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Basic treatment of QCD phase transition bubble nucleation
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I. INTRODUCTION

For more than two decades there have been studies of the
nucleation of bubbles during the QCD phase transition
(QCDPT), the transition from a universe of deconfined
gluons, quarks and antiquarks (the quark/gluon plasma)
to a hadronic universe. These studies, based on a first-order
QCDPT, use models of QCD to estimate the critical size of
bubbles, the nucleation rate, and the distance between
nucleating centers [1–11]. In an attempt to find possible
observational effects from this early universe phase tran-
sition, there have also been estimates of magnetic fields
generated by nucleating bubble surfaces during the
QCDPT [12,13], and possible observable CMBR effects
arising from magnetic walls[14] which arise from colli-
sions of nucleating bubbles [15]. Estimates of magnetic
fields arising from bubble collisions during the earlier
electroweak phase transition (EWPT)using effective
Lagrangians also have been made [16–18]. Many of these
studies make use of the Coleman model [19] of tunneling
from a false to a true vacuum. Nucleation rates were
estimated using standard thermodynamics/statistical me-
chanics [4] and using hydrodynamics [20] with the Langer
formalism [21].

The knowledge that the universe evolved from a quark/
gluon plasma to our hadronic universe inspired the RHIC
(relativistic heavy ion collisions) program at BNL and
other laboratories. The challenge for the RHIC program,
as well as the early universe studies, is to identify unam-
biguous observables for the transition (or transitions). In a
recent review [22] possible relations between the early
universe and heavy ion heavy phase transitions and the
status of theoretical attempts to reach thermalization on the
time scale that seems to be needed at RHIC are discussed.
There is also a detailed discussion of flow that is associated
with RHIC. In this review, as well as in another recent
report [23], the possible existence of color superconducting
phases and a color glass condensate that involves low
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momentum fields with long time scales compared to
what is considered to be natural time scales are examined.
Extensive references to theoretical and experimental re-
search in RHIC physics, and possible relationships to the
early universe chiral phase transition, are given in these
reviews.

Lattice gauge calculations indicate that there is no first-
order EWPT transition nor consistency with baryogenesis
in the standard EW model. These calculations also show
that with supersymmetric fields there can be a first-order
transition and consistency with baryogenesis during the
EWPT . Lattice calculations are not yet able to prove
definitely whether there is a first-order QCDPT. Because
of the great importance of possible observational effects of
a first-order QCDPT, with bubble nucleation, collisions,
and possible observable magnetic and other effects, in the
present note we assume that there is a first-order chiral
phase transition and investigate QCD bubble nucleation.

The most notable aspect of the present work is that we
start from the basic QCD Lagrangian, rather than an effec-
tive model, and use previous research on nonperturbative
QCD condensates to carry out the calculations.

In Sec. II we derive the critical radius for nucleating
bubbles, and in Sec. III we estimate the site separation for
nucleation of bubbles during the QCDPT.
II. CRITICAL RADIUS DURING THE QCDPT

In this section we estimate the critical radius, Rc, for
bubble nucleation, starting from the basic QCD
Lagrangian. Physically, the critical radius is attained
when force due to the pressure difference inside and out-
side the bubble, a volume effect, equals that of the surface
tension, an area effect. In the following section we derive
the nucleation probability and site separation, which re-
quires quite different methods. First, an outline of the paper
is given.

A. Outline of paper

The starting point of our work is the basic QCD
Lagrangian density:
-1  2005 The American Physical Society
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1. QCD Lagrangian density and basic
equations of motion

The QCD Lagrangian density for massless quarks is

L QCD � �
1

2
Tr�G � G� � �qf	


�i@
 � gA
�qf; (1)

where

G
� � @
A� � @�A
 � ig�A
; A��; A
 � Aa

�a=2; (2)

with �a the eight SU(3) Gell-Mann matrices, ��a; �b� �
2ifabc�c. Minimizing the action, one obtains the general
QCD equations of motion (EOM)

@
@
Aa
� � @�@
Aa


 � gfabc�2Ab

@
Ac

� � Ab

@�A
c

� @
Ab

Ac

�� � g2fabcfcefAb

A
eAf

� � g �qf	�
�a

2
qf � 0:

(3)

As we shall see, the last term in the EOM, Eq. (3), which
gives the quark-gluon interaction, plays a crucial role in
determining the critical radius of nucleating bubbles during
the QCD chiral phase transition.

