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We study the class of noncommutative theories in d dimensions whose spatial coordinates �xi�
d
i�1 can

be obtained by performing a smooth change of variables on �yi�
d
i�1, the coordinates of a standard

noncommutative theory, which satisfy the relation �yi; yj� � i�ij, with a constant �ij tensor. The xi
variables verify a commutation relation which is, in general, space dependent. We study the main
properties of this special kind of noncommutative theory and show explicitly that, in two dimensions, any
theory with a space-dependent commutation relation can be mapped to another where that �ij is constant.
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I. INTRODUCTION

The usual starting point for the construction of non-
commutative quantum field theories [1–3] is to assume
the existence of nontrivial commutation relations between
the spatial coordinates xi, i � 1; . . . ; d. Those relations can
be summarized by an expression with the general form

�xi; xj�? � i�ij�x�; (1)

where �ij�x� is an antisymmetric real matrix, which natu-
rally encodes the noncommutative structure of the space
considered.

The usual situation corresponds to a constant �ij, but the
space-dependent case has also found some important ap-
plications (see, for example, [4–6]). Contrary to what
happens when �ij is a constant tensor, associativity of
the ? product requires some nontrivial conditions (which
have the form of differential equations for �ij) to be true
[7]. Even when those conditions are met, the construction
of quantum field theories on the resulting algebras can be
rather difficult. Indeed, the ? product, as well as the
derivatives and integrals, essential in any quantum field
theory application, have rather cumbersome expressions.

Closely related to the study of space-dependent ? com-
mutators is the consideration of general changes of varia-
bles in a noncommutative space which is defined by the
fundamental commutation relation

�yi; yj�? � i�ij;

with �ij � constant. The interest in considering those
changes of variables is manifold. On the one hand, it is
believed that quantum gravity may be at the origin of
noncommutativity [8,9]. Therefore, one would expect
that general coordinate transformations should play a role
in rendering some curved-space effects more explicit.

Besides, and this is the focus of our interest in this
article, it may be possible to use a change of variables to
rewrite some particular space-dependent commutation re-
lations as a constant-� relation but in terms of new varia-
bles. This program was developed in [10], where some
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particular examples were developed and analyzed. In those
examples, a simple study of the resulting noncommutative
theory was possible since, for example, a closed expression
for the ? product can be derived in terms of the standard
Moyal product. Moreover, derivatives and integrals can
also be constructed, based on the existence of ‘‘canonical‘‘
coordinates, namely, those that have a constant commuta-
tor. A similar approach has been applied in [11] to
	-Minkowski noncommutative spacetime.

In this paper we consider the same problem in more
generality, studying a space-dependent �ij, obtained by
performing a general change of coordinates (inspired by
[12]) in a theory with a constant �ij. In Sec. II, we begin by
analyzing these coordinate transformations in a planar
theory, computing the resulting ��x�. We also introduce
an integral and derivatives, and use those constructs to
write an explicit noncommutative field theory action,
some features of which shall be interpreted as curved-space
effects. Next, in Sec. III, we apply the results of the
previous section to some examples in d � 2. We also
present a generalization of the result of [10] to higher-
dimensional spaces in Sec. IV. In Sec. V we apply the tools
of Secs. II and III to show that a general space-dependent
��x� may be reduced to a constant � by a suitable change
of variables, which we construct explicitly. Finally, in
Sec. VI we present our conclusions.
II. PLANAR THEORIES (d� 2)

To begin with, we introduce two noncommutative spa-
tial coordinates in d � 2, �y1; y2�, that verify the commu-
tation relation:

�yi; yj�? � i�ij; (2)

where �ij is a constant. Since we are working in two
dimensions, we may always write

�ij � �"ij (3)

where � is a parameter with the dimensions of an area.
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Furthermore, the time coordinate is assumed to commute
with y1 and y2.

We then introduce two new coordinates, �x1; x2�, by
means of a nonsingular, continuous change of variables.
Following [12] we may write it without any loss of general-
ity as follows:

xi � yi � �ij ~Aj�y�; i � 1; 2: (4)

The parametrization above is well suited for the analysis of
coordinate transformations that are continuous deforma-
tions of the identity. Indeed, the field ~Aj has the role of
determining the nontrivial content of those transforma-
tions. Besides, the expression for the change of variables
in terms of a vector field ~Aj prepares the road for the
introduction of some gauge theory concepts [12] which
find a natural place in this context.

