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Mobility edge in lattice QCD
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We determine the location �c of the mobility edge in the spectrum of the hermitian Wilson operator on
quenched ensembles. We confirm a theoretical picture of localization proposed for the Aoki phase
diagram. When �c > 0 we also determine some key properties of the localized eigenmodes with
eigenvalues j�j< �c. Our results lead to simple tests for the validity of simulations with overlap and
domain-wall fermions.
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Localization of electronic wave functions is a familiar
phenomenon in disordered systems [1]. Recently we con-
jectured [2] that a similar phenomenon takes place in
lattice QCD with Wilson fermions: In an ensemble of
gauge configurations, the low-lying eigenmodes of the
hermitian Wilson operator can be localized, up to some
mobility edge above which they become extended. This
observation has two important applications. First, it helps
resolve a paradox in the quenched theory with negative
bare mass m0, where simulations with two valence quarks
have discovered a condensate that breaks the isospin sym-
metry in regions without Goldstone bosons [3]. Second,
there are important implications for large-scale simulations
of QCD with domain-wall [4] and overlap [5] fermions.
Both of these formulations are based on Wilson fermions
with negative m0. Quenched as well as unquenched calcu-
lations with these fermions will thus be sensitive to the
spectrum of the Wilson operator. It turns out that an under-
standing of the localization properties is important for
ensuring chirality and locality.

In two-flavor QCD with Wilson fermions, part of the
‘‘supercritical’’ region (�8<m0<0) is the so-called Aoki
phase [6], where a pion condensate h�3i breaks both parity
and isospin symmetry. Inside the Aoki phase one pion is
massive, whereas the other two pions are Goldstone bo-
sons. Outside the Aoki phase (e.g., for weak coupling,
away from the critical values m0 � 0;�2; . . . ) all pions
are massive.

It is this supercritical massive phase that presents the
conundrum in the quenched theory. The word ‘‘quenched’’
here can refer to any ensemble of gauge configurations
generated without the Wilson-fermion determinant,
whether a pure gauge ensemble or an ensemble with dy-
namical fermions of some other type, such as domain-wall
fermions.1 Both the massless and the massive supercritical
phases support a nonzero density of near-zero eigenmodes,
l lagrangian study of the pure gauge ensemble with
e quarks, see Ref. [7].
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and hence a condensate through the Banks-Casher relation
h�3i � 2���0� [8], where ���� is the spectral density of
the hermitian Wilson operator HW . Why are there no
Goldstone bosons? In Ref. [2] we proposed a detailed
physical picture which resolves this puzzle. A key obser-
vation (first made in Ref. [9]) is that, in a quenched system,
localization provides an alternative to the Goldstone theo-
rem. In this Letter we present numerical evidence support-
ing and illustrating this picture. The implications for
domain-wall and overlap fermions are thus made more
concrete.

In order to develop this physical picture, we probe our
quenched ensemble with the two-flavor fermion action

SF � � �D� ��� i�3m1��5� 

� � �HW � ��� i�3m1�� 0; (1)

where  0 � �5 , and �k are Pauli matrices acting in flavor
space. HW � D�5 is hermitian. Explicitly,

D �

�
W �m0 �C
Cy W �m0

�
; (2)

where Cxy �
1
2

P4
��1��x��̂;yUx� � �x��̂;yU

y
y���� and

Wxy � 4�xy �
1
2

P4
��1��x��̂;yUx� � �x��̂;yU

y
y��. Each

entry is a 2� 2 matrix, with �� � � ~�; i�, and �k three
Pauli spin matrices. The link variables Ux� 2 SU�3� con-
stitute the random field in which the fermions move. The
parameter �will allow us to study the spectral density ����
of HW via a condensate. m1 is a ‘‘twisted mass’’ which
breaks isospin [6,11], and acts as an external magnetic field
for the condensate of interest. Neither � nor m1 appears in
the Boltzmann weight of the ensemble.

For any � and m1 one derives the Ward identity
X
�

@�hJ�� �x����y�i � 2m1h���x����y�i � �xyh�3�y�i:

(3)

Here @�f�x� � f�x� � f�x� �̂� and J�� �x� is the flavor-
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TABLE I. Exponential falloff rate of the density–density cor-
relator ��t;�� at % � 5:85, m0 � �1:5, for m1 ! 0. Errors are
statistical only. � is the extrapolation of masses determined at
m1 � 0, while ~� is extracted by extrapolation of m1��t;�� to
m1 � 0.