2. Method for deriving the critical radius

As mentioned above, the force at a bubble wall from the
pressure difference on the two sides of the wall, which
drives the nucleation, increases for given pressure differ-
ence as one extra power of the bubble radius than the force
from the surface tension, which tends to shrink the bubble.
For the calculation of the surface tension, �, and pressure
difference, �p, we start with the basic QCD Lagrangian.
To determine the critical radius we minimize the action
with respect to the radius, as in the models of Refs. [18–
20]. These calculation are done near the critical tempera-
ture, and do not require finite-temperature field theory. The
approximations used are dropping the higher-dimensional
gluonic terms in calculating the surface tension and using
only pions as hadrons for the effect of the quark condensate
forming at the critical temperature. These approximations
are discussed in the next subsections in this section.

For this investigation only the action in the vicinity of
the bubble wall at a temperature near the critical tempera-
ture is needed, and we use an extension of the instanton
model to SU(3) symmetry in Minkowski space. For the
more general study of nucleation during the QCD chiral
phase transition this model must be generalized to treat the
interior and exterior of the bubbles.

3. Method for determining the nucleation probability
and site separation

For the determination of the nucleation site separation,
the main goal of the present paper, standard classical
statistical mechanics is used to determine the rate at which
nuclei of bubbles of critical radius form. For this the
pressure difference between the quark/gluon and hadronic
065017
phases at the critical temperature, as well as the surface
tension and critical bubble size, are needed, and are ob-
tained from the QCD Lagrangian density within our in-
stantonlike model.

For the final calculation of the site separation distance
the temperature dependence of the pressure difference is
needed. For this we use the standard finite-temperature
field theory, with a reduction from four-dimensional
space-time to three-dimensional space at fixed temperature
by replacing real time by imaginary 1/temperature.

B. SU(3) Ansatz for the color gauge field

We use the Lorentz gauge and an SU(3) ansatz, in which
we remove the color dependence of Eq. (3) by extending
the color fields, Aa


, to SU(3) matrices:

@
Aa

 � 0

Aa

 ! i

�a

2
W
:

(4)

Note that this ansatz cannot be used in the Lagrangian,
Eqs. (1) and (2), to define the action and obtain the EOM
Eq. (3), but it is rather a method to apply a reasonable
symmetry on the color field in the EOM. It can be com-
pared to the instanton ansatz [24], with the color fields
given in terms of the SU(2) quantities �a


� [25], but our
prescription defined in Minkowski space leads to Lorentz
covariant equations needed for studying nucleation and
other time-dependent processes. We are guided in our
choice of parameters by the instanton liquid model re-
viewed in Ref. [26]. In using this ansatz one operates on
Eq. (3) by the color SU(3) matrix �a, uses the matrix
extension of the color field given by Eq. (4) and the
properties of the SU(3) generators to obtain the EOM for
the W


@
@
W� �
3

2
g�2W
@
W� � W
@�W


�

�
9

4
g2W
W
W� � �Vh �qqi �NW� � 0; (5)

where we make use of the study [27] of the vector vacuum
susceptibility defined by the three-point function

hg �q	��a=2qi � �V �Nh �qqiAa
�; (6)

in terms of the quark condensate, h �qqi. The parameter �V

was determined from the study of the vector three-point
function for a nucleon [27], while the factor �N, the number
of hadrons in a typical hadronic volume V, is needed for
our finite T study and will be discussed below.

