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Quantum uncertainty in doubly special relativity
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A discussion of the modification of the phase-space commutators in a quantum mechanical relativistic
theory with an invariant length scale (DSR) is presented. Two examples are discussed where a classical
behavior is approached in one case when the energy approaches the inverse of the invariant length which
appears as a cutoff in the energy and in the second case when the mass is much larger than the inverse of

the invariant length.
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L. INTRODUCTION

One of the basic open problems in theoretical physics is
to combine in a consistent way the classical description of
the gravitational interaction (general relativity) with quan-
tum mechanics (QM). The analysis of the problems that
one finds in different attempts to combine these two theo-
ries can be used as a guiding principle to the search of a
fundamental theory of quantum gravity.

On the other hand one has direct proposals such as
string(M)-theory or loop quantum gravity. However, pres-
ently we are not able to establish if any of these or another
future proposal is the correct theory. An alternative is to
identify new basic ingredients which could serve as a
criterion in the future to select among different alterna-
tives. One idea—that has been discussed very often in this
context [1]—is the possible appearance of a fundamental
length, a scale associated to gravity not just as a dynamical
scale but at the kinematical level.

Several arguments coming from string theory [2] or
from gedanken experiments suggest that a minimal length
[1] could be present as a quantum gravity consequence.
Some attempts to identify a modification of the quantum
mechanical commutators [3] which reproduce the general-
ized uncertainty principle have been considered as a way to
find one of the ingredients of the quantum theory of
gravity.

Another candidate for a signal of quantum gravity ef-
fects is the modification of Lorentz symmetry at very high
energies, an idea explored intensively in the last years both
from a theoretical as well as from a phenomenological
perspective [4].

Alternatively the limitation due to gravity to explore
beyond a minimal length has motivated to consider the
possibility of a generalization of the relativity principle
compatible with an invariant (but not necessarily a mini-
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mal) length scale which is called doubly special relativity
(DSR) [5,6].

It is remarkable that one can have a generalized relativ-
ity principle which is continuously connected with stan-
dard Einstein special relativity (SR), compatible with all
the tests of SR. The new corrections could be accessible to
present or near future experiments or even already ob-
served in the high energy tail of the cosmic ray spectrum
[7,8]. Different proposals for DSR theories either based on
a deformation of Poincare algebra or by considering di-
rectly a modification of the boosts that connect inertial
frames has been considered recently from different points
of view [5,6,9].

Instead of taking a generalization of the uncertainty
principle as a starting point and looking for a modification
of the QM commutators compatible with such a general-
ization, we follow a different path trying to calculate
directly the modified commutation relations. In order to
do that one would require a formulation of DSR in phase-
space which is still an open problem. Different alternatives
going from the introduction of a noncommutativity in the
space-time realization of a generalized relativity principle
[10] to a direct attempt to extend the nonlinear realization
of Lorentz transformations to phase-space [11] have been
considered recently. For a given realization of DSR in
phase-space one will have a modification of QM which
can be taken as a remanent of the fundamental theory of
QG in the flat space-time limit. In this paper we illustrate
this point in the simplest extension of DSR to phase-space
by considering a linear action of Lorentz transformation in
spacetime. Two examples of DSR are studied in detail. In
both cases one finds that, in an appropriate limit, a classical
behavior is approached. We conjecture that this result
applies to the theory of QG.

II. MODIFIED QUANTUM MECHANICAL
COMMUTATORS

A nonlinear realization of Lorentz transformations in
energy-momentum (E, p) space parametrized by an invari-

© 2005 The American Physical Society



J.L. CORTES AND J. GAMBOA
ant length € can be defined [12,13] by the relations

€ = Ef(E, €*p*) m; = p;g(LE, €*p?) (1)

where (€, 7r) are auxiliary linearly transforming variables
which define the nonlinear Lorentz transformation of the
physical energy-momentum (E, p). Then we have two
functions of two variables (f, g) which parametrize the
more general nonlinear realization of Lorentz transforma-
tions, with rotations realized linearly, depending on a
dimensional scale. The condition to recover the special
relativistic theory in the low energy limit reduces to the
condition f(0,0) = g(0,0) = 1. Each choice of the two
functions f, g will lead to a generalization of the relativity
principle with an invariant length scale €. Lorentz trans-
formation laws connecting the energy-momentum of a
particle in different inertial frames differ from the standard
special relativistic linear transformation laws which are
recovered when (E < 1, °p?> < 1.

