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N� 1 super Yang-Mills theory on a �3�1� dimensional transverse lattice
with one exact supersymmetry

Motomichi Harada and Stephen Pinsky
Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

(Received 30 November 2004; published 24 March 2005)
1550-7998=20
We formulate N � 1 super Yang-Mills theory in 3�1 dimensions on a two dimensional transverse
lattice using supersymmetric discrete light-cone quantization in the large-Nc limit. This formulation is
free of fermion species doubling. We are able to preserve one supersymmetry. We find a rich, nontrivial
behavior of the mass spectrum as a function of the coupling g

������
Nc

p
, and see some sort of transition in the

structure of a bound state as we go from the weak coupling to the strong coupling. Using a toy model we
give an interpretation of the rich behavior of the mass spectrum. We present the mass spectrum as a
function of the winding number for those states whose color flux winds all the way around in one of the
transverse directions. We use two fits to the mass spectrum and the one that has a string theory justification
appears preferable. For those states whose color flux is localized we present an extrapolated value for m2

for some low-energy bound states in the limit where the numerical resolution goes to infinity.
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1We should note that the topological field approach to con-
structing a supersymmetric theory on a lattice utilized by Sugino
was first discussed by Catterall in Ref. [9], which investigates
theories without a gauge symmetry. Very recently, Catterall has
proposed a geometrical approach to N � 2 SYM on the two
dimensional lattice in Ref. [10].
I. INTRODUCTION

In the past years, there has been a tremendous amount
of progress in the analytical understanding of supersym-
metric theories due to the discovery of AdS/CFT
correspondence [1], using ‘‘orbifolding’’ [2], ‘‘orientifold-
ing’’ [3,4], or others. Recently Armoni, Shifman, and
Veneziano have shown that in the large Nc limit a non-
supersymmetric gauge theory with a Dirac fermion in the
antisymmetric tensor representation is equivalent, both
perturbatively and nonperturbatively, to N � 1 super
Yang-Mills (SYM) theory in its bosonic sector [3].
Since for Nc � 3 the nonsupersymmetric gauge theory is
just one-flavor QCD, even though we have to keep in
mind 1=Nc corrections, knowing the nonperturbative prop-
erties of N � 1 SYM is of great importance from phe-
nomenological viewpoint as well. Accordingly, one cannot
stress enough the importance of being able to perform
some nonperturbative numerical calculations for N � 1
SYM to test the predictions made by Armoni, Shifman, and
Veneziano. However, this is not an easy task by any means.
This is because the supersymmetry (SUSY) trans-
formation, which is an extension of the Poincaré trans-
formation, is broken on a lattice due to the lack of con-
tinuous spatial translational symmetry and because Leibniz
rule does not hold on a lattice. Therefore, new attempts
to put SYM on the lattice are interesting and eagerly
awaited.

There have been some promising approaches along this
direction [5–7] that partially preserve SUSY. However,
there still appear to be some remaining issues before the
method introduced by Cohen, Kaplan, Katz, and Unsal
becomes a practical computational approach [5,8]. The
approach by Sugino [6,7] has encountered unwanted sur-
plus modes in four dimensions (in Euclidean space) [7] and
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is still waiting numerical simulations1. For other recent
progress in an effort to realize SUSY on a lattice, see, for
example, Refs. [11,12].

Recently the authors proposed another method to put
SYM on a lattice [13]. This approach is in fact not a new
idea, rather it is motivated by the idea of the ‘‘(de)con-
struction’’ [14] and is a mixture of the two existing ideas;
the transverse lattice [15,16] and supersymmetric discrete
light-cone quantization (SDLCQ) [17]. Our first attempt
was made for 2� 1 dimensional N � 1 SYM with one
transverse lattice. Here we present a formulation for 3�1
dimensional N � 1 SYM with a two dimensional trans-
verse lattice in the large Nc limit.

At each site of the two dimensional lattice, we have one
gauge boson and one four-component Majorana spinor.
Adjacent sites are connected by the link variables. All
these fields depend only on the light-cone time and spatial
coordinates x� and are associated with two site indices, say
�i; j�. In the large Nc limit, however, it turns out that we are
allowed to drop the site indices for our calculation. This is
in some sense the manifestation of the Eguchi-Kawai
reduction [18]. However, it is well known that the naive
Eguchi-Kawai reduction encounters a problem due to the
violation of one of the assumptions made by Eguchi and
Kawai [19]. That assumption is the U�1�d symmetry. Since
we do not have to assume the U�1�d symmetry to justify
our reduction of the transverse lattice degrees of freedom,
we believe that we do not have to introduce quenching [19]
-1  2005 The American Physical Society
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or twisted [20] lattices, which were invented to overcome
the problem associated with the naive Eguchi-Kawai re-
duction at weak couplings. For more complete and detailed
discussion for this claim, see Appendix A. With this re-
duction of the transverse degrees of freedom, we can
regard all the fields as 1�1 dimensional objects. That is
to say that we have some complicated 1�1 dimensional
field theory with some highly nontrivial interactions of the
fields. Furthermore, since we can always work in the frame
where we have zero transverse momenta P1; P2 � 0, N �
1 SUSY algebra in 3�1 dimensions becomes identical to
N � 2 SUSYalgebra in 1�1 dimensions, which is some-
times referred to as N � �2; 2� SUSY in literature, (2,2)
for twoQ�’s and twoQ�’s. We are able to maintain one of
this underlying N � �2; 2� SUSY algebra in our formula-
tion, meaning that we are able to preserve one exact SUSY.

We discretize light-cone momentum p� by imposing the
periodic condition on the light-cone spatial coordinate x�.
Thus, we have two spatial lattices and one momentum
lattice in our model. Since we are dealing with spatial
lattices, one has to be concerned about the notorious fer-
mion doubling problem. In fact it is well known that the
transverse lattice suffers from the doubling problem [21].
However, the authors have found that SDLCQ formulation
of a transverse lattice model is automatically free of the
doubling problem [22].

There are some aspects of this calculation that are
similar to the 2�1 dimensional model [13] and there are
others that are not. What is not the same is that the super-
charge Q�

� has terms which have different powers of the
coupling g0 	 g

������
Nc

p
, where � � 1; 2. To be more precise,

Q�
� consists of terms proportional to g0 and terms propor-

tional to g03. The different powers of g0 give rise to a rich
spectrum as one varies g0, and the wave functions depend
on g0. This means that it is possible to see wave functions
which are almost vanishing at small couplings, but become
very large at strong couplings, and vice versa.

One more thing which is different from the previous case
is that our Q�

� has terms of third and fifth order in dynami-
cal fields, while all of the terms in Q� are of third order for
2�1 dimensional case. This leads to a Hamiltonian of
eighth order in fields, which is of higher order than the
Hamiltonian of sixth order that we get from the standard
formulation of 3�1 dimensional N � 1 SYM on the two
transverse lattice. We admit that this is a disadvantage of
our formulation in 3�1 dimensions compared to that in
2�1 dimensions. Nevertheless, we still think that our
approach is more advantageous since in the SDLCQ for-
mulation we use Q�

� , not the Hamiltonian, and this Q�
� is

still of lower order in fields than the Hamiltonian obtained
from the standard formulation, and since the standard
formulation suffers from the fermion doubling problem.

Similar to the 2�1 dimensional case we are not able to
preserve the full supersymmetry algebra. We are able to
maintain one exact SUSY. This is attributed to the fact that
065013
when quantizing the dynamical fields we have to make the
link variable, which is a unitary matrix, a linear complex
matrix. One way to compensate for the effects of this
‘‘linearization’’ is to make use of the ‘‘color-dielectric’’
formulation of the lattice gauge theory [16,23,24]. In this
formulation we consider smeared degrees of freedom M,
which are obtained from the original link variable M by
averaging M over some finite volume, say

P
avM. In order

for this smeared theory to be equivalent to the original one,
we must have an effective potential for the M defined by
integrating out M [23]

exp
�Veff�M�� �
Z

DM�
�
M�

X
av

M
�

� exp
�Scanonical�M��:

However, this Veff�M� can be very complicated and per-
forming the path integral above is extremely difficult, if not
impossible. Thus, one makes some approximations with
ansatz to determine Veff . For more detail, we would refer
the reader to Refs. [16,23,24].

