeking, to order 1=M2

W , collapses to the class of
diagram represented in Fig. 2, which we are considering in
the manner we have indicated.

We begin, in Sec. II by writing down the expression for
the electron propagator that will be used in the calculation
of the photon self-energy, which includes the thermal
effects as well as the effects of the neutrino-electron inter-
actions. In Sec. III the self-energy tensor is calculated and
in terms of the usual transverse and longitudinal compo-
nents and the two additional components that we have
mentioned, and the integral formulas for the latter are
obtained and evaluated for some cases in Sec. IV. The
photon dispersion relations for this system are considered
in Sec. V, the application to the study of the macroscopic
electromagnetic properties of this system is in Secs. VI and
VII contains our conclusions.
II. ELECTRON PROPAGATOR

The electron self-energy function �e�p� is determined
by computing the diagrams depicted in Fig. 3. A straight-
forward calculation, using the thermal propagator for the
internal neutrino lines, yields to order 1=M2

W

�e � 6v��V � �A�5�; (2.1)
where
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(2.2)

Here the coefficients a�Z�e ; b�Z�e are the vector and axial
vector neutral-current couplings of the electron,

a�Z�e � 	
1

2
� 2sin2�W b�Z�e �

1

2
; (2.3)

and the n��
; n ���

denote, respectively, the total number
density of each neutrino or antineutrino specie in the
medium.

The electron propagator to be used in our calculation of
the photon self-energy is given by

Se�p� � SF�p� 	 
SF�p� 	 �SF�p���e�p � u�; (2.4)

where �SF � �0SyF�
0, and

�e�p� � ��p � u�fe�p � u� � ��	p � u�f �e�	p � u�; (2.5)

with

fe�x� �
1

e!�x	�e� � 1
f �e�x� �

1

e!e�x��e� � 1
: (2.6)

Here !e is the inverse temperature and �e the chemical
potential of the electron gas. In addition, SF is the electron
propagator in the presence of the neutrino gas, which is
given by

S	1
F �p� � S	1

0 	�e�p�; (2.7)

where S0 is the free propagator in the vacuum

S0 �
6p�me

p2 	m2
e � i$

; (2.8)

and �e has been given in Eq. (2.1). Therefore, to leading
order in 1=M2

W ,

SF�p� � S0�p� � S0�p��e�p�S0�p�: (2.9)

Substituting this in Eq. (2.4), we obtain the electron ther-
mal propagator to be used in our computation

Se � S0 � ST � S0 � S0T; (2.10)

where S0 is given in Eq. (2.8), ST is the usual thermal part
of the electron propagator

ST�p� � 2	i&�p2 	m2
e��e�p � u��6p�me�; (2.11)

while

S0�p� �
�6p�me��e�p��6p�me�

�p2 	m2
e � i$�2

; (2.12)

and
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S0T�p� � 	2	i&0�p2 	m2
e��e�p � u��6p�me�

� �e�p��6p�me�: (2.13)

In Eq. (2.13), &0 denotes the derivative of the delta function
with respect to its argument.

In some respects, the present calculation resembles the
calculation of the photon self-energy in an electron back-
ground in the presence of a magnetic field [18,19]. In that
case, the calculation involves the use of the thermal gen-
eralization of the Schwinger propagator, which takes into
account the B field and the thermal effects of the electron
background. In the present case, the neutrino current acts
as the external field, playing the role of the B field in the
former case.
III. PHOTON SELF-ENERGY

We decompose the photon self-energy into various parts
according to whether or not they depend on the neutrino
densities. Therefore, discarding the term that is indepen-
dent of the particle densities, we write

	�� � 	�e�
�� � 	���

�� � 	�e��
�� ; (3.1)

where 	�e�
�� is the purely electronic contribution, while

	���
��, which depends on the neutrino distributions but not

on the electron distribution, corresponds to the contribution
to the photon self-energy that was computed in Ref. [14].
Although the results for 	���

��, and of course 	�e�
�� are

known, we state them below in the form that will be useful
for later reference. On the other hand, 	�e��

�� contains the
terms that depend on both the neutrino and electron dis-
tributions, and is the focus of the present paper. To deter-
mine it, we start from the expression corresponding to the
diagram of Fig. 2,

i	0
�� � 	�	ie�2

Z d4p

�2	�4
Tr
��iSe�p� q���iSe�p��;

(3.2)

where Se�p� is given by Eq. (2.4), with SF determined from
Eq. (2.7). Substituting Eq. (2.10) into Eq. (3.2) and singling
out the terms that contain the electron distributions as well
as the neutrino densities we obtain,

i	�e��
�� � e2

Z d4p

�2	�4
fTr��iS0�p0���iS0T�p�

� Tr��iS
0
T�p

0���iS0�p� � Tr��iS
0�p0���iST�p�

� Tr��iST�p0���iS0�p�g; (3.3)

where

p0 � p� q: (3.4)
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A. ��e�
��

The pure electron term is given by

i	�e�
�� � e2

Z d4p

�2	�4
fTr��iS0�p0���iST�p�

� Tr��iST�p
0���iS0�p�g: (3.5)

Computing the traces and carrying out the p0 integration,
	�e�

�� can be written in the form

	�e�
�� � 	4e2

Z d3p

�2	�32E
�fe � f �e�

�

� L��

q2 � 2p � q
� �q ! 	q�

�
; (3.6)

where

L�� � 2p�p� � p�q� � q�p� 	 p � qg��: (3.7)

