PHYSICAL REVIEW D 71, 067702 (2005)

U(1) noncommutative gauge fields and magnetogenesis
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The connection between the Lorentz invariance violation in the Lagrangian context and the quantum
theory of noncommutative fields is established for the U(1) gauge field. The modified Maxwell equations
coincide with other derivations obtained using different procedures. These modified equations are
interpreted as describing macroscopic ones in a polarized and magnetized medium. A tiny magnetic
field (seed) emerges as particular static solution that gradually increases once the modified Maxwell
equations are solved as a self-consistent equations system.
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I. INTRODUCTION

In the last few years several authors have suggested
possible Lorentz invariance violations at quantum field
theory and particle physics level [1]. If these theoretical
suggestions are true, then our conception on Lorentz in-
variance and spacetime would be only approximate ideas
coming from a more fundamental —still unknown—struc-
ture. From this point of view, these results could be another
indication that the present relativistic quantum field theo-
ries descriptions would correspond to effective field
theories.

Two important approaches going beyond the standard
Lorentz symmetry are doubly special relativity [2] and the
extended standard model [3], which are proposals that try
to give an answer to largely unsolved problems in high
energy physics, such as ultra high energy cosmic rays [4],
matter-antimatter asymmetry [5], primordial magnetic
field [6,7].

A third possibility is quantum theory with noncommu-
tative fields, which has been proposed in [8], where the
Lorentz symmetry is broken by modifying the canonical
commutators including an ultraviolet and infrared scales.
As we will consider an expanding universe surrounded by
radiation, one could guess that a Bohr-Oppenheimer ap-
proach [9] naturally should generate a geometrical connec-
tion which produces a noncommutativity in the momenta
space at the quantum level.

The goals of the present paper are two; firstly, we will
investigate the connection between the Kosteleky et al.
approach to quantum field theory and quantum theory
with noncommutative fields for the particular context of
the abelian gauge field and secondly, once the equivalence
between both approaches is proven, we will explain some
consequences for the primordial magnetic field.
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More precisely, we will show that the modified Maxwell
equations —that are formally the same equations found by
Carroll et al. [10]—contain as a solution a universe filled
with a tiny magnetic field. However, once this tiny mag-
netic field is given, the modified Maxwell equations gen-
erate per se a very natural self-interacting mechanism
which is an alternative to the dynamo mechanism.

The paper is organized as follows: in Sec. II we will
prove the equivalence between the Kostelecky et al. ap-
proach and quantum theory with noncommutative fields for
an abelian gauge field. In Sec. III, we will reinterpret the
modified Maxwell equations as macroscopic ones which
suggests, in Sec. IV, the way in which a primordial mag-
netic field might appear. Finally in Sec. V, the conclusions
and other possible physical implications are given.

II. U(1) GAUGE FIELD AS A NONCOMMUTATIVE
GAUGE FIELD

In order to discuss the U(1) gauge field as a noncommu-
tative one, let us recall the Hamiltonian formulation of the
abelian gauge field.

The Lagrangian for an abelian gauge field

1
L= _ZF,U,VF'MV; (1)

is invariant under the gauge transformation
A,— A, +I,A 2)

Thus, (1) has two symmetries, namely, the gauge and
Lorentz symmetry.

The Hamiltonian analysis yields to the canonical mo-
mentum

wh = FOr, 3)
and, therefore, one has the primary constraint

7’ = 0. “4)
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Thus, the canonical Hamiltonian is
sflzn 1 .
H = d*x§7r +§B +AOV'7T, (5)
and the preservation of (3) implies

%) = [#°(x), H] = V.7, (6)

i.e., the secondary constraint is the Gauss’ law.

The Gauss’ law is a first order constraint and, from the
Hamiltonian point of view, it generates the gauge symme-
try (2).

Once the constraints are found, the gauge field is quan-
tized changing the Poisson brackets

[A;(3), Aj(i)]PB =0,
[AiR), 7 (7)]pp = 8]6(% = 7). @)
[7;(X), Wj(ﬁ)]PB =0

by commutators according to the rule [, ]pp — [, 1/if.