To constrain the linearized fields, we require the model
to exactly conserve one SUSY as we did for our 2�1
dimensional calculation. That is, we present a physical
Q�
� that preserves one SUSY. By ‘‘physical’’ we mean a

Q�
� which transforms one physical state into another physi-

cal state. We are not able to fully recover SUSY due to the
absence of a physical Q�

� . This defect results in a different
number of massless states in the bosonic and fermionic
sectors. However, we do see the mass degeneracy among
the massive bosonic and fermionic states. The linearization
doubles the bosonic degrees of freedom, leading to the
SUSY breakdown. The partial recovery of SUSY implies
that we have cured some but not all of the problems
associated with the linearization.

We are numerically able to identify what we call the
cyclic states and noncyclic states by examining the prop-
erties of the states. The cyclic states are those whose color
flux winds all the way around in one or two of the trans-
verse directions. For the noncyclic states the color flux is
localized in color space. The cyclic bound states have a
nontrivial spectrum as a function of the winding number.
We find that m2 for the cyclic bound states can be fit by
either b� c=WI � d=W2

I or b� cW2
I � d=W2

I , where
b; c; d are some constants and WI is the winding number
in the xI direction with I � 1; 2. It could be interesting to
know how the form of the m2 changes from weak coupling
to strong coupling however the complicated spectrum for
strong couplings puts this beyond our reach at the present
time.

The structure of this paper is the following. In Sec. II we
present a standard formulation of N � 1 SYM with a two
dimensional transverse lattice and derive constraint equa-
tions on the physical states. We discuss the implications of
those in some detail. We give SDLCQ formulation of
N � 1 SYM in Sec. III and show that this formulation
-2



N � 1 SUPER YANG-MILLS THEORY ON A 3�1 . . . PHYSICAL REVIEW D 71, 065013 (2005)
is free from the doubling problem. The coupling depen-
dence of the mass spectrum is discussed in Sec. IV fol-
lowed by numerical results for cyclic bound states in
Sec. V and for noncyclic bound states in Sec. VI. The
summary and possible further directions of investigation
are given in Sec. VII. Appendix A is to show how we
justify the reduction of transverse degrees of freedom in the
largeNc limit. Derived in Appendix B is the N � 1 SUSY
algebra in Majorana representation in the D� 1 dimen-
sional light-cone coordinates with D � 1; 2; 3.

II. TRANSVERSE LATTICE MODEL IN 3�1
DIMENSIONS

In this section we present the standard formulation of a
transverse lattice model in 3�1 dimensions for an N � 1
supersymmetric SU�Nc� theory with adjoint bosons and
adjoint fermions in the large-Nc limit. We work in light-
cone coordinates so that x� 	 �x0 � x3�=

���
2

p
. The metric is

specified by x� � x and xI � �xI, where I � 1; 2.
Suppose that there are Nsites sites in both the transverse
directions x1 and x2 with lattice spacing a. With each site,
say n � �i; j�, we associate one gauge boson field A�;n�x��
and one four-component Majorana spinor �n�x��, where
�;� � �. A�;n’s and �n’s are in the adjoint representa-
tion. The adjacent sites, say n and n� iI, where iI is a
vector of length a in the direction xI, are connected by
what we call the link variables MI

n�x�� and MIy
n �x��.

MI
n�x�� stands for a link which goes from the site n to

the site �n� iI� and MIy
n �x�� for a link from the site �n�

iI� to n. We impose the periodic condition on the transverse
sites so that ANsitesiI�n � An, �NsitesiI�n � �n, MI

NsitesiI�n
�

MI
n, and MIy

NsitesiI�n
� MIy

n . Under the transverse gauge
transformation [16] the fields transform as

gA�n ���! UngA
�
n U

y
n � iUn@

�Uy
n ;

MI
n ���! UnMI

nU
y
n�iI

; �n ���! Un�nU
y
n ;

(1)

where g is the coupling constant and Un 	 Un�x�� is a
Nc � Nc unitary matrix. In all earlier work on the trans-
verse lattice [16] �n was in the fundamental
representation.

The link variable can be written as

MI
n�x�� � exp�iagAn�iI=2;I�x

���; (2)

where An;I is the transverse component of the gauge po-
tential at site n and as a! 0 we can formally expand
Eq. (2) in powers of a as follows:

MI
n�x�� � 1� iagAn;I�x�� �

a2

2

ig@IAn;I�x��

� g2�An;I�x
���2� �O�a3�: (3)

In the limit a! 0, with the substitution of the expansion
065013
Eq. (3) for MI
n, we expect everything to coincide with its

counterpart in continuum (3�1)-dimensional theory.
The discrete Lagrangian is then given by

L � tr
�
�

1

4
F��n Fn;�� �

1

2a2g2
�D�MI

n��D�MI
n�

y

�
1

4a4g2
X
I�J

�MI
nM

J
n�iI

MIy
n�iJ

MJy
n � 1�

� ��ni��D��n �
i
2a

��n�
I�MI

n�n�iIM
Iy
n

�MIy
n�iI

�n�iIM
I
n�iI

�

	
;

where the trace has been taken with respect to the color
indices, Fn;�� � @�An;� � @�An;� � ig
An;�; An;��,
�; � � �. We choose Majorana representation where
Majorana spinors have real component fields and �’s are
given by

�0 	

�
0 #2

#2 0

�
; �1 	 i

�
#1 0
0 #1

�
;

�2 	 i
�
#3 0
0 #3

�
; �3 	

�
0 �#2

#2 0

�
;

�� 	
�0 � �3���

2
p �

�
0 0���
2

p
#2 0

�
;

�� 	
�0 � �3���

2
p �

�
0

���
2

p
#2

0 0

�
:

The covariant derivative D� is defined by

D��n 	 @��n � ig
An;�;�n�;

D�MI
n 	 @�MI

n � igAn;IMI
n

� igMI
nAn�iI ;� ���!a!0

iagF�I �O�a2�;

�D�MI
n�

y 	 @�MIy
n � igMIy

n A
�
n

� igA�n�iIM
Iy
n ���!a!0

iagF�I �O�a2�:

In the limit a! 0 we recover the standard Lagrangian as
expected. Of course the form of this Lagrangian is slightly
different from that in Ref. [16] since the fermions are in the
adjoint representation. This Lagrangian is Hermitian and
invariant under the transformation in Eq. (1) as one would
expect.

The following Euler-Lagrange equations in the light-
cone gauge, An;� � 0, are constraint equations.

@2�A�
n 	 gJ�n ���!a!0

ig
AI; @�AI� � @I@�AI � 2g R R;

@� Ln �
�i

2
���
2

p
a
#2'I�M

I
n Rn�iIM

Iy
n

�MIy
n�iI

 Rn�iIM
I
n�iI

����!a!0�i���
2

p #2'IDI R;

(4)
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where

J�n 	
i

2g2a2
�MI

n@
$
�M

Iy
n �MIy

n�iI
@
$
�M

I
n�iI

� � 2 n n;

�n 	
1

21=4

� Rn
 Ln

�
; (5)

'1 	 #1, '2 � #3, and  L;R are the two-component left-
moving, right-moving spinors.

Since these equations only involve the spatial derivative
we can solve them for A�

n and  Ln, respectively. Thus the
dynamical field degrees of freedom are MI

n, MIy
n , and  Rn.

Equation (4) gives a constraint on physical states jphysi,
since the zero mode of J�n acting on any physical state must
vanish,

J�n
0

jphysi �
Z
dx�J�n �x

��jphysi � 0 for any n � �i; j�:

(6)

This means that the physical states must be color singlet at
each site.

It is straightforward to derive P� 	
R
dx�T��, where

T�� is the stress-energy tensor. We have

P� � a2
X
n

Z
dx�tr

�
1

a2g2
@�M

Iy
n @�M

I
n � i Rn@� Rn

�
;

(7)

P� � a2
X
n

Z
dx�tr

�
1

2
�@�A�

n �
2 � i Ln@� Ln

�
1

4a2g2
�MI

nM
J
n�iI

MIy
n�iJ

MJy
n � 1�

�
; (8)

where one should notice that we have kept the nondynam-
ical fields in the expression for P� to make it look simpler.
When one quantizes the dynamical fields, unitarity ofMI

n is
lost and MI

n becomes an Nc � Nc complex matrix [16].
One way to compensate for the effects of this linearization
is to make use of the ‘‘color-dielectric’’ formulation of the
lattice gauge theory [16,23,24]. We will approach this issue
using supersymmetry as we have done for the 2�1 dimen-
sional case.