At this point we comment on the notation: a tilde on top
of a function has been used to denote its functional depen-
dence in terms of y variables. This will be useful later on,
when we shall have to distinguish that from the corre-
sponding expression of the same object as a function of x
(where we shall omit the tilde), i.e., Aj�x� � ~Aj�y�x��.

For the transformation (4) to be nonsingular, a necessary
condition is that the Jacobian ~J�y� be different from zero:

~J�y� �
��������@�x1; x2�@�y1; y2�

��������� 0: (5)

We can easily see that in two dimensions ~J may be written
more explicitly as

~J�y� � 1�
1

2
�"ij ~fij�y� (6)

with

~f ij � @i ~Aj�y� � @j ~Ai�y� � �f ~Ai; ~Ajg: (7)

In the previous equation, the curly bracket is defined by

ff; gg � "ij
@f
@yi

@g
@yj

: (8)

We are interested in studying the effect of a general
nonsingular change of variables (4) on the commutation
relation (2). Namely, we want to find the form of the
commutation relation satisfied by the x variables, which
of course will necessarily fall under the general form

�xi; xj�? � i�ij�x�; (9)

where �ij�x� is determined by (4). In what follows, we will
find the relation between �ij�x� and (4) for a general
transformation.

A quite straightforward calculation allows one to find
the commutation relation for the ‘‘new‘‘ variables (xi),
although in terms of the old ones (yi):

�xi; xj�? � i ~�ij�y�; (10)
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where

~� ij�y� � �ij �
1

2
��ik�jl � �il�jk� ~Fkl�y�; (11)

with

~F ij�y� �
@ ~Aj
@yi

�
@ ~Ai
@yj

� i� ~Ai; ~Aj�?: (12)

Taking advantage of the fact that d � 2, the previous
expressions (derived in [12] and valid for any d) can be
further simplified. Indeed, we may write

~� ij�y� � ~��y�"ij (13)

where

~��y� � ��1� � ~F�y�� (14)

with

~F�y� �
1

2
"ij ~Fij�y�

�
@ ~A2

@y1
�y� �

@ ~A1

@y2
�y� � i� ~A1�y�; ~A2�y��?: (15)

So far, we have dealt with an explicit expression for
~�ij�y�. Let us see now how to write, at least formally, the
right-hand side (rhs) in (10) as a function of x. We may use
now the coordinate transformation that is inverse to (4), to
write the commutation relations for the xi coordinates as a
function of the same variables.

Using the chain rule in (15),

~F�y� � "ij
@Ai
@xk

@xk
@yj

� i�A1�x�; A2�x��?: (16)

Here, �A1�x�; A2�x��? stands for the star product on xj space
(which we construct explicitly in Sec. II B) induced by the
change of variables (4) between the functions ~Aj�y�x��.

By introducing (4) in this expression each time a deriva-
tive @x=@y appears, we obtain a series expansion in powers
of �. Equivalently, the sum of that series can be found by
deriving xi with respect to yk in (4) and then applying the
chain rule, to obtain�

�il � �ij
@Aj
@xl

�
@xl
@yk

� �ik: (17)

For a well-defined change of variables, this expression can
be inverted to yield

@xi
@yl

� ��1�x�
�
�il � �ij

@Al
@xj

�
; (18)

where

��x� � �1� �@1A2��1� �@2A1� � �2@1A1@2A2 (19)

is the determinant of �il � �ij�@Aj=@xl�.
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Then, a straightforward calculation leads to

��x� � ~��y�x��

� �� �2"ij

�
1

2
Fij�x� � ���1 � 1�

@Aj
@xi

�x�

� ���1�fAi�x�; Aj�x�g
�
; (20)

which contains all the information about the effect of the
change of variables on the commutation relation. Here,

Fij�x� �
@Aj
@xi

�x� �
@Ai
@xj

�x� � i�Ai�x�; Aj�x��?:

Expression (20) is very convenient when dealing with
general, formal properties of the noncommutative theory
in the new variables. However, its application to the deri-
vation of the transformation between old and new variables
that leads to a given ��x� can be quite involved. Indeed, the
commutator �x1; x2�? depends on Fij, which in turn de-
pends on ? through �A1; A2�?. This leads to a highly non-
linear problem, whose solution we shall study for some
particular cases. It is easy to get the leading term of (20) in
an expansion in powers of �:

��x� � ��1� ��@1A2 � @2A1� �O��2��; (21)

which shows that the leading order is determined by the
first term (linear in �) of the Jacobian.