To determine the critical radius one needs to balance the
forces near the surface of the bubble. The essential variable
for determining the critical radius is s �

�����������
x
x


p
, and we

use the form

W
 � x
W�s�; (7)
-2



BASIC TREATMENT OF QCD PHASE TRANSITION . . . PHYSICAL REVIEW D 71, 065017 (2005)
with the gauge condition

W0�s� � �
4

s
W�s�: (8)

The resulting EOM for the function W�s� is

W00 �
5

s
W0 �

3

2
g�W2 � sWW0� �

9

4
g2s2W3

� �V �Nh �qqiW � 0: (9)
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FIG. 1. Solution for W�s� for t � 0 near the surface at s0 �
r ’ R � 10:2 fm.
C. Surface tension, pressure, and critical radius

Since the purpose of the present paper is to estimate the
critical radius of nucleating bubbles and the site separation,
and we are not attempting to study the general problem of
bubble nucleation and collisions during the QCDPT, we
shall concentrate on the bubble wall and the regions in the
QGP and HP close to the bubble walls. We neglect some of
the hadronic structure in the HP and quark/gluon structure
in the QGP. This allows us to directly use the QCD
Lagrangian for the nucleation properties in the early stages
of the QCDPT, which has not been done previously, but the
method must be extended for the complete treatment of the
QCDPT.

The instanton representation of the color gauge field is
known to give a satisfactory representation of midrange
nonperturbative QCD. Although instantons cannot be de-
fined between hadronic and quark/gluon vacua, we shall
use an instantonlike representation of the bubble wall, as in
our earlier work [14,15]. This will lead to a modification of
the variables used in the expression of the color gauge
fields, as explained below.

Let us first estimate the surface tension, one of the two
parameters needed to determine the critical radius. The
surface tension is obtained by integrating the energy den-
sity, T00, through the bubble wall,

�inst �
Z

dsT00 �
Z

ds
�

@L
@�@tW�

@tW � g00L

�
(10)

’
Z

ds
�
6W2 �

9

2
g�s2W3 �

g
8

s4W4�

�
: (11)

Only the dominant gluonic contribution in Eq. (11) will be
used in estimating the surface tension.

In Ref. [28] it was shown that an instanton model for the
bubble wall is consistent with the surface tension estimated
in lattice QCD calculations. Based on this we use an
instantonlike form near the surface of the bubble wall.
Recognizing that W
W
 � 0 at s � s0, the position of
the bubble wall in the instanton model, and is nonzero in
the region of approximately s � s0 � !, we modify the
variables used in Eq. (7); and for W
W
 and W�s� we
assume the instantonlike form
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W
W
 � �s2W��s�2

W� �s� �
CW

� �s2 � !2�2
;

(12)

which satisfies the gauge condition Eq. (8) for �s > !. Note
that with the metric obtained with the continuation from
Euclidean space, in which instantons are derived, to
Minkowski space, �s �

���������������
r2 � t2

p
� s0, the most important

region for W
W
 is the interval �! � �s � !. To check
the validity of the this form we solve the EOM Eq. (9) for
W�s�, as shown in Fig. 1. In Fig. 1 s0 � 10:2 fm, which can
be interpreted as R, the radius of the bubble if we take t �
0 as the time shown in the figure. One can see from the
figure that the surface peak drops about a factor of 2 as s–R
goes from 0 to 0.15, as expected from the form of Eq. (12).
Therefore, the instantonlike form is seen to be valid near
the surface of the bubble. For our calculation, we take ! �
0:2 fm, which is consistent with the result of Fig. 1 and the
value of the ! for the instanton liquid model [26]. One can
find the value of the parameter CW from such solutions, but
as is shown below this is not necessary in the present work,
where we only derive the critical radius and the nucleation
site separation. The oscillations in W�s� found outside the
wall would be important for collisions, which we do not
treat in the present work. See Ref. [15].

Recognizing that the lowest-dimensional term is domi-
nant, the surface tension is

� ’
Z

ds6W�s�2 �
15$C2

W

24!7 : (13)

To determine the pressure difference, we exploit the results
of the Higgs model [18,19], noting that the expectation
value of the Higgs field is replaced in our work by the
quark condensate, which also goes from zero to a finite
value during the phase transition. In the Higgs model, in
the thin-wall approximation [18,19],

T00�j%j � �� � T00�j%j � 0� � &��4 (14)

which is the negative of the last term in the Lagrangian
-3
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density used in Ref. [18]. Note, however, that

&��4 � �p�Higgs Model�: (15)

Thus, in the Higgs model, as well as for our Lagrangian,
�p is given by the difference in T00 across the bubble wall.
With this observation, we are able to use all the familiar
results of finite-temperature field theory for obtaining the
consequences of our Lagrangian density for nucleation.