Having linearized MI
n, we can expand MI

n and  Rn in
their Fourier modes as follows: at x� � 0

MI
n;rs�x

�� �
ag�������
2+

p
Z 1

0

dk�������
k�

p �dIn;rs�k
��e�ik

�x�

� aIyn;sr�k��eik
�x��; (9)
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u�n;rs�x�� �
1

2
����
+

p
Z 1

0
dk��b�n;rs�k��e�ik

�x�

� b�yn;sr�k��eik
�x��; (10)

where r; s indicate the color indices,  Rn 	 �u
1
n
u2n
�, � � 1; 2,

ayn;sr�k�� creates a link variable with momentum k� which
carries color r at site n to s at site �n� iI�, d

y
n;sr�k�� creates

a link with k� which carries color r at site �n� iI� to s at
site i and b�yn;sr creates a fermion at the site n which carries
color r to s. Quantizing at x� � 0 we have


MI
ij;rs�x

��; +JMkl;pq�y
��� �

�
MI
ij;rs�x

��;
@�yM

Jy
kl;pq�y

��

2a2g2

�

�
i
2
��x� � y��

�
�ik
a

�jl
a
�rp�sq�IJ; (11)

fu�ij;rs�x
��; +' kl;pq�y

��g � fu�ij;rs�x
��; iu'kl;pq�y

��g

�
i
2
��x� � y��

�ik
a

�
�jl
a
�rp�sq��'; (12)

where +M;+ are the conjugate momentum for M; ,
respectively, and we wrote out the site indices for clarity.
Note that we divided �ik and �jl by a because �ik=a!

��x1 � y1� and �jl=a! ��x2 � y2� as a! 0. Then, one
can easily see that these commutation relations are satisfied
when a’s, d’s, and b’s satisfy the following:


aIij;rs�k
��; aJykl;pq�p

��� � 
dIij;rs�k
��; dJykl;pq�p

���

� ��k� � p��
�ik
a

�jl
a
�rp�sq�IJ;

(13)

fb�ij;rs�k
��; b'ykl;pq�p

��g � ��k� � p��
�ik
a

�jl
a
�rp�sq��';

(14)

with others all being zero. Physical states can be generated
by acting on the Fock vacuum j0i with these aIy’s, dIy’s,
and b�y’s in such a manner that the constraint Eq. (6) is
satisfied.

Before discussing the physical constraint in more detail,
let us point out the fact that this naive Lagrangian formu-
lation is not free from the fermion species doubling prob-
lem, while our SDLCQ formulation that we will introduce
in the next section actually is [22]. Nonetheless, the con-
-4
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straint equation would still be valid since the constraint
equation (4) and (6) was derived from �L

�A�
n
� @�

�L
�@�A�

n
� 0

in which we do not have any problematic terms responsible
for the doubling problem, i.e. the terms which contains the
difference between fermions at different sites. Therefore,
we assume that this physical constraint is valid for our
SDLCQ formulation in the next section and we will fully
utilize it when we carry out our numerical calculations.

With this subtlety in mind, let us complete this section
by discussing the physical constraint (6) in more detail.
The states are all constructed in the large-Nc limit, and
therefore we need only consider single-trace states. In
order for a state to be color singlet at each site, each color
index has to be contracted at the same site. As an example
consider a state represented by jphys1i 	 dIyn;rsa

Iy
n;srj0i,

where we have suppressed the momentum carried by aIy

and dIy and we will do so hereafter unless it is necessary
for clarity. For this state the color r at site n is carried by
aIyn to s at site �n� iI� and then brought back by dIyn to r at
site n. The color r is contracted at site n only and the color s
at site �n� iI� only. Therefore, this is a physical state
satisfying Eq. (6). A picture to visualize this case is shown
in Fig. 1(a). Diagrammatically, one can say that at every
point in color space one has to have either no lines or two
lines, one of which goes into and the other of which comes
out of the point, so that the color indices are contracted at
the same site.

One also needs to be careful with operator ordering. One
can show that the state dIyn;rsa

Iy
n;stb

Iy
n;trj0i is physical, while

the state bIyn;rsa
Iy
n;std

Iy
n;trj0i is unphysical. This statement is

almost obvious when one recalls what each creation op-
erator does.

We should, however, note that a true physical state be
summed over all the transverse sites since we have discrete
translational symmetry in the transverse direction. That is,
for example, the states dIy11;rsa

Iy
11;srj0i and dIy12;rsa

Iy
12;srj0i are
FIG. 1. (a) The color charge for the state jphys1i 	 dIyn;rsa
Iy
n;srj0i. Th

at site n� iI and dIyn carries it back to r at site n. (b) The color char
lines which intersect a circle represent the color planes at sites. The

065013
the same up to a phase factor given by exp�iP2a�. We set
the phase factor to one since we take physical states to have
P1 � P2 � 0. The physical state jphys1i is in factPNsites
i;j�1 d

Iy
ij;rsa

Iy
ij;srj0i with the appropriate normalization

constant. From a computational point of view this leads
to a great simplification in the large Nc limit. Because as
shown in Appendix A it turns out that in the large Nc limit
we can drop the site index n from the expression of the
supercharges and thus can practically set Nsites � 1 for our
calculation. This is in some sense the manifestation of the
Eguchi-Kawai reduction [18]. Eguchi-Kawai reduction
tells us in the usual lattice theory that the large Nc limit
allows us to work with only one site in each of the space-
time directions in Euclidean space. However, the way we
justify this reduction in our transverse lattice formulation is
quite different from the way Eguchi and Kawai do in the
usual lattice formulation. Therefore, we believe that we do
not have to introduce quenching [19] or twisted [20] latti-
ces to overcome the problem that the naive Eguchi-Kawai
reduction comes across at weak couplings [19]. We refer
the reader to Appendix A for more detailed support for this
claim.

Periodic conditions on the fields allow for physical
states of the form jphys2i	

P
na

Iy
n��Nsites�1�iI ;ru

���aIyn�iI ;ts�

aIyn;srj0i. The color for this state is carried around the
transverse lattice, as shown in Fig. 1(b). We will refer to
these states as cyclic states. The states where the color flux
does not go all the way around the transverse lattice we will
refer to as noncyclic states. We characterize states by what
we call the winding number defined by WI � nI=Nsites,
where nI 	

P
n�a

Iy
n aIn � dIyn dIn�. For Nsites � 1, the wind-

ing number WI simply gives us the excess number of aIy

over dIy in a state. We use the winding number to classify
states since the winding number is a good quantum number
commuting with P�

SDLCQ as we will see in the next section.
In the language of the winding number the noncyclic states
e planes represent the color space. aIyn carries color r at site n to s
ge for the state jphys2i 	 aIyn��Nsites�1�iI ;ru

� � �aIyn�iI ;tsa
Iy
n;srj0i. The

color goes all the way around the transverse lattice.
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are those states withWI � 0 and cyclic states have nonzero
WI.
III. SDLCQ OF THE TRANSVERSE LATTICE
MODEL

The transverse lattice formulation of N � 1 SYM the-
ory in 3�1 dimension presented in the previous section
has several undesirable features. First and foremost the
naive Lagrangian suffers from the fermion species dou-
bling problem [22]. Second, the supersymmetric structure
of the theory is completely hidden. Last, the resulting
Hamiltonian is 6th order in the dynamical fields. From
the numerical point of view a 6th order interaction makes
the theory considerably more difficult to solve. In Ref. [13]
we found that the �2�1�-dimensional supersymmetric
Hamiltonian is only 4th order making this discrete formu-
lation of the theory very different. Unfortunately, it seems
this is not the case for 3�1 dimensional model. Instead we
seem to have supersymmetric Hamiltonian of 8th order in
fields. However, since this SDLCQ Hamiltonian is free
from the doubling problem [22] and since the supercharge
Q�
� , where � � 1; 2, is of 5th order and it is this Q�

� that
we make use of for our calculations, we think that this
SDLCQ formulation is still more advantageous than the
naive DLCQ formulation. There can, of course, be many
discrete formulations that correspond to the same contin-
uum theory and it is therefore desirable to search for a
better one.