In order to have a quantum theory with such a deformed
relativity principle one should find the appropriate defor-
mation of relativistic quantum field theory (QFT). First
attempts in this direction, based on the possible connection
between a generalization of the relativity principle and a
noncommutativity of spacetime, suggesting the formula-
tion of QFT in a noncommutative space (k-Minkowsky) as
the appropriate deformation of QFT have been explored
[14]. But there are general arguments that there will be
difficulties to find a realization of a deformed relativity
principle along these lines in the multiparticle sector
[7,15]. Because of these problems we consider in this
work a less ambitious program trying to give an imple-
mentation of DSR at the level of quantum mechanics. The
simplest way to do this is to introduce space-time coordi-
nates as the generators of translations in the auxiliary
linearly transforming energy-momentum variables (e, )
which then reduce to the usual space-time coordinates of
special relativity in the limit € — 0. In this case one does
not have any signal of the modified relativity principle at
the level of the space-time coordinate commutators which
are still trivial but all the modifications appear at the level
of the phase-space commutators which will be

OE ap;
[ E]= i 5= [t pil=if pi )
€ Je
OE ap;

[x E) = ifi— [xip,] =it 3)
T am

J

By considering the derivatives with respect to the auxiliary
energy-momentum variables of Egs. (1) defining the non-
linear realization of Lorentz transformations, one has a
linear system of equations for the partial derivatives re-
quired to calculate the phase-space commutators (2) and
(3). A straightforward algebra leads to the modified quan-
tum mechanical commutators
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. g+ 20*prayg L pidg
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(1, E] = ik D [, pi] ih—p “4)
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e, E] = —intp, 2 E%T 5)
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ih N
[xi p;] = E|:5ij —20p;p; B} (6)
where
D = [f + €E81f][g + 2€2p262g:| - 2€2p261g€E62f,
@)
N = fo,8 + €E(,f028 — 92/, 8). (8)

This result can be seen as an explicit realization of a
general idea that in the presence of quantum gravity the
quantum mechanical uncertainty principle, and then the
phase-space commutators on which it is based, should be
modified by terms depending on an invariant length [3].
Instead of guessing the general structure of the generalized
uncertainty principle and the modification of the phase-
space commutators leading to such a generalization of the
uncertainty principle, a modification of the commutators
(4)—(6) is obtained directly from a nonlinear realization of
Lorentz transformations in momentum space parametrized
by the functions f, g. In order to discuss the consequences
of the modifications of the quantum mechanical commu-
tators one has to specify the nonlinear transformations of
energy-momentum. We discuss some cases in next two
sections.

III. AN EXAMPLE WITH AN ENERGY CUTOFF:
DSR2

When the two functions f, g parametrizing the nonlinear
Lorentz transformations are independent of the momenta
(i.e., when d,f = d,g = 0) the modified quantum me-
chanical commutators in (4)—(6) take a much simpler form

. 1
[t E]= lhfi—i- Ea,f ©)
[1, i) = —ifp,———1S___ (10)
o "glf + €Ed, f]
[x;, E] =0, [xi, Pj] = iﬁaij§~ (11)

A very simple choice for the functions f, g
f=g=0—¢E)! (12)

is what is known as DSR2 [6] and corresponds to the
simplest realization of DSR with an energy cutoff (E <
1/¢€) identified as the inverse of the invariant length. The
combinations of derivatives which appear in the phase-
space commutators are given by
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d1g=f+<LEd f=(1—<€E)? (13)

and then one has
[t, E] = ihk(1 — €E)? (14)
(1, pi] = —ihtp;(1 — €E) (15)

[xi) E] = 0’ [xi’ pj] = lﬁal}(l - eE)’ (16)

a result already anticipated in [13] where it was obtained
by considering a possible realization of space-time coor-
dinates as differential operators in momentum space. The
conclusion that one gets from (14)—(16) is that there is a
modification of the quantum mechanical commutators
which becomes relevant when the energy approaches its
maximum value. In the limit £ — 1/€ all commutators
vanish and one has a classical phase-space. This is a result
that one could have anticipated from the consistency of the
quantum mechanical uncertainty principle with the possi-
bility to explore an arbitrarily small region in space-time
while having a cutoff on the available energies.