The fact that 	�e�
�� is symmetric and satisfies q�	�e�

�� �

q�	�e�
�� � 0 implies that it is of the form

	�e�
�� � 	�e�

T R�� � 	�e�
L Q��; (3.8)

where

R�� � ~g�� 	Q��; Q�� �
~u�~u�
~u2

; (3.9)

with

~u � � ~g��u�; (3.10)

and

~g �� � g�� 	
q�q�
q2

: (3.11)

In general 	�e�
T;L are functions of the scalar variables

! � q � u Q �
������������������
!2 	 q2

q
; (3.12)

which have the interpretation of being the photon energy
and momentum, in the rest frame of the electron gas. The
functions 	�e�

T;L are determined by projecting Eq. (3.6) with
the tensors R�� and Q��. This procedure then leads to

	�e�
T � 	2e2

	
Ae �

q2

Q2 Be



; 	�e�

L � 4e2
q2

Q2 Be

(3.13)

where
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Ae �
Z d3p

�2	�32E
�fe � f �e�

�
2m2

e 	 2p � q

q2 � 2p � q
� �q ! 	q�

�
;

Be �
Z d3p

�2	�32E
�fe � f �e�

�

�
2�p � u�2 � 2�p � u��q � u� 	 p � q

q2 � 2p � q
� �q ! 	q�

�
:

(3.14)

While these formulas can be used to evaluate the electronic
contribution to the photon self-energy in various situations,
we need not proceed any further in that direction since, as
we have already mentioned, the results are well known and
we can simply quote the relevant ones when we need them.

B. ����
��

In addition to the tensors R�� and Q�� that are defined in
Eq. (3.9), we introduce

P�� �
i
Q
$���!q�u!; P0

�� �
i
Q
$���!q�v0!;

(3.15)

with

v0� � v� 	 u��u � v�: (3.16)

Then the results of Ref. [14] can be expressed in the form

	���
�� � 	���

P �P0
�� � u � vP���; (3.17)

where

	���
P �

e2GF���
2

p
	2

	
q2

m2
e



Q�n�e

	 n ��e
�J�q2�: (3.18)

J�q2� is given explicitly in that reference, but its precise
value will not be relevant here. We only wish to note the
presence of the kinematic factor of q2 in Eq. (3.18). For the
purpose of determining the dispersion relations, this factor
can be set equal to the plasma frequency squared !2

p, since
in the lowest order q2 �!2

p. However, in other applica-
tions, such the one as we will consider in Sec. VI B, the
appropriate kinematic regime corresponds to taking q ! 0,
and in those cases 	���

P is not relevant.

C. Evaluation of ��e��
��

Computing the traces and carrying out the p0 integration
in Eq. (3.3), 	�e��

�� can be expressed in the form

	�e��
�� � �	4e2���VT

�V�
�� � �AT

�A�
���; (3.19)

where
073006
T�V�
�� �

Z d4p

�2	�3
�e�p � u�

�
	L�1�

��&0�p2 	m2
e�

d

�
L�2�
��&�p2 	m2

e�

d2
� �q ! 	q�

�

T�A�
�� � i$���!

Z d4p

�2	�3
�e�p � u�

�
	K�1��!&0�p2 	m2

e�

d

�
K�2��!&�p2 	m2

e�

d2
	 �q ! 	q�

�
; (3.20)

with

L�1�
�� � �m2

e 	 p2�
p0
�v� 	 g��p0 � v� v�p0

��

� �2p � v�m2
eg��

� 2p � v
p0
�p� � p�p0

� 	 p � p0g���

L�2�
�� � �m2

e 	 p02�
p�v� 	 g��p � v� v�p��

� �2p0 � v�m2
eg��

� 2p0 � v
p0
�p� � p�p0

� 	 p � p0g���

K�1�
�! � �p2 	m2

e�p�v! � �p2 �m2
e�q�v! 	 2p � vq�p!;

K�2�
�! � �m2

e 	 p02�p�v! � 2m2
eq�v! 	 2p0 � vq�p!;

(3.21)

and

d � �p� q�2 	m2
e: (3.22)
1. Evaluation of T�V�
��

The integral expression for T�V�
�� can be simplified as

follows. Defining

C�� � p�v� � v�p� 	 p � vg��;

D�� � �m2
e 	 p � p0�g�� � p�p

0
� � p0

�p�;
(3.23)

L�1;2�
�� can be expressed in the form

L�1�
�� � �m2

e 	 p2�
v�@�D�� 	 C��� � 2p � vD��;

L�2�
�� � 	dC�� � 2p0 � vD��;

(3.24)

where d is given in Eq. (3.22), @� � @=@p�, and we have
used the following relation,

p0
�v� � v�p

0
� 	 p0 � vg�� � v�@�D�� 	 C��; (3.25)

which can be verified by explicit computation. Using the
relations

�p2 	m2
e�&0�p2 	m2

e� � 	&�p2 	m2
e�;

v�@�&�p
2 	m2

e� � 2p � v&0�p2 	m2
e�;

(3.26)

it then follows that
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L�1�
��&0�p2 	m2

e� � v�@�
D��&�p
2 	m2

e��

	 C��&�p
2 	m2

e�; (3.27)

and similarly

L�2�
��

d2
� 	D��v

�@�

	
1

d



	