� �2 ~�2

0.0 2.42(6) 1.9–2.3
0.1 1.99(8) 1.3–1.9
0.2 1.18(5) 0.9–1.1
0.3 0.21(3) 0.4–0.5
0.4 �0:04�2� 0.12
0.5 �0:04�2� 0.05
0.6 �0:05�2� 0.01

4This fit usually works well. Above the mobility edge M is the
mass of a pseudo-Goldstone boson and should scale roughly as
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changing vector current,2 and �� � i � �5�� and �3 �
i � �5�3 , with �� � ��1 � i�2�=2. Introducing the Green
function G � �HW � �� im1�

�1 one has

h�3i � �2=V4� Im trhGi; (4)

where V4 is the four-volume. This implies a generalized
Banks–Casher relation

lim
m1!0

h�3i � 2�����: (5)

Thus the spectral density ���� is an order parameter for
flavor symmetry breaking in the quenched theory with
fermion action (1). The easiest way to calculate ���� is
in fact through Eqs. (4) and (5).

The two-point function ��x; y;�� � h���x����y�i rep-
resents correlations of the eigenmode densities ofHW . This
is readily seen from its spectral decomposition,

��x; y;�� �
�X
kn

�y
n �x��k�x�

1

�k � �� im1
�y
k �y��n�y�

�
1

�n � �� im1

�
; (6)

where �n is the eigenmode of HW with eigenvalue �n. We
calculate it at zero three-momentum, ��t;�� �
��V3�

�1P
~x ~y��0; ~x; t; ~y;��, where V3 is the spatial volume.

The mobility edge �c is determined as the value of �where
these correlations become long-ranged as m1 ! 0, that is,
when the large-t behavior of ��t;�� changes from expo-
nential (0 � j�j< �c) to power law (j�j> �c) in this
limit. Above �c one has extended modes, and the long-
range density-density correlations play the role of
Goldstone bosons for flavor symmetry breaking. Below
�c there are no long-range correlations, and no massless
pole in hJ�� �x����y�i. How, then, can the Ward identity (3)
be satisfied in the limit m1 ! 0? The answer is that, when
���� arises from exponentially localized modes, the
quenched two-point function ��x; y;�� diverges as 1=m1

in this limit [2,9]. In fact,3

��x; y;�� �
1

m1

�X
n

j�n�x�j2j�n�y�j2
m1

��n � ��2 �m2
1

�

�O�1�: (7)

As m1 ! 0, the expectation value in Eq. (7) is nonzero if
and only if ���� � 0. It thus provides a mechanism for
saturating the Ward identity without Goldstone bosons.

If the mobility edge is at � � 0, Goldstone bosons
dominate the correlation function; hence we may take
�c � 0 to be the definition of the Aoki phase.
2J�� �x� is conserved for m1 � 0 in the unquenched theory; the
quenched theory is ill defined for m1 � 0 (see Ref. [2]).

3This is rigorously true in finite volumes. It is not true in the
V3 ! 1 limit if ���� contains contributions of extended modes.
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We have determined the value of �c at several locations
in the �%;m0� plane. For each value of % we generated an
ensemble of 120 quenched configurations using the stan-
dard plaquette action. The four-volume was 164, with
periodic boundary conditions for all fields. Our measure-
ments were mostly done atm0 � �1:5 [hopping parameter
& � �8� 2m0�

�1 � 0:2], which is roughly the value used
in domain-wall and overlap simulations. We measured
��t;�� using random sources on time slices 0 and t. We
extracted a mass M � M��;m1� from ��t;�� at m1 values
between 0.01 and 0.07, and extrapolated to m1 � 0 by
fitting4 to M2 � �2��� � (���m1. The results for % �
5:85 are shown in the second column of Table I. One
sees that �2 starts falling rapidly above � � 0:1.

By definition �2��� drops to zero at the mobility edge
�c. We determine �c by linear extrapolation from the last
two points with positive �2. Our results are compiled in
Table II. Consider first the m0 � �1:5 results. For refer-
ence, we include the free-theory limit (% � 1) [2], where
�c coincides with the gap of the freeHW . At % � 6:0, �c is
still close to its free-field value. The curve �c�%� steepens
before reaching zero somewhere between % � 5:6 and
% � 5:5, where we enter the Aoki phase.

Table II also shows results at two other m0 values for
% � 5:7. Them0 � �2:4 result suggests that one is near or
within the Aoki phase.5 We find only a small change
between m0 � �2:0 and m0 � �1:5, consistent with the
finding of Ref. [3] that the spectral properties of HW vary
slowly over this range. This is why we have explored
mainly the %-dependence at fixed m0 � �1:5.

In order to account [2] for the absence of a massless pole
in Eq. (3), the 1=m1-divergence in ��x; y;�� must persist
M / m1. Negative extrapolated values may be a signal of chiral
logs and/or finite-volume effects.