Note that at this stage of the nucleation process we are
working in the brief time interval between tc and tf, the
time following tc when the universe has reheated (see the
following section on nucleation). Since the gluonic con-
densate does not vanish rapidly with T ’ Tc, the difference
in the gluonic free energy on the two sides of the bubble
wall is negligible during the first stages of nucleation of
interest here. For similar reasons we also neglect the free
energy difference of the noninteracting fermionic terms
within and outside of the bubble, which play an important
part of the QCDPT after the time tf when there is an
equilibrium nucleation process from the quark/gluon to
the hadronic universe. For example, in a more general
treatment of nucleation and collisions for the QCDPT,
the perturbative hadronic and quark kinetic energy terms
in the QCD Lagrangian given by �qf�i	
@
�qf must be
considered [4,5].

Since the quark condensate is the parameter for the
chiral QCD phase transition being treated in the present
work, as one can see from the expression for T00, given in
Eq. (10), in our theory starting with the QCD Lagrangian
the pressure difference is given approximately by the term
in T00 that is the negative of the quark-gluon interaction,
Lq�int� � �hg �q	
��

a=2�qiAa
, the last term in the
Lagrangian density (1). Having determined the surface
tension and �p from our Lagrangian, the critical radius
can be obtained by minimizing the four-dimensional action
[19]

SE � 2$2�R3 �
$2

2
�pR4; (16)

with respect to the bubble radius, R.
In applying this formalism to our model we use the

following concepts:

(i) O
ur bubble wall is instantonlike, not instantons.

This model follows from the success in obtaining
an instantonlike interior wall after bubble collisions
with QCD bubbles having such an instantonlike
bubble wall [15].
(ii) T
he wall is very thin, so a thin-wall approximation
is justified. We just need the difference between T00

inside and outside the bubble wall.

(iii) M
aking use of the fact that the quark condensate

vanishes for T � Tc outside the bubble wall and
that during the phase transition when T ’ Tc inside
the bubble pions dominate the hadronic phase, we
assume that all of the nonvanishing quark conden-
sate is in the pions inside the bubble. Using Eq. (6),
the quark-gluon interaction Lagrangian density in-
065017-4
side the bubble is

L q�int� ’ ��Vn$h �qqiAa
�A

a�; (17)

while outside the bubble

L q�int� ’ 0; (18)

where the color field Aa
� is not of the instantonlike

form given by Eqs. (4), (7) and (12) except at the
bubble wall. A more general theory of gluonic
structure in the hadronic phase is needed to discuss
the interior, but for the purposes of the present
paper we only need the pressure difference on the
two sides of our bubble wall.
(iv) F
rom this we conclude that the difference in T00

inside and outside the bubble wall is

��T00� ’
�V

2
n$h �qqihA
A
i; (19)

with hA
A
i the mean value of A2 in the wall.
Using Eqs. (4), (7), and (12), this gives for the
pressure difference inside and outside the bubble
surface in the thin-wall approximation

�p ’
�V

2
n$h �qqi�s2W� �s�2 (20)

’
�V

2
n$h �qqi

C2
W

16

1

!6
; (21)

where we have taken �N � n$, the pion number,
and have evaluated Aa
 at �s � !. The fact that the
pions dominate the hadronic density at the phase
transition, and thus that the effective density of
quark condensate is given by the pion density, is
well-known.
To estimate the error in evaluating �s2W� �s�2 at �s � !, we
can calculate the mean value by calculating Ia �R

a
�a �s2W� �s�2=2a. The most reasonable value for a is a �

!. One finds I! �
C2

W
16

1
!6 � 1:12. This would give a 12%

decrease in the critical radius and a larger nucleation site
separation. If one takes a � 2!, which is larger than ex-

pected for the instantonlike wall, I! �
C2

W
16

1
!6 � 0:82.