C��

d
; (3.28)

where we have used

v�@�

	
1

d



� 	2p0 � v

1

d2
: (3.29)

Therefore, from Eq. (3.20), with the help of Eqs. (3.27) and
(3.28)

T�V�
�� �

Z d4p

�2	�3
�e�p � u�

�
	v�@�

�D��&�p2 	m2
e�

d

�

� �q ! 	q�
�
; (3.30)

which, after a partial integration and then carrying out the
integration over p0 using the delta function, yields

T�V�
�� � v � u

Z d3p

�2	�32E

@�fe 	 f �e�

@E

�

� L��

q2 � 2p � q
� �q ! 	q�

�
; (3.31)

with L�� given in Eq. (3.7). This has the same structure as
the normal electron background contribution, given in
Eq. (3.6). Therefore, the same arguments used in
Sec. III A can be applied here to conclude that T�V�

�� can
be expressed in the form

T�V�
�� �

1

2

	
A0
e �

q2

Q2 B
0
e



R�� �

	
	q2

Q2



B0
eQ��; (3.32)

where

A0
e � u � v

Z d3p

�2	�32E

@�fe 	 f �e�

@E

�

�
2m2

e 	 2p � q

q2 � 2p � q
� �q ! 	q�

�
;

B0
e � u � v

Z d3p

�2	�32E

@�fe 	 f �e�

@E

�

�
2�p � u�2 � 2�p � u��q � u� 	 p � q

q2 � 2p � q
� �q ! 	q�

�
:

(3.33)
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2. Evaluation of T�A�
��

From Eq. (3.21), using Eq. (3.26) we can write

	K�1�
�!&

0�p2 	m2
e�

d
�

K�2�
�!&�p

2 	m2
e�

d2

� 2m2
eq�v!

�
&�p2 	m2

e�

d2
	

&0�p2 	m2
e�

d

�

� v�@�

	q�p!&�p
2 	m2

e�

d



: (3.34)

Therefore,

T�A�
�� � i$���!q�
I

!
1 � I2v!�; (3.35)

where

I!1 �
Z d4p

�2	�3
�e�p � u�

�
v�@�

�
p!&�p2 	m2

e�

d

��
� �q ! 	q�;

I2 � 2m2
e

Z d4p

�2	�3
�e�p � u�

�
&�p2 	m2

e�

d2
	

&0�p2 	m2
e�

d

�
� �q ! 	q�: (3.36)

For I!1 , by partial integration we obtain

I!1 � 	v � u
Z d3p

�2	�32E

@�fe � f �e�

@E

� p!
�

1

q2 � 2p � q
� �q ! 	q�

�
: (3.37)

Since the integral is a function only of the vectors q� and
u�, it must be of the form

I!1 � I1u
! � I01q

!: (3.38)

Substituting it in Eq. (3.35),

T�A�
�� � i$���!q

�
I1u
! � I2v

!�; (3.39)

and therefore I01 is not relevant. On the other hand, I1 can be
determined by using the projection relation

~u !I
!
1 � ~u2I1; (3.40)

which, from Eq. (3.37), yields the formula

I1 �
v � u

Q2

Z d3p

�2	�32E

@�fe � f �e�

@E

�

�
q2�p � u� 	 �q � u��p � q�

q2 � 2p � q

�
� �q ! 	q�: (3.41)

To carry out the integration over p0 in Eq. (3.36) we
write

&0�p2 	m2
e� �

1

2p0

@

@p0 &�p
2 	m2

e�; (3.42)

and using the usual rule for the integration over the deriva-
-6
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tive of the delta function after some algebra we obtain

I2 � 2m2
e

Z d3p

�2	�32E

@
@E

�
1

2E

	
fe � f �e

q2 � 2p � q


�
� �q !	q�:

(3.43)

D. Summary

From the results we have obtained, it follows that the
photon self-energy can be expressed in the form

	�� � 	TR�� � 	LQ�� � 	PP�� � 	0
PP

0
��; (3.44)

where P�� and P0
�� have been defined in Eq. (3.15). Using

Eqs. (3.8) and (3.19) together with the results for T�V;A�
��

given in Eqs. (3.32) and (3.39), the coefficients in
Eq. (3.44) are then given by

	T � 	�e�
T 	 2e2�V

	
A0
e �

q2

Q2 B
0
e



;

	L � 	�e�
L � 4e2�V

	
q2

Q2



B0
e;

	P � �u � v�	���
P � 	�e��

P 	0
P � 	���

P � 	0�e��
P

(3.45)

where

	�e��
P � 	4e2�AQ
I1 � �u � v�I2�;

	0�e��
P � 	4e2�AQI2;

(3.46)

with I1;2 given by Eqs. (3.41) and (3.43), respectively.
The terms proportional to �V give only small correction

to the pure electronic terms. For example, consider the case
of a classical electron distribution, for which we can use

@fe; �e
@E

� 	!fe; �e: (3.47)

Then from Eq. (3.33),

A0
e �	!Ae; B0

e �	!Be; (3.48)

and remembering Eq. (3.13), it follows that the neutrino-
dependent contribution to 	T;L is smaller than the electron
term by a factor of order !�V . Assuming, for illustrative
purposes, that the neutrino gas can also be treated classi-
cally, so that n� � T3, then !�V �GFT

2, which is negli-
gible in most situations of interest. Therefore, for all
practical purposes of interest to us, we will neglect that
contribution in Eq. (3.45) and use

	T � 	�e�
T ; 	L � 	�e�

L (3.49)

in what follows.