In the spirit of SDLCQ we will attempt a discrete for-
mulation based on the underlying superalgebra of this
theory,

fQ�
� ;Q�

' g � 2
���
2

p
P���'; fQ�

� ;Q�
' g � 0; (15)

where �;' � 1; 2 and the supercharge Q is given by

Q 	
X
n

Z
dx�j�n 	

Q�
1

Q�
2

Q�
1

Q�
2

0BBB@
1CCCA

with j�n being the supercurrent at the site n � �i; j�, which
is a Majorana spinor. For the derivation of the superalgebra
in Majorana representation Eq. (15), see Appendix B. We
have set PI � 0 with I � 1; 2 since we are considering the
physical states only with PI � 0. Note that this choice of
PI has made Eq. (15) coincide with the N � 2 super-
algebra in 1�1 dimensions also known as N � �2; 2�
superalgebra although we are considering N � 1 SYM
in 3�1 dimensions.

In this effort, however, there are some fundamental
limits to how far one can go. As we discussed in the
previous section the physical states of this theory must
conserve the color charge at every point on the transverse
lattice. Experience with other supersymmetric theories
indicates that each term in Q�

� has to be either the product
065013
of one Mn and one  n or of one My
n and one  n therefore

Q�
� is unphysical, by which we mean that Q�

� transforms a
physical state into an unphysical one, so that
hphysjQ�

� jphysi � 0. While this is not a theorem, it seems
very difficult to have any other structure since in light-cone
quantization P� is a kinematic operator and therefore
independent of the coupling. There appears to be no way
to make a physical P� from Q�

� . We will use P� as given
in Eq. (7) in what follows. Similarly, we are not able to
generally construct physical PI from Q�

� and Q�
' . In fact

PI is unphysical in our formalism, leading to
hphysjPIjphysi � 0. Formally we will work in the frame
where total PI is zero, so it would appear consistent with
this result. We should note, however, that this is not totally
satisfying because PI � 0 was a choice and a nonzero
value is equally valid and not consistent with the matrix
element.

Despite these difficulties we find a physical Q�
� which

gives us P�
SDLCQ ���!a!0

P�
cont. The expression for Q�

� is

Q�
� � i23=4a2

X
n

Z
dx�tr

��
�i

2ga2
�MI

n@
$
�M

Iy
n

�MIy
n�iI

@
$
�M

I
n�iI

��2g TRn Rn

�
1

@�
�#2 Rn��

�
�i

2ga2
�MI

nM
J
n�iI

MIy
n�iJ

MJy
n �1�

��'I'J#2 Rn��

	���!a!0
i2�1=4

Z
d3x

�
�2gJ�

1

@�

��#2 R���FIJ�'I'J#2 R��

	
;

where '1 	 #1, '2 � #3, gJ� 	 ig
AI; @�AI� �
@I@�AI � 2g R R, and the last line is the continuum
form for Q�

� in 3�1 dimensions.
It is tedious but straightforward to check that

fQ�
1 ; Q

�
1 g � fQ�

2 ; Q
�
2 g, while both fQ�

1 ; Q
�
1 g and

fQ�
2 ; Q

�
2 g give the same correct P� in the limit of a! 0.

In addition, one can show that fQ�
1 ; Q

�
2 g � 0 in the dis-

crete form but becomes zero as a! 0. This means that we
preserve only one supersymmetry algebra, say fQ�

1 ; Q
�
1 g �

P�, in our discrete formalism. We cannot use both Q�
1 and

Q�
2 at the same time to construct physical states since they

do not commute with each other. However, both Q�
1 and

Q�
2 separately give us the same mass spectrum when we

perform SDLCQ calculations. Thus, it is sufficient to con-
sider only one of the two and we take Q�

1 for our calcu-
lations in the following sessions.

Notice that Q�
� above is fifth order and, thus, P�

SDLCQ

obtained from it is eighth order in fields as we mentioned at
the beginning of this section. In fact we find
-6
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P�
SDLCQ 	

fQ�
1 ; Q

�
1 g

2
���
2

p

� a2
X
n

Z
dxtr

�
�
g2

2

i

2g2a2

��
MI
n@
$
MIy
n �MIy

n�iI
@
$
MI
n�iI

� � 2u�nu
�
n �

1

@2
i

2g2a2

� 
�MI
n@
$
MIy
n �MIy

n�iI
@
$
MI
n�iI

� � 2u�nu
�
n � �

i

2a2
�u2n�iIM

Iy
n �MIy

n u2n�@
�1�MI

nu
2
n�iI

� u2nM
I
n�

�
i

2a2
f�u2n�i1�i2M

1y
n�i2

�M1y
n�i2

u2n�i2�@
�1 � �M2y

n u1nM1
nM2

n�i1
� u1n�i2M

2
n�i2

M1
n�2i2

M2y
n�i1�i2

�

� �u2n�i2M
2y
n �M2y

n u2n�@
�1�u1nM

1
nM

2
n�i1

M1y
n�i2

�M1y
n�i1

u1n�i1M
2
n�i1

M1
n�i1�i2

�

� �u2n�i1M
2
n�i1

�M2
n�i1

u2n�i1�i2�@
�1�M1y

n�i2
M2y
n u1nM1

n �M1
n�i1�i2

M2y
n�2i1

M1y
n�i1

u1n�i1�

� �u2nM1
n �M1

nu2n�i1�@
�1�M2

n�i1
M1y
n�i2

M2y
n u1n �M2y

n�i1�i2
M1y
n�i2

u1n�i2M
2
n�i2

�g

�
i

4a2
f�M2

n�i1
M1y
n�i2

M2y
n u1n �M2y

n�i1�i2
M1y
n�i2

u1n�i2M
2
n�i2

�@�1�u1nM2
nM1

n�i2
M2y
n�i1

�M2y
n�i2

u1n�i2M
1
n�i2

M2
n�i1�i2

�

� �M2y
n u1nM1

nM2
n�i1

� u1n�i2M
2
n�i2

M1
n�2i2

M2y
n�i1�i2

�@�1�M2y
n�i1

M1y
n u1nM2

n �M2
n�i1�i2

M1y
n�2i2

M2y
n�i2

u1n�i2�

� �M1y
n�i2

M2y
n u1nM1

n �M1
n�i1�i2

M2y
n�2i1

M1y
n�i1

u1n�i1�@
�1�M1y

n u1nM2
nM1

n�i2
� u1n�i1M

1
n�i1

M2
n�2i1

M1y
n�i1�i2

�

� �u1nM1
nM2

n�i1
M1y
n�i2

�M1y
n�i1

u1n�i1M
2
n�i1

M1
n�i1�i2

@�1�M1
n�i2

M2y
n�i1

M1y
n u1n �M1y

n�i1�i2
M2y
n�i1

u1n�i1M
1
n�i1

�g

�
�1

8a2
�M1

nM2
n�i1

M1y
n�i2

M2y
n �M2

nM1
n�i2

M2y
n�i1

M1y
n �2

	
:

One can show that by setting g � 0 and M;My � 1 this
P�
SDLCQ gives rise to a dispersion relation

k� �
1

2k�

��
sink

1a
2

a=2

�
2
�

�
sink

2a
2

a=2

�
2
�
;

which is free from the fermion species doubling problem
[22]. Furthermore, one can check that this Q� commutes
with P� obtained from L; 
Q�; P�� � 0. Thus, it follows
that

hphysj
Q�;M2�jphysi � hphysj
Q�; 2P�P�
SDLCQ�jphysi

� 0 (16)

in our SDLCQ formalism, where M2 	 2P�P�
SDLCQ �

�P1�2 � �P2�2. The fact that the Hamiltonian is the square
of a supercharge will guarantee the usual supersymmetric
degeneracy of the massive spectrum, and our numerical
solutions will substantiate this. Unfortunately one needs a
Q� to guarantee the degeneracy of the massless bound
states.