5This is one of the ‘‘fingers’’ of the Aoki phase in the
quenched theory. The fingers may not exist in the theory with
dynamical Wilson fermions. See Ref. [10] and the last paper of
Ref. [6].
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FIG. 1. Coefficient of the 1=m1-divergence in ~��!n;�� for
% � 5:7, m0 � �1:5, � � 0:0.

TABLE III. Spectral properties for % � 5:85, m0 � �1:5. The
mobility edge is at �c � 0:32, marked by the bigger spacing in
the table.

� ���� R ls ll

0.0 0.0011(1) 17. 3.1(4) 0.64(1)
0.1 0.0019(1) 15. 3.5(5) 0.71(1)
0.2 0.0088(4) 10. 3.7(4) 0.92(2)

TABLE II. Mobility edge �c�%;m0� and (when �c > 0) inter-
polated spectral density ���c�. Where no error is shown, the
(statistical) error is less than one in the last digit.

% m0 �c ���c�

1 �1:5 1=2
6.0 �1:5 0.41 0.14
5.85 �1:5 0.32 0.08
5.7 �1:5 0.25 0.07
5.6 �1:5 0.14(2) 0.05
5.5 �1:5 0.0 –
5.4 �1:5 0.0 –

5.7 �2:0 0.21 0.14
5.7 �2:4 � 0 0.06
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for a range of momenta p, and its coefficient should depend
smoothly on p. To confirm this, we calculated the Fourier
transform ~��!n;�� �

P
t cos�!nt���t;��, where !n �

2�n=16, and extrapolated m1
~��!n;�� linearly6 to m1 �

0. Results are shown in Fig. 1 for � � 0:0 at �%;m0� �
�5:7;�1:5�. The !-dependence of the 1=m1-divergence is
indeed smooth. For comparison, we repeated the calcula-
tion for � � 0:5, which is above �c. The extrapolation of
m1

~��0;�� to m1 � 0 is straightforward, as it must be since
this gives ���� according to Eqs. (3) and (5). Doing the
same with ~��!n � 0;��, however, leads to a huge +2. This
confirms the qualitative difference between j�j< �c and
j�j> �c.

We present in Table III some quantities that further
illustrate properties of the localized modes, for the same
�%;m0� as in Table I. Using them, we can address the
question of whether below the mobility edge ���� arises
from well-separated, exponentially localized eigenmodes.

We define a generalized ‘‘participation ratio’’ P n for a
single eigenmode via P�1

n �
P
t�
P

~xj�n� ~x; t�j
2�2 [1]. If

j�nj
2 has support mainly on a four-volume l4n, then P n �

ln. A spectral decomposition of the quantity P�1��� �
limm1!0m1��t � 0;�� shows that it is equal to ���� times
an average of P�1

n over eigenmodes with eigenvalue �n �
�. Thus, if we define the ‘‘support length’’ ls � ����P ���,
we see that 1=ls is an average of 1=ln. The fourth column of
Table III gives this ls, a measure of the linear size of the
support of the eigenmodes.

We may now compare ls to the distance between eigen-
modes. We have a measure of the latter from the values of
m1 that we used in measuring ����. Spectral sums as in
Eq. (7) show that m1 is the resolution with which we detect
eigenmodes near �. For m1 ’ 0:01, the number of modes
we detect for a typical gauge configuration is thus N ’

0:01V4����, and so R��� � �0:01������1=4 is a measure of
6The factor m1=���n � ��2 �m2
1� in Eq. (7) justifies the linear

fit. The contribution of modes with j�n � �j �m1 to m1��t;��
is roughly constant, while that of ‘‘bulk’’ modes with j�n �
�j � m1 vanishes linearly with m1.
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the average distance between modes. If ls � R the modes
are isolated, and correlation functions reflect properties of
individual localized modes, with no interference. Table III
shows this to be the case well below the mobility edge.

The density of an exponentially localized mode has the
asymptotic behavior

j��x�j2 � c exp��jx� x0j=ll�; (8)

which defines ll, the localization length. When the modes
are isolated, the decay rate (extrapolated to m1 � 0) of
��t;�� reflects the localization length of the individual
modes. We thus define an average localization length
through ll � 1=� (Table III, last column; compare
Table I, 2nd column). Well below the mobility edge ll
turns out to be much smaller than ls. In fact, for % �
5:85, we find that ll < 1 and ls > 3. This is good news
for domain-wall and overlap simulations (see below).