IV. EVALUATION OF ��e��
P AND �0�e��

P

Useful formulas for 	�e��
P and 	0�e��

P can be obtained by
evaluating the integrals I1;2 defined in Eqs. (3.41) and
(3.43) in the long wavelength limit. The expressions for
073006
I1;2 in that limit can be obtained by applying the auxiliary
formula [20,21]

Z d3p

�2	�3
F �p; q�


q2 � 2p � q�n
�

Z d3p

�2	�3
�F 	

~Q
2 �

dF
d ~p 	 n!

2E F �


2E!	 2 ~p � ~Q�n
;

(4.1)

and they are valid for

!;Q � hEi; (4.2)

where hEi denotes a typical average energy of the electrons
in the background. In Eq. (4.1) the symbol d=d ~p stands for
the total momentum derivative,

d
d ~p

�
@
@ ~p

�
~p
E

@
@E

: (4.3)

Let us consider I2 first. We rewrite Eq. (3.43) in the form

I2 �
m2

e

2

Z d3p

�2	�3

�
f0

q2 � 2q � p
	

2!f


q2 � 2q � p�2

�
� �q ! 	q�; (4.4)

where, to simplify the notation, we have defined

f �
fe � f �e

E2 ; f0 �
1

E
@
@E

	
fe � f �e

E



: (4.5)

Then by direct application of Eq. (4.1) we obtain

I2 �
m2

e

4

Z d3p

�2	�3
!

E
!E	 ~p � ~Q�2

�
~p � ~Q

@f
@E

� 2!f
�

	
m2

e

4

Z d3p

�2	�3
1

E
!E	 ~p � ~Q�

�
~p � ~Q

@f0

@E
�!f0

�
:

(4.6)

Furthermore, denoting by �v the average velocity of the
particles in the background, the following approximate
formulas are useful for practical applications,

I2 �

( m2
e
4

R d3p
�2	�3

1
E

@
@E 


1
E

@
@E �

fe�f �e
E �� �! � �vQ�

	 m2
e
4

R d3p
�2	�3

1
E

@
@E �

fe�f �e

E3 � �! � �vQ�;
(4.7)

which are obtained from Eq. (4.6) by taking the static limit
! � 0, or the ~Q � 0 limit, respectively. The remaining
integration can be carried out simply for particular cases of
the distribution functions, and we consider some of them
below.

Regarding I1, it can be written in the form

I1 �
u � v

2Q2

Z d3p

�2	�3
F1

q2 � 2p � q
� �q ! 	q�; (4.8)

where

F1 �
@�fe � f �e�

@E

�
	Q2 �

! ~p � ~Q
E

�
; (4.9)
-7
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and applying Eq. (4.1),

I1 � 	
u � v

4Q2

Z d3p

�2	�3

	
~Q �

dF1

d ~p
�

!
E
F1



1

E!	 ~p � ~Q
:

(4.10)

To compute the momentum derivative we use

@F1

@E
� 	Q2 @

2�fe � f �e�

@E2 �! ~p � ~Q
@
@E

�
1

E
@�fe � f �e�

@E

�
(4.11)

which, using ~p � ~Q � E!	 �E!	 ~p � ~Q�, we write as

@F1

@E
� 	Q2 @

2�fe � f �e�

@E2 �!2E
@
@E

�
1

E
@�fe � f �e�

@E

�

	!�E!	 ~p � ~Q�
@
@E

�
1

E
@�fe � f �e�

@E

�
: (4.12)

In addition

@F1

@ ~p
�

!
E

@�fe � f �e�

@E
~Q; (4.13)

and therefore, remembering Eq. (4.3),

!
E
F1 � ~Q �

dF1

d ~p
� q2

~p � ~Q
E

@2�fe � f �e�

@E2

	!
~p � ~Q
E

�E!	 ~p � ~Q�
@
@E

�

�
1

E
@�fe � f �e�

@E

�
: (4.14)

When this is substituted in Eq. (4.10), the second term
gives zero by symmetric integration, and we obtain

I1�!;Q� � 	
u � v
4

q2

Q2

Z d3p

�2	�3
1

E
@2�fe � f �e�

@E2

�
~p � ~Q

E!	 ~p �Q
: (4.15)

To evaluate I1 in the ~Q ! 0 limit, we first expand the
denominator in the integrand,

1

E!	 ~p � ~Q
�

1

E!

�
1�

~p � ~Q
E!

�
: (4.16)

The term proportional to a single power of ~p � ~Q integrates
to zero, while in the quadratic term we can put � ~p � ~Q�2 !
1
3p

2Q2. In this way, in analogy with Eq. (4.7), we obtain the
approximate formulas

I1 �

(
	 u�v

4

R d3p
�2	�3

1
E

@2�fe�f �e�
@E2 �! � �vQ�

	 u�v
4

R d3p
�2	�3

p2

3E3
@2�fe�f �e�

@E2 �! � �vQ�:
(4.17)

In what follows we give explicit results for several useful
cases.
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A. Nonrelativistic, nondegenerate gas

For a classical and nonrelativistic gas, using Eq. (3.47)
and f �e ’ 0, Eqs. (4.7) and (4.17) yield

I1 � 	u � vI2; (4.18)

with

I2 � ne �

( !2

8me
�! � �vQ�

!
8m2

e
�! � �vQ�;

(4.19)

where ne is the total number density of electrons.