Recalling that we set Nsites � 1 in both transverse direc-
tions and that we are in the large-Nc limit, we can writeQ�

1
as
065013
Q�
1 � Q�

11 �Q�
12 �Q�

13;

where

Q�
11 � �

i2�1=4a2g����
+

p
Z 1

0
dk1dk2dk3��k1 � k2 � k3�

�

�
k2 � k1
k3

���������
k1k2

p ��b2ydIaI � dIyaIyb2 � b2yaIdI

� aIydIyb2� �
k2 � k3
k1

���������
k2k3

p ��dIyb2dI � b2ydIydI

� aIyb2aI � b2yaIyaI� �
k3 � k1
k2

���������
k3k1

p

� �aIyaIb2 � aIyb2yaI � dIydIb2 � dIyb2ydI�

�

�
1

k1
�

1

k2
�

1

k3

�
�b2yb2yb2 � b2yb2b2�

�
; (17)

Q�
12 � �

i2�1=4a2g����
+

p
Z 1

0
dk1dk2dk3��k1 � k2 � k3�

�

�
�1

k3
�b2yb1b1 � b1yb1yb2� �

1

k1
�b1yb2b1

� b2yb1yb1� �
1

k2
�b1yb2yb1 � b1yb1b2�

�
; (18)
-7
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Q�
13 � �

i2�1=4a2g����
+

p
a2g2

4+

Z 1

0
dk1dk2dk3dk4dk5

�
��k1 � k2 � k3 � k4 � k5�

�

�
1������������������

k1k2k3k4
p �b1yd1d2a1a2 � d2yd1ya2ya1yb1 � b1yd2d1a2a1 � d1yd2ya1ya2yb1�

�
1������������������

k2k3k4k5
p �d2yb1d1d2a1 � b1yd2yd1ya2yd1 � d1yb1d2d1a2 � b1yd1yd2ya1yd2�

�
1������������������

k3k4k5k1
p �d1ya2b1d1d2 � a1yb1yd2yd1yd2 � d2ya1b1d2d1 � a2yb1yd1yd2yd1�

�
1������������������

k4k5k1k2
p �a2ya1a2b1d1 � a2ya1yb1yd2ya1 � a1ya2a1b1d2 � a1ya2yb1yd1ya2�

�
1������������������

k5k1k2k3
p �a1yd2a1a2b1 � d1ya2ya1yb1ya2 � a2yd1a2a1b1 � d2ya1ya2yb1ya1�

�

� ��k1 � k2 � k3 � k4 � k5�
�

1������������������
k1k2k3k4

p �d1ya2ya1ya2b1 � a1yb1yd2a1a2

� d2ya1ya2ya1b1 � a2yb1yd1a2a1� �
1������������������

k2k3k4k5
p �b1yd2yd1yd1d2 � d2yd1yb1d1d2

� b1yd1yd2yd2d1 � d1yd2yb1d2d1� �
1������������������

k3k4k5k1
p �a1yb1yd2yd2a1 � d1ya2ya2b1d1

� a2yb1yd1yd1a2 � d2ya1ya1b1d2� �
1������������������

k4k5k1k2
p �a2ya1yb1ya1a2 � a2ya1ya1a2b1

� a1ya2yb1ya2a1 � a1ya2ya2a1b1� �
1������������������

k5k1k2k3
p �d2yd1ya2yb1d1 � b1yd2yd1d2a1

� d1yd2ya1yb1d2 � b1yd1yd2d1a2�
�	
; (19)
with k� 	 k, a1 	 a�k1�, ayaa 	 tr�ay3a1a2�, a
yaya 	

tr�ay1a
y
2a3�, ayaaaa 	 tr�ay5a1a2a3a4�, ayayayaya 	

tr�ay1a
y
2a

y
3a

y
4a5�, ayayayaa 	 tr�ay1a

y
2a

y
3a4a5�, and

ayayaaa 	 tr�ay4a
y
5a1a2a3�. Q11 is the part of Q�

1 which
looks exactly like Q� in 2�1 dimensional model with the
difference being that here we have two types for each of the
bosonic fields a and d. Q12 is a new piece in 3�1 dimen-
sions and mixes two different types of fermionic fields.
Q13 is also new and composed of fields of fifth order. Note
that for small couplings, Q11 and Q12 dominate over Q13,
while Q13 dominates in the strong coupling regime. Notice
that from this explicit expression for Q�

1 it is clear that the
winding number introduced in the last section evidently
commutes with Q�

1 and, thus, with P�
SDLCQ. Therefore,

cyclic states do not mix with noncyclic states.
It is always important to look for symmetries of Q�

since the symmetries, if any, will reduce the amount of the
computational efforts considerably. To do this, let us con-
sider three cases separately: (i) the intermediate coupling
where we have all the three pieces together for Q�

1 ; (ii) the
weak coupling limit where we can ignore Q13; (iii) the
strong coupling limit where we consider Q13 only. For the
first case (i) we find two Z2 symmetries,
(i) a
1ij $ �a2ij; d
1
ij $ �d2ij; b

1
ij $

�b1ij; b
2 unchanged; ,
(ii) a
Iij $ �dIji; b
�
ij $ �b�ji.
065013
The first symmetry implies that states with the winding
numbers, say �W1; W2�, are equivalent to those with
�W2; W1� up to the minus sign. On the other hand the
second symmetry implies that states with �W1; W2� are
equivalent to those with ��W1;�W2� up to the minus sign.

In the case of the weak coupling limit (ii), we find two
more independent Z2 symmetries;
(i) a
-8
I
ij $ �aIji; d

I
ij $ �dIji; b

�
ij $ �b�ji.
(ii) a
1ij $ �d1ji; a
2
ij $ �a2ji; d

2
ij $ �d2ji; b

�
ij $ �b�ji.
The second of these implies, with the help of the second
Z2 symmetry we found in the case of (i), the equivalence of
states under �W1; W2� $ ��W1; W2� $ �W1;�W2�.

In the strong coupling limit (iii), we do not have any
other Z2 symmetries besides the two we found in the case
of (i). However, it is easy to see that Q13 commutes with
b2yb2, thus the number of b2y’s is a good quantum number
as well as the two winding numbers.

It is interesting to see what we can find for each of the
three different cases (i), (ii), and (iii). However, in this our
first attempt to formulate N � �2; 2� SYM in 3�1 di-
mensions with SDLCQ on a two dimensional transverse
lattice, we constrain ourselves to consider only the most
generic case (i) where we have all the three pieces together
for Q�.

Now we are in a position to solve the eigenvalue prob-
lem 2P�P�

SDLCQjphysi � m2jphysi. We impose the peri-
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odicity condition on MI
n, MIy

n , and u�n in the x� direction
giving a discrete spectrum for k�, and ignore the
zero mode:

k� �
+
L
n �n � 1; 2; . . . :�;

Z 1

0
dk� !

+
L

X1
n�1

:

We impose a cutoff on the total longitudinal momentum
P� i.e. P� � +K=L, where K is an integer also known as
the ‘‘harmonic resolution,‘‘ which indicates the coarseness
of our numerical results. For a fixed P� i.e. a fixed K, the
number of partons in a state is limited up to the maximum,
that is K, so that the total number of Fock states is finite,
and, therefore, we have reduced the infinite dimensional
eigenvalue problem to a finite dimensional one.
FIG. 2. Log-log plots of the mass spectrum m2 in units of g02=+a
(b),(d), and (f) are the same as (a),(c), and (e), respectively, but on a
10�8 or less is the numerical zero in our code.

065013
For this initial study of the transverse lattice we consider
resolution up to K � 8 for noncyclic (W1 � W2 � 0)
states and up to K � WI � 6 and K � WI � 5 for states
with jWIj � 1 and jWIj � 2; 3; 4; 5, respectively. We were
able to handle these calculations with our SDLCQ
Mathematica code and C�� code.
IV. COUPLING DEPENDENCE OF THE MASS
SPECTRUM

In this section we will discuss the mass spectrum as a
function of g0 	 g

������
Nc

p
for K � 4; 5; 6.

It is instructive to see the dependence of m2 on the
coupling since we have terms in Q� that go like g0 and
g03. In Fig. 2 we show the entire mass spectrum of non-
cyclic states in units of g02=+a2 for K � 4; 5; 6 as a func-
2 versus g0 	 g
������
Nc

p
with K � 4; 5; 6 for (a),(c),(e), respectively.

different scale so that one can see the crossings in more detail.