Therefore we conclude that the estimate in Eq. (21) is
correct to about 10%.

Recognizing that the bubble wall thickness is given by
! � 0:2 fm, we use the thin-wall approximation in mini-
mizing the action [18,20] to get the classical thin-wall
equation for the critical radius. From Eqs. (13), (21), and
(16) we obtain

Rc �
3�
�p

’
15$
!

1

�Vh �qqi=2
1

n$
: (22)

Using the standard value for the pion volume density [29],
n$=V � 0:365T3, with V � �4$=3�R3

n � the nucleon vol-
ume (Rn � 1:1 fm), and using the value of the vector
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susceptibility from Ref. [27], �Vh �qqi=2 ’ 3 GeV2, with
T � 150 MeV, we obtain from Eq. (22)

Rc � 11 fm: (23)

There are a number of approximations which could
change our value for Rc, and due to the sensitivity of the
nucleation site separation to this parameter, this could
change the evaluation in the next section. We show that
this value is consistent with the evaluation of Ref. [5] at the
critical time of freeze-out in the next section. The innova-
tion of the present work is that we estimate Rc directly
from the QCD Larangian, rather than using models as in
previous estimates.
III. NUCLEATION PROBABILITY AND
NUCLEATION SITE SEPARATION

For applications to astrophysical observations the dis-
tance between nucleation sites, dn, is a critical parameter,
since with large separation between nucleation sites the
hadronic universe can be formed via the collision between
a few large nucleating bubbles, and this could lead to
interesting large-scale structure. For example, it was shown
with such a scenario that large magnetic walls would form
during the QCDPT [14], which could lead to observable
effects in cosmic microwave background polarization.

One obtains the nucleation site separation, dn, from the
probability of nucleation per volume-time, p�t�. In this
section we estimate the nucleation probability using the
critical radius derived in the previous section. In classical
statistical theory the rate at which nuclei form per unit
volume-time is given by

P�T�t�� � P0e�S�t�; (24)

where in a Coleman-type model of tunneling from the false
to the true vacuum the action, S�t�, is treated in Euclidean
space, and for a nucleus of critical radius in four dimen-
sions is S � 2$2�R3

c �
$2

2 �pR4
c, the extremum of which

gives the relationship of Eq. (22). Most of the work that has
been done during the past two decades has assumed homo-
geneous nucleation, for which the form

P�t� � P�tf�e�,�tf�t�; (25)

with tf the time at which the universe has reheated after the
time tc, at which time T is the critical temperature Tc for
the phase transition (assumed first order). The parameters
of the theory are determined from the energy-momentum
tensor in a field theory or from the thermodynamic poten-
tial in a theory using classical statistical mechanics. In the
following subsection we discuss the application of our
QCD approach assuming homogeneous nucleation, and
in the next subsection briefly consider inhomogeneous
nucleation.
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A. Homogeneous nucleation

From statistical mechanics one knows [4] that the proba-
bility for a fluctuation producing a bubble of radius Rc for
T < Tc satisfies

P�T� / e��F=T; (26)

with �F the bulk free energy difference between the two
phases plus the contribution from the surface free energy,

�F �
4$
3

R3
c�Pq � Ph� � 4$�R2

c; (27)

with (Pq; Ph) the pressure in the (quark,hadronic) phases,
and in our previous notation �p � Pq � Ph. In the esti-
mate of nucleation in the bag model [4,5] the quark pres-
sure at T < Tc, with B the bag constant, is

Pq �
37$2

90
T4 � B: (28)

The main difference between our present work and that of
the earlier work is that we use the QCD Lagrangian
directly and the vanishing of the quark condensate at T �
Tc, rather than the bag model to obtain �F.

In the approach of [5] Csernai and Kapusta, who use the
Langer model [21], and take Ph � �3$2=90�T4, find a
singularity in Rc�T� as T � Tc, and obtain a value of Rc
in agreement with our value of Rc ’ 11 fm for �Tc �
T�=Tc ’ 1%. Noting that �Tc � Tf�=Tc is of the order of
1%, one sees from Eq. (25) that our result for the critical
radius Rc is not inconsistent with this work.