The U(1) noncommutative field is constructed by de-
forming the previous Poisson algebra as follows,

[A;(%), Aj@)]PB =0
[A;(%), 77','@)]1)3 = 51']'5(55 -5 (8)
[7(), Wj(f)]PB = 9;’,'5()7 -9,

where 6 is the most general antisymmetric three dimen-
sional matrix.

Although the Poisson brackets (8), of course, break
Lorentz invariance, one can retain the gauge symmetry.
Indeed, in order to do that, we must modify the Gauss’ law
appropriately.

Thus, the modified Gauss’ law should be

X = 9;m; + something, )

where ‘“‘something” represents the modified term, which is
constrained to satisfy the relations,

8A;(X) = [Ai(X), A lpp = 9;(), (10)
577—1(-%)) = [77-1()_5)’ Aa]PB = O’ (11)

where A, is defined as
A, = - [ dxatoxto) (12)

and where a/(x) is an arbitrary real function.
Now, it is easy to see that the modified Gauss’ law must
be given by the constraint,

x=V.7—6.B, (13)

where 0;;A; = € 0,A; = —6 X A, and therefore the

gauge transform operator (12) can be written as,
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Ay = — fd3xa(z){6 F— 0B

_ fcpxa(})% (746X A), (14)

and the modified total Hamiltonian which generalizes the
U(1) system should be,

1 1 >
H= fd%c[i 7 B A+ G % A)} (15)
Using (15) one finds that the equations of motion are

A, =[A, Hlpp = m; — 9,;A,, (16)

[77.1? H]PB (7T X 0) - (v X B) (17)

The first equation, of course, is basically the standard
definition of electric field, i.e.,

TP = _Ei = Ai + 6iA0, (18)
and, hence, the second one

OF
o

is the modified Ampere’s law.
The remaining equations, namely

—VXB+EXSE, (19)

V.B =0, (20)
VXE= —ﬁ, 1)
at

have no changes. And as we said above, the Gauss’ law is
written as, .
V.E + 6.B=0. (22)
Now, let us find out the Lagrangian where these equa-
tions come from. In order to do that, we should find a set of
canonical conjugated variables to A;. This is, in fact, easy
to find by taking in account (8).
We find that these new variables are just,

1. -
7= m+ 5 (6% A). (23)

From these results one gets the Lagrangian as follows;
firstly, we write

L= deXﬁ'iAi —H

:de <E—1(3><A>(E+VA0)—

2 g > > 1 > ->
= fd3x<E2 — B>+ EAOG,B ) A.0 X E> (24)
Using the standard definition for F,, and Frr =
3 €#"APF, . one finds that the Lagrangian is
1
L= [(=LYr, e+ Lo Fura 25
] < T 2 ) (25)

where in our case the four-vector 6, is (0, 6).
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The modified Maxwell equations obtained in this paper
were derived from a completely different point of view to
the used in [10]. Our calculation shows explicitly the
connection between these two apparently nonrelated
approaches.

A discussion on physical aspects related to the propaga-
tion of the light for these modified photons and other
systems can be found in [11]. In particular, the dispersion
relation in this spacelike approach is,

Loy [+ a0 1.4
wi =K+ 592 + (k- 6)> + Z(92)2. (26)

III. INTERPRETING THE MODIFIED
MAXWELL EQUATIONS

In this section we will give a physical interpretation of
the modified Maxwell equations.

Let us start assuming that possible Lorentz invariance
violation processes could have occurred in the early uni-
verse and some tiny relics could be observable presently.
As photons are the most abundant particles in the present
universe, one can think of that some relics could be acces-
sible via electromagnetic processes.

It is interesting to note that the Modified Maxwell equa-
tions contain a “source” term — 6.5 and 6 X E that can be
interpreted as polarization charges and induced currents on
a medium in a similar way to the standard electromagnetic
theory.

Therefore, these modifications of the Maxwell equations
suggest us to consider a sort of modified displacement
vector (f)) and magnetic field vector (I:)I ) where

D=E—-6XA, (27)
H = B + 6A,. (28)

Using these definitions the modified Maxwell equations
can be written as the standard Macroscopic Maxwell equa-
tions in a medium, i.e.,

V.D = 0,
Vxﬁ=%§+i
> (29)
vxi=-25
t
V.B=0,

where p and J are possible external sources.
One should note that the polarization and magnetization
vectors

P=—60XA, (30)

M = 0A,, 3D

are not gauge invariants, however this is not important
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because the physically relevant quantities are V.Pand V X

M — P which are, in fact, gauge invariants [12].