B. Relativistic, nondegenerate gas

In this case we also assume for simplicity that f �e ’ fe.
Then, for I1, we use Eq. (3.47) twice, and in the limit
me ! 0

I1 � 	
u � v

4	2 �

(
1 �! � �vQ�
1
3 �! � �vQ�:

(4.20)

For I2 we have to be careful because the integral is not
defined for me � 0. As we show below, the result is

I2 �
1

4	2 ; (4.21)

independently of whether ! � �vQ or ! � �vQ. To illus-
trate how we have proceeded let us consider the ! � �vQ
case in some detail. By carrying out the angular integra-
tion, followed by an integration by parts, from Eq. (4.7) we
obtain the formula

I2 �
m2

e

8	2

Z 1

0
dp

�fe � f �e�

E3 : (4.22)

By making the change of variable p � me tan�,

Z
dp

fe � f �e

E3 �
1

m2
e

Z
d��fe � f �e� cos�

�
2

m2
e

Z
d�e	!m sec� cos�; (4.23)

which we evaluate by using the Taylor expansion of the
exponential. In this way we obtain

Z 1

0
dp

fe � f �e

E3 �
2

m2
e

1�O�me��; (4.24)

and substituting it in Eq. (4.22) we arrive at Eq. (4.21). In
similar fashion, for ! � �vQ,

I2 � 	
m2

e

8	2

Z
dp

1

E
@
@E

	
fe � f �e

E



: (4.25)

Using Eq. (3.47) and then making the change of variables
as above, we obtain
-8
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Z
dp

1

E
@
@E

	
fe � f �e

E



� 	

2

m2
e

1�O�me��; (4.26)

which leads to Eq. (4.21).

C. Degenerate gas

For a degenerate gas, whether it is relativistic or not,

fe � ��EF 	 E�; f �e ’ 0; (4.27)

where EF �
�������������������
p2
F �m2

e

q
is the Fermi energy, with

pF � �3	2ne�1=3 (4.28)

being the Fermi momentum. Then we obtain in this case

I1 � 	

	
u � v

8	2



�

( EF
pF

�! � �vQ�

pF
EF


1	
2p2

F

3E2
F
� �! � �vQ�;

I2 �
	

1

8	2



�

( EF
pF

�! � �vQ�
pF
EF

�! � �vQ�:

(4.29)

Furthermore, in the nonrelativistic (NR) or the ex-
tremely relativistic (ER) case, this yields

I�NR�
1 � 	u � vI�NR�

2 � 	

	
u � v

8	2



�

(me
pF

�! � �vQ�
pF
me

�! � �vQ�;

(4.30)

I�ER�1 � 	

	
u � v

8	2


(
1 �! � �vQ�
1
3 �! � �vQ�;

(4.31)

and

I�ER�2 �
1

8	2 (4.32)

independently of whether ! � �vQ or ! � �vQ.

D. Explicit formulas for ��e��
P and �0�e��

P

The formulas that we have obtained for I1;2 allow us to
evaluate 	�e��

P and 	0�e��
P for typical situations of interest in

physical applications. We specifically consider the regime

! � �vQ; (4.33)

which will be of special interest to us in Sec. VI B. Thus,
for example, if the electron gas is degenerate,

	�e��
P � 	

	
e2

3	2



�Ap

3
F

E3
F

Qu � v;

	0�e��
P � 	

	
e2

2	2



�ApF

EF
Q:

(4.34)

These expressions hold whether the electrons are relativ-
istic or not. On the other hand, for a classical and relativ-
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istic electron gas,

	�e��
P � 	

	
2e2

3	2



�AQu � v; 	0�e��

P � 	

	
e2

	2



�AQ:

(4.35)

Regarding the value of �A, from Eq. (2.2),

�A �
GF���
2

p 
�n��
	 n ���

� � �n��
	 n ���

� 	 �n�e
	 n ��e

��:

(4.36)

In terms of the photon number density at a given tempera-
ture, n� � 27�3�T3=	2, the formula

�A �

���
2

p
7�3�

	2 GFT38; (4.37)

where

8 �
n��

	 n ���

n�
�

n��
	 n ���

n�
	

n�e
	 n ��e

n�
; (4.38)

can be useful for numerical estimates.

E. Discussion

It should be noted that the contributions 	�e��
P and 	0�e��

P
that we have calculated in this work, have a very different
kinematic dependence on the photon momentum q� if we
compare them with the term 	���

P that was calculated in
Ref. [14] and the analogous quantity calculated in
Ref. [15]. In particular, 	���

P , which does not depend ex-
plicitly on the electron distribution, is proportional to q2, as
we have indicated in Eq. (3.18). For the purpose of deter-
mining the photon dispersion relations, since q2 is of the
order of the plasma frequency squared, the value of 	���

P
turns out to be proportional to the electron density and in
fact comparable to the values of 	�e��

P and 	0�e��
P . In the

absence of the electrons, 	�e��
P and 	0�e��

P are of course zero
and, since q2 ’ 0, 	���

P is negligible. Thus, in a pure neu-
trino gas the term calculated in Ref. [15], although it is of
higher order in 1=M2

W , is the dominant one. On the other
hand, in applications such as the one that we consider in
Sec. VI B, in which the relevant kinematic limit is q ! 0,
corresponding to the long wavelength and static regime,
	���

P does not contribute and 	�e��
P and 	0�e��

P are the only
relevant ones.