IV. AN EXAMPLE WITH A MOMENTUM CUTOFF:
DSR1

Another example of a nonlinear realization of Lorentz
transformations corresponds to the choice of functions

_1 2t e
reslar e -] an
g = et (18)

The relation between the energy and momentum for a
particle of mass m is given by

(1 _ €2p2)e€E + eﬂ{’E — e€m + e*(fm’ (19)

which is the dispersion relation of the model referred to as
DSRI1 [5]. One finds

S cosh(€m) + \/cosh?(€m) — (1 — €2p?)

1 — ¢%p?
for the energy as a function of momentum. One has in this
case an upper bound on the momentum (p? < 1/€?) in-

stead of the energy. If one replaces the function g and its
derivatives

(20)

dg=g=¢e¢f 9=0 1)

into the general expression (6) for the modified quantum
mechanical commutators one has

1 1
tLEl=ih— t, pil= —ihlp,— 22
(4, E] oy (4, pi] ihepigy (22)

2e ECEd, f

[x; E] = —ilitp; D,

(23)
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2¢E9
[x, p;]= iﬁe_€E|:5ij +pip; D Zf} (24)
1
where
Dy = f + €E[3,f — 2¢°p0,f] (25)
For the particular choice for f in (17)
2UEd,f = ' (26)
and
1
D, = 5[(1 — £2p?)e‘E + e E], 27

If one uses the relation between energy and momentum
(19), the right hand side in (27) reduces to cosh(¢m) and
the phase-space commutators become

ih i
[, E] = cosh(em) [, pi]l= _gpim (28)
ih
[x;, E] = _€Pim (29)
1
[x;, p;] lﬁ[e 8;; +€°pip; cosh(€m)} (30)

We see from these expressions that when the mass m is
much larger than the inverse of the length scale € all the
commutators are (exponentially) small and a classical
phase-space is approached. This result suggests the possi-
bility to relate the transition from the quantum behavior at
the microscopic level to the classical behavior at the mac-
rosocopic level with the modification of quantum mechan-
ics induced by a modification of the relativity principle.

As a final remark one can consider the massless case
where

1
et = ——— (31)
1 —{|pl
and the modified commutators are
[t E]1=in [t p]= —ililp; (32)
[Xi, E]l= —ihtp; (33)

[xi p;] = ik[(1 — £lpD)d;; + €*pip;]. (34)

In contrast to the case of a cutoff in the energy, when the
momentum approaches its maximum value one has a non
trivial limit for the commutators which differs from the
canonical commutation relations.

V. CONCLUSIONS

The standard arguments leading to a minimum physical
length beyond which it is not possible to go in the presence
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of gravity assume that in the flat space-time limit one has
the standard QM uncertainty principle.

If there is a remnant of gravity in the flat space-time limit
—such as an invariant length and a modification of the QM
commutators— then these arguments may not apply. In fact
we have shown that in some cases, instead of a generalized
uncertainty principle leading to a minimal length, one finds
a modification of the QM commutators such that the sys-
tem approaches to the classical limit with no uncertainties
in the high energy limit and/or for large masses.

A discussion at the kinematical level, as the one pre-
sented in this work, has to be based on a set of implicit
assumptions like the identification of physical energy-
momentum variables as well as a simple realization of
spacetime. The validity of this framework can only be
established after a dynamical theory with these kinematical
ingredients is formulated.

If the modifications of QM suggested by the examples
analyzed in this work apply to the flat space-time limit of
the QG theory then our understanding of different physical
systems should be reconsidered. The qualitative descrip-
tion of physical systems on a macroscopic scale, based on
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standard QM, could be altered in some cases. Also the
discussion of black hole evaporation could be modified
when one approaches the invariant length scale where
quantum black holes become classical. Even the quantum
mechanical aspects of the evolution of the Universe could
differ from standard physics expectations. A more system-
atic analysis of all possible QM commutators correspond-
ing to the different nonlinear representations of Lorentz
transformations in energy-momentum space and of the
different ways to introduce the space-time sector is re-
quired in order to see whether the appearance of a new
classical limit is a peculiarity of the examples considered
in this work or a general property of a quantum relativistic
theory with an invariant length scale.
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