We now continue with the standard statistical mechanics
approach [4]. To obtain the nucleation site number density
one carries out the integral

Nn �
Z 1

tc
p�T�t��f�t�dt ’

Z tf

tc
p�T�t��; (29)

where f�t� is the fraction of the universe which has not
nucleated at time t, and Eq. (29) uses the result of Ref. [3]
that f�t� is a step function quickly disappearing at the time
tf shortly after tc. In this picture one obtains for the site
separation distance [4]

dn ’ 0:3
�3=2tc
T1=2

c L
: (30)

The latent heat density is obtained from the free energy
difference between the phases by [4]

L � Tc
@
@T

�p: (31)

Since the T dependence of �p is needed, one cannot use
the result of Eq. (21), but must return to the thin-wall
relationship between �p and W
W
, Eq. (20). Using our
observation that in the vicinity of the bubble walls the
solution for W
W
 has the instantonlike form of
Eq. (12), we find that

�p � K
�s23

��s23 � !2�2
; (32)
-5
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with K a constant. In real time Euclidean space �s23 � �r �
R�2 � t2. Making the reduction from 4- Euclidean space to
equilibrium, t2 ! �1=T2, and �s23 � �r � R�2 � �1=T�2.
Using this form and the fact that for �s23 � !2, K �

4!2�F � 3�
Rc

, we find that

L �
4

T2
c!

2

3�
Rc

: (33)

Using the values ! � :2 fm, the lattice gauge value for �,
and our result that Rc � 11:0 fm, we find from Eq. (30)

dn � 5:23 m: (34)

As anticipated, this value is about an order of magnitude
larger than previous bag model results.

B. Inhomogeneous nucleation

The idea that impurities can have an important effect on
the probability of nucleation for cosmological phase tran-
sitions has been known for over two decades [30]. Recently
this has been considered for the QCDPT [9,11]. As pointed
out in [9], impurities in the universe, with number density
nin at a time ti; tc < ti < tf, can be represented by a P�T�t��
which differs from the homogeneous value of Eq. (25) by

P�t� � nin3�t � ti� � P�tf�e
�,�tf�t�: (35)

Using models for this form the nucleation site separation
can be orders of magnitude larger than the value for
homogeneous nucleation.

We would of course obtain similar model-dependent
results, but since this does not follow directly from our
QCD picture we do not consider it further here.

IV. CONCLUSIONS

In this work we have started from the energy-momentum
tensor derived from the basic QCD Lagrangian with quark
and gluonic color fields and assumed a first-order QCD
065017
phase transition when the temperature of the universe is
Tc ’ 150 MeV. From this T00 the surface tension of
gluonic walls in an instantonlike SU(3) treatment of the
color field is derived. The free energy difference between
the two phases on the opposite sides of the bubble wall
arises mainly from the vanishing of the quark chiral con-
densate in the quark/gluon phase, and we derive this �F
using previous work on the nonperturbative vector quark
three-point function. Recognizing that the wall is only
0.2 fm thick, the classical action is minimized in the thin-
wall approximation to derive the critical radius for nuclea-
tion, Rc, for which the pressure difference driving nuclea-
tion overcomes the surface tension contracting the bubble.
We find that Rc ’ 11 fm, which is satisfactory for possible
astrophysical observations following from the QCDPT
nucleation and bubble collisions. Assuming standard ho-
mogeneous nucleation, using our results for the critical
radius, and deriving the latent heat difference density
from the instanton model of QCD and the quark conden-
sate free energy difference, we find that the separation of
nucleation sites is of the order of several meters, more than
an order of magnitude larger than the standard QCD bag
model that has been used by previous authors. As research
by other investigators has shown, the possibility of inho-
mogeneous nucleation could lead to quite large distances
between nucleation sites and a QCDPT with only a few
active bubbles. In our next research on this topic we shall
investigate possible observable magnetic structures that
would arise from QCD nucleation processes.
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