V. DISPERSION RELATIONS

In the presence of an external current j�ext�� , the electro-
magnetic potential in the medium is determined from the
field equation, which in momentum space is


	q2~g�� � 	���A� � j�ext�� : (5.1)

The photon dispersion relations are determined by finding
the solutions of the homogeneous equation, i.e., with
-9
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j�ext�� � 0. To specify the various modes it is convenient to
introduce the basis vectors $�1;2;3, which we defined as
follows.

For a given photon momentum ~Q, we define the unit
vectors êi (i � 1; 2; 3) by writing

~Q � Qê3; (5.2)

with ê1;2 chosen such that

ê 1 � ê3 � e1 � ê3 � 0; ê2 � ê3 � ê1: (5.3)

For the problem that we are considering, without loss of
generality, we can choose the vectors ê1;2 such that ~V lies in
the 1; 3 plane. Thus, the unit vector

V̂ �
~V
V
; (5.4)

has the decomposition

V̂ � cos�ê3 � sin�ê1: (5.5)

where

cos� � Q̂ � V̂: (5.6)

The vectors $�1;2;3 are then defined by

$�1 � �0; ê1�; $�2 � �0; ê2�; $�3 �
1�����
q2

p �Q;!ê3�;

(5.7)

which form a basis of vectors orthogonal to q�. They
satisfy the relations

R��$�3 � P��$�3 � Q��$�1;2 � 0;

R��$
�
i � $i�; �i � 1; 2�;

Q��$
�
3 � $3�;

P��$
�
1 � i$2�;

P��$�2 � 	i$1�;

(5.8)
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from which we can immediately read off the matrix ele-
ments of the tensors R;Q; P between any pair of the basis
vectors $�1;2;3. In addition, the only nonzero matrix ele-
ments of the tensor P0 are given by

$�2 $
�
3P

0
�� � 	$�3 $

�
2P

0
�� � 	

i
�����
q2

p
Q

V sin�;

$�1 $
�
2P

0
�� � 	$�2 $

�
1P

0
�� � 	

i!
Q

V cos�:

(5.9)

To find the propagating modes, we express the polariza-
tion vectors in the form

8� �
X3
i�1

�i$
�
i ; (5.10)

where the coefficients �i and the corresponding dispersion
relations are to be found by solving the equation


	q2~g�� � 	���8
� � 0: (5.11)

With the help of the relations given in Eqs. (5.8) and (5.9)
this equation can be written in matrix notation

�q2 	��� � 0; (5.12)

where

� �

�1

�2

�3

0@ 1A; (5.13)

and
� �

	T 	i	P � i !QV	0
P cos� 0

i	P 	 i !QV	0
P cos� 	T i

����
q2

p

Q V	0
P sin�

0 	i
����
q2

p

Q V	0
P sin� 	L

0BBB@
1CCCA: (5.14)
In what follows we consider some particular cases of this
equation, whose solutions reveal the structure and the main
features of more general ones.

A. V~�0 case

In this case the 	0
P term in Eq. (3.44) is absent, and

consequently the dispersion relations have the same form
as those studied earlier in Ref. [12]. The longitudinal mode
has the dispersion relation

!2 	Q2 	 	L � 0; (5.15)

and corresponding polarization vector

8�
L � $�3 : (5.16)

The polarization vectors of the transverse modes are then
given by
-10
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8�
� �

1���
2

p �$�1 � i$�2 �; (5.17)

with the corresponding dispersion relations given by

!2 	Q2 	 �	T � 	P� � 0; (5.18)

respectively.

B. V~�0 case

The presence of the 	0
P term in Eq. (3.44) in general

modifies the picture described above, and can give rise to
new effects. This is due to the fact that the existence of the
velocity vector ~V of the neutrino gas breaks the three-
dimensional isotropy of the medium, for example, not
too differently from the way in which it would be broken
by the presence of an external magnetic field. We consider
two special situations.

1. Propagation parallel to V~

In this case sin� � 0, and

� �

	T 	i	P � i !QV	0
P 0

i	P 	 i !QV	0
P 	T 0

0 0 	L

0B@
1CA:
(5.19)

Therefore, the longitudinal mode is unaffected, while for
the transverse modes the polarization vectors are the same
as in Eq. (5.17) but the dispersion relations are now given
by

!2 	Q2 	

	
	T � 	P 	

!
Q
V	0

P



� 0;

!2 	Q2 	

	
	T 	 	P �

!
Q
V	0

P



� 0;

(5.20)

for 8�, respectively.

2. Propagation perpendicular to V~

In this case, setting � � 	=2,

� �

	T 	i	P 0

i	P 	T i
����
q2

p

Q V	0
P

0 	i
����
q2

p

Q V	0
P 	L

0BBB@
1CCCA: (5.21)

Therefore the modes are neither purely longitudinal nor
transverse to ~Q. Finding the general solution in this case is
a cumbersome process. In some circumstances it may be
appropriate to seek approximate formulas for the disper-
sion relations and polarization vectors as a perturbative
expansion in V	0

P, and that can be extended to other values
of � as well.