-9
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tion of g0 in a log-log plot. In order to see the crossings in
more detail we show Figs. 2(b), 2(d), and 2(f) on a different
scale from (a), (c), and (e), respectively. We have set 10�8

or less to the numerical zero in our code.
As one can see from Fig. 2, there is a rich structure in the

mass spectrum as a function of g0, and the origin of this
structure for the case where K � 4 in Fig. 2(a) and 2(b) is
rather easy to understand. We find four types of states; (i)
those states which are killed by Q13 and whosem2 in units
of g02=+a2 are independent of g0; (ii) those states which
vanish upon the action of Q11 �Q12 and thus whosem2 in
units of g02=+a2 go like g04; (iii) those states which survive
upon the action of Q11 �Q12 and of Q13 independently
and whose m2 in units of g02=+a2 go like �A� Bg02�2,
where A;B are some constants; (iv) those massless states
which become zero upon the action of Q11 �Q12 �Q13.
From Figs. 2(a) and 2(b) it is easy to identify one state each
for the second and third type because m2 of a state of the
second type go like g04, giving rise to a straight line with a
nonzero slope for all g0 in the log-log plot, whilem2 for the
third type is �A� Bg02�2, leading to some flat, constant line
at small g0 and a (inclined) straight line at large g0. We
should note that for the second kind one should take into
account the level crossing. The rest of the states clearly fall
into either the first kind or the fourth kind. States of the first
type yield g0-independent m2, thus, a flat line in the log-log
plot, while states of the fourth type are massless repre-
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FIG. 3. Sample spectra obtained from our toy model. (a) and (b) c
cannot.
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sented by the ‘‘dots’’ below the line of log10m
2 � �8 since

the numerical zero is set to 10�8 in our code.
This discussion does not, however, seem to explain the

dependence on g0 of the mass spectrum with K � 5; 6. To
get the full understanding of the behavior, we made a toy
model. In this model we have a 2� 2 matrix R for the
boson sector of Q� given by

R �

�
b1 � c1g02 b2 � c2g02

b3 � c3g
02 b4 � c4g

02

�
;

where bi with i � 1; 2; 3; 4 is equal to either 0 or 1 and ci is
equal to either 0 or 1=4+. Here one should notice that we
have factored out g0 from R or Q�, and therefore g02 from
P�. The Q� for this toy model is thus given by

Q�=g0 �
�
0 R
RT 0

�
;

where T stands for the transpose. Thus, the matrix to
diagonalize is

�Q�=g0�2 �
�
RRT 0
0 RTR

�
;

or equivalently RRT . Among the 28 � 256 possible forms
for Q�, we found sets of parameters that lead to a level
crossing, and nontrivial behaviors in the mass spectrum.
Some of those nontrivial ones look the same as some of
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an be seen in the actual full spectrum in Fig. 2, while (c) and (d)
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TABLE I. Parameter sets used for our toy model to get each of
the spectra in Fig. 3.

b1 c1 b2 c2 b3 c3 b4 c4

Fig. 3(a) 0 1=4+ 0 1=4+ 1 0 0 0
Fig. 3(b) 0 0 1 1=4+ 1 1=4+ 0 1=4+
Fig. 3(c) 0 0 1 0 1 0 0 1=4+
Fig. 3(d) 0 1=4+ 1 0 1 0 0 1=4+
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those in Fig. 2, while there are others which do not look
like any of those in Fig. 2. For example see Fig. 3, where
Figs. 3(a) and 3(b) are the ones that we can see in the actual
spectrum in Fig. 2, while 3(c) and 3(d) are not. The sets of
parameters we used are given in Table I. Of course there
are ones which are seen in Fig. 2, but cannot be found in
our toy model. However, it is very likely that as we increase
the size of the matrix R of our toy model, we would be able
to identify those not-yet-seen behaviors in our toy model as
well.

Using this toy model, we can study wave function
dependence on the coupling g0. As the simplest example,
consider the case of the level crossing shown in Fig. 3(a).
In this case we can think of a bound state jm2i as a linear
combination of two different states,

jm2i � f�g0�j1i � h�g0�j2i;

where f�g0� and h�g0� are wave functions, which depend on
g0. j1i is a state of the first type of the four we considered
above and responsible for the constant behavior of the mass
spectrum and j2i is a state of the second type responsible
for the g04 behavior. In Fig. 3(a) the higher energy state
stays constant for small g0, where f�g0� � h�g0�, and goes
like g04 for large g0, where h�g0� � f�g0�. The opposite
behavior of the wave functions is true for the lower energy
state. That is, the lower energy state goes like g04 for small
g0, where h�g0� � f�g0�, and stays flat for large g0, with
f�g0� � h�g0�. This observation implies that for more gen-
eral cases a bound state is a linear combination of states of
the four types associated with g0-dependent wave func-
tions, and it is the nontrivial g0 dependence of the wave
functions that gives rise to such a rich, complicated spec-
trum in Fig. 2.

We expect that the structure of the mass spectrum as a
function of g0 will persist for the cyclic states and in fact we
have numerically confirmed the similar structure for them
as well.

Note that since the dominant structure of a bound state
changes as one changes g0, there is some sort of ‘‘transi-
tion’’ as one goes from weak coupling to strong coupling. It
is of great interest to see if the winding number dependence
of the mass spectrum varies due to this transition. We are
not able to identify any states in strong coupling regime
because of the rich and complicated behavior of the spec-
trum although we are able to find some states in the
intermediate region where g0 � 1.
065013
We discuss the mass spectrum of the cyclic states as a
function of the winding number and the resolution with
g0 � 1 in more detail in the next section. The discussion of
the mass spectrum of the noncyclic states is in the follow-
ing section.

V. NUMERICAL RESULTS FOR THE CYCLIC
�WI� 0� BOUND STATES

In principle we can study the case where both of the
winding numbers are nonzero and the case where one of
them equals zero. However, the size of the Fock basis is
much larger for the former case than for the latter. This
means that we can reach a higher resolution for the latter
case. Thus, in order to get enough data to analyze for our
first attempt we restrict ourselves to the case where we set
one of the winding numbers to zero. Since we have two Z2

symmetries, �W1; W2� $ �W2; W1� and �W1;W2� $
��W1;�W2�, we can setW2 � 0 without loss of generality
and consider only positive W1 when studying the winding
number dependence of the bound states.

As guaranteed by the superalgebra, we find numerically
a degeneracy in the mass spectrum between massive fer-
mionic and bosonic states. However, this supersymmetry is
broken for the massless states since we do not preserve the
entire set of super symmetry algebra. In this section we
only consider the massive bound states, and therefore it
suffices to consider only bosonic states.

In Figs. 4(a)–4(d) we give plots of m2 with g0 � 1 for
four low-energy bound states as a function of 1=�K �W1�
and extrapolate m2

1 in the �K �W1� ! 1 limit using a
linear fit b� c=�K �W1� for (a) through (c) and a qua-
dratic fit b� c=�K �W1� � d=�K �W1�

2 for (d), where
b; c; d are fitting parameters. We identify a bound state
with different K’s from the properties of the bound state,
such as the averaged number of partons of a particular type,
etc. We present here four bound states we could easily
identify. The dominate Fock component of the bound state
in (a) and (c) has the form b1ya1y � � � a1yb1y. For the
bound state in (b) the dominant component is of the form
b1ya1y � � � a1yb2y. The bound state in (d) has the dominant
component of d2ya1y � � � a1ya2y.

In Fig. 5 we present m2
1, obtained in Figs. 4(a)–4(d), as

a function of W1. We show a fit to the data of the form b�
cW2

1 � d=W2
1 in Fig. 5(a) and of the form b� c=W1 �

d=W2
1 in Fig. 5(b). As can be seen, it is difficult to say

which fit is better from the graphs. The fit of the form b�
cW2

1 � d=W2
1 appears a bit better.