In the next subsection we consider the use of a change of
variables in d � 2 under the light of deformation
quantization.

Then, in Sec. II B, we derive some consequences and
applications of (14) and (20), which summarize the effect
of a coordinate transformation in d � 2, to the construction
of noncommutative quantum field theories.

A. Gauge transformations

In deformation quantization, one is interested in con-
structing ? products only up to gauge equivalence, with
gauge transformations defined as [7]

f�y� ! D�f�y� �
�
1�

X
m�1

�mDm

�
f�y�; (22)

withDm denoting differential operators. Under those trans-
formations, the star product transforms as follows:

f ?0 g � D�D�1f ? D�1g�: (23)

We will now show that these abstract gauge transforma-
tions do indeed have an interpretation in the context of the
change of variables (4).

Let us concentrate in the set of infinitesimal transforma-
tions that leave invariant the Poisson structure (2). They
can be written as

y0i � yi � �ij ~�j�y� (24)
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with ~�j infinitesimal and �ij � �"ij. Expanding around yi

f�yi � �ij ~�j� � f�y� � �ij ~�j�y�@if�y� � . . . ; (25)

which is a gauge transformation like (22). We have already
calculated the effect of a transformation like (24) on �ij;
we simply use Eqs. (4) and (11), identifying ~Aj � ~�j. It is
clear that

~� ij�y� � �ij �O�~�2� , ~F � 0�O�~�2�:

In turn, this means that ~� is a pure gauge ~�j � @j ~��y�.
The set of infinitesimal gauge transformations [in the

sense of Kontsevich’s formula (22)], corresponds then to

y0i � yi � �ij
@ ~��y�
@yj

: (26)

These transformations were discussed in [12], from the
point of view of the mapping between fluids and non-
commutative theories; there, they are identified with the
diffeomorphisms preserving the fluid volume element.

As a simple calculation shows [12], the effect of (26) on
xj�y� is

�xj�y� � �i�xj�y�; ~��y��?; (27)

it corresponds to an adjoint field in the noncommutative
representation of U�1�?. From this, it follows that

� ~Aj�y� � @j ~��y� � i� ~Aj�y�; ~��y��? (28)

and consequently

� ~Fij�y� � �i� ~Fij�y�; ~��y��?: (29)

Therefore, the subgroup of Kontsevich’s transformations
preserving �ij are indeed gauge transformations with re-
spect to ~Aj.

From (14) and (29) it follows that ~�ij is not invariant
under (26), but rather

� ~�ij�y� � �i� ~�ij; ~��y��?; (30)

which is another representative in the class of gauge
equivalent products of ~�ij. This agrees with the expected
behavior of �:

~� ij�y
0� � ~�ij�y� � � ~�ij�y�: (31)

We are interested in reducing a noncommutative space
whose coordinates �xj� have a space-dependent ��x� to the
�-constant case in terms of new variables �yj�, with the
change of coordinates inverse to (4):

yi � xi � �ijAj�x�: (32)

Then the previous analysis reveals that, when this is pos-
sible, there exists an infinite set of coordinates yj with a
constant ? commutator, all related through (26). In other
words, (32) is defined up to transformations parametrized
-3
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by �:

yi!y0i�xi��ij

�
Aj�x����1�x�

�
�kj��jl

@Ak
@xl

�
@�
@xk

�x�
�
;

(33)

[where we used (18)]. For small �,

y0i � xi � �ij�Aj�x� � @j��x�� �O��2�; (34)

which means that A and its transformed by � are in the
same gauge orbit (in this limit, for commutative Abelian
gauge transformations).

B. Construction of the noncommutative field theory

We will now construct a field theory in the variables xj.
For this, we have to define integration and derivatives
(refer to [13] for a general operatorial approach) and we
have to find an explicit representation for the ? product in
the new variables xj.