Some applications of the optical activity effects induced
by neutrinos were considered in Ref. [14]. As a rule, the
effects tend to be small. Our main intention in this section
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was to indicate how the photon dispersion relations are
modified by the anisotropic effects produced by a nonzero
velocity of the neutrino gas relative to the electron back-
ground. It can be of interest to carry this further to study the
implications of these effects in the context of the specific
applications considered in Ref. [14], or similar ones.
However, that is outside the scope and focus of the appli-
cations that we have considered, to which we now turn our
attention.
VI. MACROSCOPIC ELECTRODYNAMICS

Besides modifying the dispersion relations of the prop-
agating modes, the presence of the neutrino gas influence
the electromagnetic properties of the system in the static
and long wavelength regime. To study them, it is useful to
formulate the results or our calculations using the language
of macroscopic electrodynamics.

In what follows we will assume that the neutrino gas is at
rest with respect to the electron gas, that is

v� � u�; (6.1)

since this case already brings out the essential consequen-
ces of the presence of the neutrino gas. In this case, P0

�� �

0, and the photon self-energy takes the form

	�� � 	�e�
T R�� � 	�e�

L Q�� � 	PP��: (6.2)

As has been discussed previously [12,13], this is indeed the
most general of the photon self-energy in an isotropic
medium, which is the case if ~V � 0.

A. Dielectric function

Introducing the electromagnetic field

F�� � 	i�q�A� 	 A�q��; (6.3)

the equation of motion, Eq. (5.1), can be written in the form

	iq�F�� � j�ext�� � j�ind�� ; (6.4)

where

j�ind�� � 		��A�: (6.5)

In fact, Eq. (6.4) is equivalent to the Maxwell equations,
with j�ind�� interpreted as the induced current. For example,
take the component of Eq. (6.4) corresponding to the index
� being a spatial index. With the usual definition of the
fields,

~E � i! ~A	 i ~QA0; ~B � i ~Q� ~A; (6.6)

which are related by

~B �
1

!
~Q� ~E; (6.7)

the equation is just
-11
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i ~Q� ~B� i! ~E � ~j�ext� � ~j�ind�: (6.8)

Moreover, using Eq. (6.5) and (6.6), the induced current is
given in terms of the fields by

~| �ind� � i!
�1	 $l� ~El � �1	 $t� ~Et � i$pQ̂� ~E�; (6.9)

where

1	 $t �
	T

!2 ; 1	 $l �
	L

q2
; $p �

	P

!2 ; (6.10)

and the longitudinal and transverse components of the
electric field are defined by

~E l � Q̂�Q̂ � ~E�; ~Et � ~E	 ~El: (6.11)

Equation (6.9) is the most general form of the induced
current, involving terms that are linear in the field, and
subject only to the assumption of isotropy. The quantities
$t;l in Eq. (6.10) are transverse and longitudinal compo-
nents of the dielectric constant of the medium. Al-
ternatively, instead of $t;l, the dielectric and magnetic
permeability functions $;� are introduced by writing the
induced current in the equivalent form

~| �ind� � i
�
!�1	 $� ~E�

	
1	

1

�



~Q� ~B� i

!2

Q
$p ~B

�
;

(6.12)

where we have used Eq. (6.7). Comparing Eqs. (6.9) and
(6.12), the relations

$ � $l;
1

�
� 1�

!2

Q2 �$l 	 $t�; (6.13)

then follow.
These equations can of course be used to discuss the

dispersion relations of the propagating modes and related
effects. However, we do not proceed any further in this
direction since that would essentially reproduce what we
have already considered in Sec. V. Instead we turn our
attention to another kind of effect that can arise due to the
presence of the neutrino gas, which can be described on the
basis of these equations together with the results we have
obtained.

B. Evolution of magnetic fields

Here we consider the evolution of an initial magnetic
perturbation in this medium. In the absence of any external
sources, the equation for the magnetic field, Eq. (6.8), is

i ~Q� ~B� i! ~E � ~j�ind�; (6.14)

which using Eq. (6.12) we can write in the form

$! ~E�
1

�
~Q� ~B� i� ~B � 0; (6.15)

with
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� � 	
!2

Q
$p � 	

	P

Q
: (6.16)

Since we are interested in following the evolution of ~B, we
eliminate ~E from this equation by taking the cross product
with ~Q and then using Eq. (6.7), which yields

$!2 ~B	
1

�
Q2 ~B� i� ~Q� ~B � 0: (6.17)

We obtain the corresponding equation in coordinate space
by taking the long wavelength limit, ! � �vQ, and making
the quasistatic approximation, ! ! 0. In this limit

$ ! 1�
i=
!