It is interesting to note that in the static scenario, the
electrostatic and magnetostatic effects appear mixed and,
therefore, the presence of polarization implies a magneti-
zation of a medium and vice versa.

This result is a consequence of the modified Maxwell
theory and it is not true in the conventional electromagnetic
theory.

IV. ORIGIN OF THE PRIMORDIAL
MAGNETIC FIELD

The structure of the above modified Maxwell equations
might give a guess on the origin of the intergalactic mag-
netic field as well as, it might provide of a simple alter-
native argument to dynamo mechanisms discussed in the
literature (see e.g. [6,13,14,16]).

In order to explain this fact, let us suppose that it is
generated a seed magnetic field (E(O)) parallel to 6. If this
processes take place during a long time, we can suppose
that only the stationary equations are the important ones,
ie.,

V-E+6-B=0 (32)
VXB+6XE=0 (33)
VXE=0 (34)
V-B=0 (35)

Then, a constant magnetic field is a solution of all equa-
tions at zeroth order in # (or in the spatial scale r).
However, if we consider the first order in @ (or we displace
a distant r from the origin) Eq. (32) will demand an electric
field,

EW =~ %B(O)(Gr)? (36)

The next order in 6 is given by the Eq. (32) (of course, in
this process Eqs. (34) and (35) are always present).

This equation generates a second order correction in the
magnetic field,

>

1 - .
B@ = — %B(O)(Hr)zﬁ cosfé, — 9sinfey) (37)

where (r, 6, (/5) and (é,, é; ¢ <l3) are the spherical coordi-
nates and their unit vector fields. We can follow this
expansion in order to get all orders in €, and one should
obtain a potential series for B and E, 1.€.,

B=B"+B"+BY+ . +B™+... (39

E=EV+EY+EY + +E®™V+ .. (39

where the superindices stand for the order in 6. It should be
noted that E ~ #B, which means that the electric field is
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always a lower order of magnitude that the magnetic field,
according to the experimental fact.

The possibility for these expansions to be divergent
series suggests us that the system might evolve to a stable
state with permanent magnetic and/or electric fields, in the
similar way to ferromagnetic media. Then this mechanism
would be a possible candidate for an alternative explana-
tion to the dynamo mechanism of the primordial magnetic
field observed in the universe.

V. CONCLUSIONS AND OTHER
PHYSICAL IMPLICATIONS

In this paper we have shown that deformation of the
canonical commutators for the electromagnetic field yields
to a modification of the Maxwell electrodynamics where
electrostatics and magnetostatics appears mixed ', this is
direct consequence of the Lorentz invariance violation.

Although the modified Maxwell equations are formally
the standard macroscopic ones, the underlying physics is
quite different to the conventional interpretation. Indeed,
the mix between electrostatics and magnetostatics induces
as a consequence polarizations and magnetizations and
hence, physical electrical or magnetic fields.

From the physical point of view, this is a very interesting
new effect because it could be the arena for the elusive

'This fact has been noted recently in [15].
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primordial magnetic field. Indeed, as the universe expan-
sion has spherical symmetry and as the universe is made
mainly of photons, then one can see the universe as a sort of
magnetized sphere. If we assume that the electromagnetic
fields are—as a first approximation—static and the radius
of the present universe is a, our universe should be filled
with a magnetic field like

- 2 -

H=—--M,

3

however, as M is proportional to 6] it is a very tiny energy
scale—like ~/A—then also H should be a tiny magnetic
field filling our present universe.

In this sense, the modified electrodynamics—as a con-
sequence of a tiny Lorentz invariance violation—might be
a mechanism for the origin of the elusive seed field ob-
served in galaxies.

Possibles implications with the Born-Oppenheimer ap-
proximations [9] and other nonperturbatives phenomena,
will be discussed elsewhere.

(40)
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