The use of a fit of the form b� cW2
1 � d=W2

1 has a
string theory justification. In the string theory the energy of
a string confined in one dimension with a period L is given
by the sum of its momentum mode and its winding mode,
so that E � p2+=L� qTL, where p; q are integers and T
is the string tension. Now if we consider our cyclic bound
states as a string confined in the x1-direction with L �
aW1, then it follows that m2 � b� cW2

1 � d=W2
1 .
-11
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FIG. 4. Plots of m2 in units of g02=+a2 of low-energy cyclic bound states versus 1=�K �W1� for W1 � 1 (circle), 2 (square), 3
(diamond), 4 (triangle up), 5 (triangle left). Also shown are a linear fit for (a), (b), and (c) and a quadratic fit for (d). The coupling
g0 	 g

������
Nc

p
� 1.
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We should, however, remind the reader that we used a fit
of the form b� c=W � d=W2 in Ref. [13]. There we
argued that the operator has the form Q� � b� ck? in
2�1 continuous theory and m2 � �Q��2 � b� c=W �
d=W2 with k? � 1=L� 1=W. This behavior is consistent
with the unique properties of SYM theories that we have
seen in previous SDLCQ calculations [25]. We have seen
that as we increase K we uncover longer bound states
that have lower masses. Supersymmetric theories like to
have light bound states with long strings of gluons. We call
these bound states with long strings of gluons, stringy
1 2 3 4 5
W1

0

1

2

3

4

5

6

m
2

(a)

FIG. 5. Plots of K ! 1 limit of m2 in units of g02=+a2 of low-ener
b� cW2

1 � d=W2
1 in (a) and of the form b� c=W1 � d=W2

1 in (b). T
4(b), diamonds in 4(c), and triangles in 4(d).
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bound states. In 3�1 dimensions with two transverse
lattices we have seen the stringy bound states as well,
and we have Q� � b� ck1 � dk2, leading to the fit of
the form b� c=W1 � d=W2

1 in Fig. 5(b) for k1 � 1=L�
1=W1 and k2 � 0. Up to the numerical resolution we can
correctly reach, we cannot say for sure which form of m2

describes N � �2; 2� SYM in 3�1 dimensions. It appears
that the form b� cW2

1 � d=W2
1 is preferable, suggesting

that the cyclic bound states in 3�1 dimensions are more
like a string with the energy of the form E � p2+=L�
qTL.
1 2 3 4 5
W1

0

1

2

3

4

5
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2

(b)

gy cyclic bound states versus W1 with a fit to the data of the form
he circles correspond to the bound state in Fig. 4(a), squares in
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VI. NUMERICAL RESULTS FOR THE NONCYCLIC
BOUND STATES �WI� 0�

Let us now discuss numerical results for the noncyclic
bound states. Again we follow bound states that we can
easily identify from the properties of the bound states. In
Fig. 6 we show m2 of three low-energy states in units of
g02=+a2 as a function of 1=K with g0 	 g

������
Nc

p
� 1. The

state A denoted by circles is composed primarily of two
bosons and two fermions, b1yd1ya1yb1y. The states B and
C denoted by squares and diamonds are composed primar-
ily of two fermions, b1yb2y and b1yb1y, respectively. We
show a linear fit to the data and see good conversion as
K ! 1 for all the three states. The extrapolated values for
m2 in the limit ofK ! 1 are given in Table II. We also find
the stringy states for the noncyclic states.

Recall that we found in Sec. IV that a bound state would
be a linear combination of states of the four types we
enumerated in Sec. IV. Hence, it is instructive to see if
we can identify the three bound states with any of the four
types. For K � 4 we can identify all the three bound states
with those that are killed by Q13 and whose mass in units
of g02=+a2 are independent of g0. However, asK increases,
we are not able to classify them into any particular type of
the four. This is because as we increase K the number of
states becomes very large and the mass spectrum becomes
dense. It is likely that these states mix with other nearby
states with the same coupling dependence, giving rise to
small changes in m2 but still the same general coupling
dependence. At this time however we are not able to
TABLE II. Extrapolated values for m2 in units of g02=+a2 as
K ! 1 for States A, B, and C in Fig. 6 represented by its
dominant Fock state.

b1yd1ya1yb1y b1yb2y b1yb1y

m2
1 1.764 4.744 8.204
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resolve the spectrum in an enough detail to study these
effects.
VII. DISCUSSION

We have presented the standard formulation of N � 1
SYM in 3�1 dimensions with a two spatial dimensional
transverse lattice. Then we gave the SDLCQ formulation
of the theory. We found that the standard formulation
suffers from a fermion species doubling problem, while
SDLCQ formulation does not. In the frame where the
transverse momenta equal to zero, N � 1 SUSY in 3�
1 dimensions is equivalent to N � 2 SUSY in 1�1 di-
mensions also known as N � �2; 2� SUSY. We were able
to present Q�

� which has the correct continuum form and
yields by the SUSY algebra a discrete form of P�, where
� � 1; 2. This P� then coincides with its continuum form
in the continuum limit. Since Q�

1 and Q�
2 do not commute

with each other in our formulation, we are to use only one
of them to solve the mass eigenvalue problem, preserving
one exact SUSY.

We found that this Q�
� consists of terms which are

proportional to g0 	 g
������
Nc

p
and terms which go like g03.

This led us to investigate in some detail the g0 dependence
of the mass spectrum. From a simple toy model we con-
cluded that the rich, complicated behavior of the mass
spectrum with varying g0 is due to some nontrivial cou-
pling dependence of the wave functions. This is also re-
sponsible for a transition in the structure of a bound state
when going from weak coupling to strong coupling.
Because the dominant structure of a bound state changes
with changing g0.

We classified the bound states into two types, the cyclic
and noncyclic as we did in Ref. [13]. The cyclic bound
states are those whose color flux goes all the way around in
one or two of the transverse directions. The bound states
whose color flux is localized and does not wind around are
referred to as the noncyclic bound states. For each type of
the bound states, we were able to identify some bound
states in the mass spectrum for g0 � 1 and found the K !
1 limit of m2.

For the cyclic bound states we were able to presentm2 as
a function of the winding number WI in the xI direction
with I � 1; 2. We found two very good fits to the data. The
first fit b� cW2

I � d=W2
I is motivated by the string theory,

where the energy has the form E � p2+=L� qTL, where
p; q are some integers, T is the string tension, and L is the
period of the transverse lattice. The other fit b� c=WI �
d=W2

I is motivated by the operator structure of Q�
� . It

appeared that b� cW2
I � d=W2

I is preferable,
For the noncyclic states as 1=K ! 0 we saw good linear

conversion of m2 of the low-energy bound states that we
could identify and gave the extrapolated values for m2. We
could identify for K � 4 the bound states with a state
whosem2 in units of g02=+a2 are independent of g0 though
-13
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we were not able to do so for higher K’s because of the
dense, and complicated spectrum.

In summary, we were able to present a formulation of
SYM in 3�1 dimensions with one exact SUSY on a two
dimensional transverse lattice and find the mass spectrum
nonperturbatively. There remain, however, a number of
important questions to answer. First and foremost it is of
great importance to determine the form of m2 numerically
to better precision. It is interesting to see what the winding
number dependence of m2 is if both of the winding num-
bers are nonzero. We need to invent a method to resolve the
dense spectrum at strong couplings. This will help us see if
there is any transition in the form of m2 as one goes from
weak coupling to strong coupling. However, perhaps most
importantly, as discussed in Appendix A we need to know
to what extent we have resolved the problem caused by the
linearization of the link variables that we needed to quan-
tize the fields. Knowing this tells us how reliable our
numerical results are. Because one of our major simplifi-
cations in numerical calculation in the largeNc limit comes
about from the reduction of the transverse degrees of free-
dom whose justification relies upon the presence of the
quantized fields and the vacuum. Restoration of SUSY for
massive bound states, which has been broken by the linea-
rization gives us some confidence that our formulation
indeed provides some sensible results. However, we would
still have to clarify the issue to be more certain and con-
fident. To this end, we need to compare our numerical
results with some well-established theoretical predictions
and with other numerical results obtained from the usual
lattice calculation. Hence, it is of importance to apply our
formulation to some other supersymmetric theories in
higher than 1�1 dimensions, for instance, Wess-Zumino
model, lattice sigma model, and SQED. It appears that the
application is relatively straightforward. From a more
practical point of view, a next question to ask is what
happens if one includes scalars and their superpartners in
theory. We did not consider this case in this paper simply
because this was the first attempt to formulate SYM in 3�
1 dimensions with one exact SUSY on a two dimensional
transverse lattice and, thus, we wanted to consider the
simples possible case. However, it is of great interest to
consider the question in the future. The authors believe that
when we are able to answer all those questions, we will
also be able to test the predictions made by Armoni,
Shifman, and Veneziano [3,4].
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APPENDIX A: EGUCHI-KAWAI REDUCTION

For our numerical calculation we have set Nsites � 1, in
other words, we have dropped the site indices. This reduc-
065013
tion of the transverse degrees of freedom has brought a
great amount of simplification in our calculation and needs
some detailed justification. Since it is only the super-
charges that we need to do our calculation, if the super-
charges do not depend on the site indices in the large Nc
limit, neither does any quantity that can be computed from
Q�
� , for instance m2 for our case. Therefore, in order to

justify the reduction of the degrees of freedom for our
purposes, it suffices to show the independence of Q�

� of
the site indices in the large Nc limit. In this appendix, in
particular, we will show that in the large Nc limit the
leading order terms of the supercharges Q�

� with keeping
all the site indices are the same as those with setting
Nsites � 1. We should note that these sorts of arguments
about the justification of the reduction on a transverse
lattice have already been given in literature, for instance
see Refs. [16,23,24] and our arguments below closely
parallel those in the Refs. [16,24].