Equation (8) represents an exponential envelope that we
expect to multiply oscillations in j�n�x�j

2. These fluctua-
tions, often large, survive the extrapolation of the correla-
tion function ��t;�� itself to m1 � 0. As a result, if we
extract a mass ~� from limm1!0m1��t;��, the result varies
with the details of the fit. We present rough values of ~� in
0.3 0.056(1) 6.5 4.3(3) 2.2(2)

0.4 0.168(7) 4.9 4.7(8) –
0.5 0.27(1) 4.4 11.(3) –
0.6 0.39(2) 4.0 7.(1) –
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the last column of Table I. In the absence of a model for the
fluctuations, ~� is only a qualitative measure, and hence we
do not quote an error. ~� follows the trends shown by �.

Taking all our results together, we have compelling
evidence for exponential localization well below the mo-
bility edge. Here the modes are isolated in the sense of
ls � R (form1 ’ 0:01), and ll � 1=� provides an accurate
estimate of the average localization length. For � * �c
interference effects destroy this connection. Upon compar-
ing our data for all values of �%;m0� shown in Table II, we
find that we can characterize the mobility edge itself as
follows: (i) ���� � 0:05–0:15 near �c; (ii) ll * 1 signals
the proximity of �c; (iii) ls ’ R ’ 5 at �c [12].

Finally, we revisit the implications of our results for
domain-wall and overlap fermions. These two closely
related descendants of Wilson fermions employ a super-
critical Wilson operator as a key element in their construc-
tion. Both are expected to be local, and they both have a
(modified) chiral symmetry [4,5,13] at nonzero lattice
spacing. The question is to what extent these expectations
are fulfilled in actual lattice QCD simulations employing
these fermions. In Ref. [2] we argued that locality and
chirality will coexist in these formulations if and only if
the following holds: On a given ensemble of configura-
tions, the mobility edge of the underlying Wilson operator
must be well above zero. It does not matter whether the
ensemble is quenched or is generated with dynamical
domain-wall or overlap fermions. We will not repeat the
whole argument [2] here but rather focus on assessing the
implications of our numerical results.

Domain-wall fermions employ an auxiliary, discrete,
and (in practice) finite fifth dimension with spacing a5
and Ns sites. Finiteness of the fifth dimension ensures
locality but leads to ‘‘residual’’ violations of chiral sym-
metry. A common measure of these violations, denoted as
mres, may be thought of as an additive correction to the
quark mass. It is determined from a ratio of pseudoscalar
correlation functions at zero spatial momentum and time
separation t. In Ref. [2] it was argued that

mres � c1 exp��~�cNs� � c2 exp��t�~ll�0��1 �m���; (9)

where the two terms arise from extended and localized
modes, respectively. m� is the pion mass in the simulation.
The mobility edge ~�c and the localization length ~ll�� � 0�
071502
refer to a ‘‘hamiltonian’’ ~H obtained from the transfer
matrix in the fifth dimension, which depends on a5. Thus
mres reflects the spectral properties of ~H. We recover HW
from ~H in the limit a5 ! 0. Moreover, it can be
proved that ~H� � 0 if and only if HW� � 0, i.e. the
zero modes of ~H remain unchanged as a5 is varied. This
implies that ~ll�0� � ll�0�. For quenched simulations at% *

5:85 we thus find that ~ll�0� � ll�0� ’ 0:6. The last term in
Eq. (9) therefore vanishes rapidly with t. This agrees with
previous findings [14] thatmres is fairly t-independent once
t is large enough. Similarly, ~�c � 0 if and only if �c � 0.
Since good chiral symmetry requires mres to be small, it
follows that simulations must be performed well outside
the Aoki phase of the underlying Wilson operator.

For overlap fermions, chiral symmetry is guaranteed, but
not locality. Deteriorating locality may distort physical
predictions in an uncontrolled way. Indeed, for large sep-
arations one expects Dov�x; y� � cov exp��jx� yj=lov�.
The exponential tail of the overlap may be represented as
an unphysical field of mass 1=lov that mixes with the
physical quarks with an amplitude controlled by cov. The
range of the overlap operator, far from being merely a
numerical nuisance, is thus a key indicator of the validity
of a simulation.

If an admissibility condition is imposed, it can be proved
that the range lov of the overlap operator is O�1� in lattice
units [15]. For realistic ensembles, lov depends on the
spectral properties of HW , and good locality again requires
keeping away from the Aoki phase. One anticipates that lov
is on the order of either ��1

c or ll�0�, whichever is larger; if
it is the latter, cov should be related to ��0� [2]. The spectral
properties studied in this Letter are thus of central impor-
tance for understanding the locality properties of the over-
lap operator.
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