; (6.18)

where = is the conductivity of the medium. Therefore the
equation becomes

i!= ~B	
1

�
Q2 ~B� i� ~Q� ~B � 0; (6.19)

or, in coordinate space,

=
@ ~B
@t

�
1

�
r2 ~B� � ~r� ~B: (6.20)

Although we are using the same symbols � and �, in
Eq. (6.20) they stand for the corresponding quantities
evaluated in the long wavelength and static limit, as in-
dicated above. In this limit, 	���

P does not contribute to � in
Eq. (6.16), as can be seen from Eq. (3.18). Then using the
results for 	�e��

P summarized in Sec. IV D, we can readily
determine � for some particular cases. For example, for the
relativistic and nondegenerate electron gas,

� �
2e2�A

3	2 ; (6.21)

while for a degenerate electron gas,

� �
e2�A

3	2

	
pF

EF



3
; (6.22)

with �A given in Eq. (4.36). For more general cases, � can
be computed from the formula

� � 	e2�A

"Z d3p

�2	�3
p2

3E3

@2�fe � f �e�

@E2

�m2
e

Z d3p

�2	�3
1

E
@
@E

	
fe � f �e

E3


#
; (6.23)

which follows from the expression for 	�e��
P given in

Eq. (3.46), together with the formulas for I1;2 given in
Eqs. (4.7) and (4.17) for ! � �vQ.
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1. Discussion

Equation (6.20) describes the self-excitation of a mag-
netic perturbation. To see how that comes about, consider a
plane wave magnetic field of definite helicity

~B � � Bei� ~Q� ~x	!t�ê�; (6.24)

where

ê � �
1���
2

p �ê1 � i�ê2�; (6.25)

with � � �1 and the vectors ê1;2 defined in Eq. (5.3). From
Eq. (6.20), the dispersion relation is given by

!� �
i
=

	
�Q�	

Q2

�



: (6.26)

The sign of � depends on the sign of the neutrino-
antineutrino asymmetry. But it is clear that for either
sign, one helicity amplitude is damped according to

B� e	�Q==��j�j�Q
��t; (6.27)

while for the opposite helicity

B� e�Q==��j�j	�Q=���t; (6.28)

which grows for those wavelengths satisfying

Q<�j�j: (6.29)

The mode with the maximum growth rate corresponds to
the value of Q given by

Q0 �
�j�j
2

; (6.30)

and the corresponding growth rate is

� �
��2

4=
: (6.31)

Thus, for example, for the case of the relativistic and
nondegenerate electron gas considered earlier, using
Eqs. (4.37) and (6.21), together with the formula [17]

=	1 ’
e2

�4	�2T
(6.32)

for the conductivity, we obtain

� �

	 ���
2

p
7�3�

12	5



2
e6G2

FT
582;

� 2� 10	2082

	
T

GeV



5
GeV:

(6.33)

Analogous formulas can be obtained for the other cases as
well, which are useful for numerical estimates of the
possible effects in different physical environments. How-
ever, further discussion along these lines is outside the
scope of the present work.
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An equation of the same form as Eq. (6.20) was obtained
by Semikoz and Sokoloff [17] by very different means, in
their work suggesting a new mechanism for the generation
of large-scale magnetic fields in the early Universe as a
consequence of the neutrino-plasma interactions. As em-
phasized in that reference, the mechanism can result in the
self-excitation of an almost constant magnetic perturba-
tion, as we have illustrated.

Our approach is useful in two complementary ways. On
one hand, it sheds light on the physical origin of this
mechanism. Within our formulation, it is a consequence
of the optical activity induced by the interaction of neu-
trinos with the other background particles. On the other
hand, it puts this mechanism on a firm footing from a
computational point of view. The optical activity induced
by the neutrinos can be characterized by the presence of the
	P (and 	0

P) terms in the photon self-energy, which also
has a definite interpretation in terms of the components of
the dielectric function that enter in the macroscopic
(Maxwell) equations in the medium. Therefore, by focus-
ing on these quantities, we are able to give well defined
formulas for the parameters that are relevant to this effect,
in a way that are applicable to a variety of astrophysical
and cosmological situations in which the presence of neu-
trinos is influential. Our work also paves the way to incor-
porate some corrections that can be important in specific
applications, such as the anisotropic effects that can arise if
the neutrino gas has a nonzero velocity relative to the
electron background. Further studies along these lines are
the subject of current work.

VII. CONCLUSIONS

We have studied the electromagnetic properties of an
electron background, that contains a neutrino gas which is
either at rest or moving as a whole relative to the back-
ground. Apart from the well known longitudinal and trans-
verse polarization functions of the photon in a medium, the
presence of the neutrinos gives rise to two additional
polarization functions, that we denote by 	P and 	0

P. We
have computed that particular contribution to these two
functions, 	�e��

P and 	0�e��
P , that depends on the neutrino-

antineutrino asymmetry in the medium as well as the
momentum integral of the electron (and positron) distribu-
tion function. The integrals were evaluated for various
specific conditions of the electron gas, and explicit formu-
las that are useful in many situations were given. One of the
consequences of a nonzero value of 	P and 	0

P is to give
rise to birefringence and anisotropic effects in the propa-
gation of a photon through that medium. We analyzed
various particular situations to indicate how the anisotro-
pies due to the nonzero velocity of the neutrino gas can
affect the optical activity of the system. A nonzero value of
	P and 	0

P also has consequences related to the electro-
magnetic properties of the system at a macroscopic level,
and we considered specifically the evolution of a macro-
-13
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scopic magnetic field in this system. We arrived at an
equation for the dynamics of the magnetic field, that had
been suggested in Ref. [17] as a mechanism for the gen-
eration of large-scale magnetic fields in the early Universe
as a consequence of the neutrino-plasma interactions. In
this way we established contact between our work and this
particular kind of application, which has been of recent
interest. The approach we followed, which has been based
on the application of finite temperature field theory, as well
as the calculations and results that are presented here, helps
073006
to put this subject on a firm footing and to set a basis for
carrying out further studies and applications along these
lines using powerful calculational techniques.
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