In what follows we only considerQ�
1 , however the same

arguments apply equally well toQ�
2 . For definiteness let us

first consider a Fock state denoted byX
n

tr
. . . d1yn �k1�a
1y
n �k2�b

1y
n �k3�a

1y
n�i1

�k4� . . .�j0i;

where we have written k� 	 k, n 	 �i; j� is the transverse
lattice site, i1 is the vector of length a pointing the x1

direction, a is the lattice spacing, and the dots represent
some creation operators. When we act on this state with
Q�

1 , we get, for example, from one of the terms in Q�
1 , say

b2yd1a1 	
P
ntr
b

2y
n �p1 � p2�d1n�p1�a1n�p2�� on it

Nc
X
n

tr
. . . b2yn �k1 � k2�b
1y
n �k3�a

1y
n�i1

�k4� . . .�j0i:

If we set Nsites � 1, then the Fock state now becomes

tr 
. . . d1y�k1�a
1y�k2�b

1y�k3�a
1y�k4� . . .�j0i;

and upon the action of Q�
1 we get from b2yd1a1 	

tr
b2y�p1 � p2�d
1�p1�a

1�p2�� on it

Nctr
. . . b2y�k1 � k2�b1y�k3�a1y�k4� . . .�j0i; (20)

and one more term

tr 
. . .b2y�k1 � k4� . . .�tr
a1y�k2�b1y�k3��j0i: (21)

Notice that the extra term Eq. (21) we get by setting
Nsites � 1 is down by 1=Nc compared to the leading order
term Eq. (20) and thus we can ignore it in the large Nc
limit. Of course, in the above example, we could and would
have gotten many more terms depending on what we have
in those dots inside the trace of the Fock state we consid-
ered. However, it is easy to see that our conclusion remains
the same; all the extra terms we get by having only one site
are down by 1=Nc or more powers of 1=Nc. This all comes
down to the fact that we can have only single-traced states
in the large Nc limit. Therefore, we find that the leading
order terms of Q�

� are the same whether we keep track of
-14
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the site indices or not. Although this proof is for finite K,
we suspect that the same result would persist at infinite K.

The way to justify the reduction here should be con-
trasted to the way exploited by Eguchi and Kawai [18].
Eguchi and Kawai showed that in the large Nc limit we can
work with only one lattice site in each of the space-time
directions in Euclidean space. However, the proof was
based on, among others, the assumption that U�1�d sym-
metry is not spontaneously broken, where d is the number
of the space-time dimensions. This assumption was found
to be wrong for d > 2 at weak couplings by the authors of
Ref. [19]. To resolve this problem, there have been many
models proposed, for instance quenching [19] and twisted
[20] lattice formulations. Here in our formulation, how-
ever, we believe that we do not have to introduce any of the
modified lattice formulation since the way we justify the
reduction is quite different the way Eguchi and Kawai do.
Our proof stands on its own feet regardless of us maintain-
ing the U�1�d symmetry or not and, therefore, would not
suffer from the problem associated with the naive Eguchi-
Kawai reduction as we go from weak to strong couplings.

A question, however, remains. That is the question of
how well we have managed to quantize the fields since all
our arguments above rely on the fact that we have the
quantized fields and true vacuum. Put in another way,
how good the reduction procedure is depends on how
good our quantization procedure is. Recall that to quantize,
we had to ‘‘linearize’’ the unitary link variables, which
leads to the breakdown of SUSY. The authors of
Refs. [16,23,24] make use of the ‘‘color-dielectric’’ for-
mulation to resolve the problem for nonsupersymmetric
theories. Although this formulation resolves the problem
completely, it prevents one from going to small lattice
spacings. In our formulation we do not have that constraint
on the lattice spacing. However, the price we pay is that we
resolve the problem of the linearization partially, not com-
pletely. Thus, it is of great importance for one to see to
what extent we have resolved the problem and, if possible
and necessary, to find a way to get around it completely. Up
to this point we are not able to answer this question, but this
is one of the crucial steps we should take towards a more
sensible supersymmetric model on a lattice within our
formulation.
APPENDIX B: N � 1 SUPERALGEBRA IN
MAJORANA REPRESENTATION

In this appendix we give the superalgebra in Majorana
representation in D� 1 dimensional light-cone coordi-
nates where D � 1; 2; 3.

In Majorana representation Majorana spinors have real
component fields, and can be written as

�M �

�
;L
;R

�
;

where ;L, ;R are left-moving, right-moving spinors with
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real components. This implies that the supercharge Q is
also a Majorana spinor with real components of the form

Q �
Z
dDxj� �

�
QL

QR

�
	

�
Q�

Q�

�
;

where the integration is taken over the D spatial dimen-
sions, j� is the supercurrent, which is a Majorana spinor.

In terms of the Majorana supercharge, the superalgebra
is given by

fQ; �Qg � 2��P�; (22)

where �Q 	 Qy�0 in any representation, and thus �Q �
QT�0 in Majorana representation.

1. D� 1

For 1�1 dimensional case, we have �0 � #2 and �1 �
i#1, so that

�� 	
�0 � �1���

2
p � i

0 0���
2

p
0

� �
;

�� 	
�0 � �1���

2
p � i 0 �

���
2

p

0 0

 !

and �Q � i�Q�;�Q��. Thus, Eq. (22) reads

fQ; �Qg � 2��P� � i 0 �2
���
2

p
P�

2
���
2

p
P� 0

 !

� i 0 �2
���
2

p
P�

2
���
2

p
P� 0

 !
;

or

fQ�; Q�g � 2
���
2

p
P�; fQ�; Q�g � 0:
2. D� 2

In this case �0 � #2, �1 � i#1, and �2 � �? � i#3.
Therefore,

fQ; �Qg � 2��P� � i 2P? �2
���
2

p
P�

2
���
2

p
P� �2P?

 !

� i �2P? �2
���
2

p
P�

2
���
2

p
P� 2P?

 !
;

or

fQ�; Q�g � 2
���
2

p
P�; fQ�; Q�g � �2P?:
3. D� 3

In 3�1 dimensions Majorana spinors have four compo-
nents and thus the supercharge can be written as
-15
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Q �
Q�

Q�

� �
	

Q�
1

Q�
2

Q�
1

Q�
2

0BBB@
1CCCA;

�Q � QT�0 � i�Q�
2 ;�Q

�
1 ; Q

�
2 ;�Q

�
1 �:

Gamma matrices are 4� 4 matrices given by

�0 	
0 #2

#2 0

� �
; �1 	 i

#1 0
0 #1

� �
;

�2 	 i
#3 0
0 #3

� �
; �3 	

0 �#2

#2 0

� �
;

�� 	
�0 � �3���

2
p �

0 0���
2

p
#2 0

� �
;

�� 	
�0 � �3���

2
p �

0
���
2

p
#2

0 0

 !
:

Then Eq. (22) yields
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fQ; �Qg � 2��P�

� 2
i#1P1 � i#3P2

���
2

p
#2P����

2
p
#2P� i#1P1 � i#3P2

 !

� 2i

�P2 �P1 0 �
���
2

p
P�

�P1 P2
���
2

p
P� 0

0 �
���
2

p
P� �P2 �P1���

2
p
P� 0 �P1 P2

0BBB@
1CCCA:

Hence, we find

fQ�
� ;Q�

' g � 2
���
2

p
P���';

fQ�
1 ; Q

�
1 g � �fQ�

2 ; Q
�
2 g � 2P1;

fQ�
1 ; Q

�
2 g � fQ�

2 ; Q
�
1 g � �2P2;

where �;' � 1; 2. Note that if P1 � P2 � 0, then this
algebra coincides with the one for N � 2 SUSY in 1�1
dimensions also known as N � �2; 2� SUSY.
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