The first element we consider is the integration measure
d� in the x variables: we realize that it can be simply
derived from the knowledge of the coordinate transforma-
tion and its Jacobian:

d� � d2y � d2xj��x�j; (35)

where we have assumed that the metric for the y coordi-
nates is Euclidean and we used the relation

yi � xi � �ijAj�x�: (36)

We note that (35) is consistent with the known formula for
the measure in general coordinates. Indeed, the metric
tensor in the new coordinates, gij�x�, is given by

gij�x� �
@yk
@xi

@yl
@xj

�kl; (37)

and a simple calculation shows that

g�x� � det�gij�x�� � ���x��2: (38)

Thus, the measure (35) is also identical to

d� � d2x
									
g�x�

q
; (39)

which is the usual expression for the volume element in
general coordinates. This shows that, indeed, there is a
connection between noncommutative and gravitational ef-
fects; refer to [10] for further discussion on this issue.

Next we proceed to construct derivatives. From (18),

Di �
@
@yi

�
@xj
@yi

@
@xj

� ��1�x�
�
�ij � �jl

@Ai
@xl

�
@
@xj

: (40)

To interpret here the effect of Aj�x�, we rewrite this ex-
pression as an inner derivation, with the aid of (36):

Di � i��1�"ijxj; �? � i�Ai�x�; �?: (41)

This equation automatically verifies the Leibnitz rule for ?
065012
and
R
d�Dif�x� � 08f [13]. Besides, we see that Aj

plays the role of a noncommutative connection.
Finally, we have to derive a representation for the com-

mutation relation

�x1; x2�? � i��x�: (42)

Note that, up to this point, we always started from the
canonical variables yi and arrived at the new ones xi with
the change of variables (4). However, in most of the
practical problems, the situation is inverse: we start from
a space-dependent relation like (42) and we would like to
find a change of variables in terms of which the commu-
tator corresponds to the case of constant �. What the
deduction in the previous subsection shows is that every
��x� of the form (20) can be reduced1 to a constant � with
the inverse change of variables of (4). Consequently, if we
choose the usual Moyal product for the canonical varia-
bles:

~f�y� ? ~g�y� � exp
�
i
2
�"jk

@
@yj

@
@y0k

�
~f�y�~g�y0�

��������y0�y
; (43)

for such a ��x�, a possible ? product is

f�x� ? g�x� � exp
�
i
2
���x; x0�

�
f�x�g�x0�

��������x0�x
; (44)

with

� � ��1�x���1�x0�"jk

�
�js � �"rs

@Aj
@xr

�x�
�

�
@
@xs

�
�km � �"nm

@Ak
@x0n

�x0�
�
@
@x0m

: (45)

Now we have all the elements to study the effect of the
coordinate transformation (4) on a noncommutative field
theory defined on �y1; y2�. For simplicity, we consider the
case of a scalar field:

S�~’� �
Z
d!dy1dy2

�
1

2
�@! ~’ ? @! ~’� @j ~’ ? @j ~’

�m2 ~’ ? ~’� � V?�~’�
�
: (46)

Since the Moyal product between the same two functions
may be written as the usual commutative product plus a
total-derivate term, (46) can be simplified to yield

S�~’� �
Z
d!dy1dy2

�
1

2
��@! ~’�

2 � �@j ~’�
2 �m2 ~’2�

� V?�~’�
�
: (47)

Then, using Eqs. (35), (40), and (47), the action in the
new variables is
-4
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S�’� �
Z
d!dx1dx2j��x�j2

�
�
1

2
’�x��@2! �D2

i

�m2�’�x� � V?�’�
�
; (48)

with the star product in V? computed from (44). It is worth
noting that D2

i induces a nondiagonal quadratic term in the
momentum variables and a derivative coupling:

D2
i � ��2�x���ij � �jl@lAi����in � �nk@kAi�@j@n

� �nk@j@kAi@n�: (49)

The propagator is directly obtained by performing the
change of variables in the simple expression for
h~’�y�~’�y0�i:

h’�x�’�x0�i �
1

4#

�
�t� t0�2 � f�xi � x0i� � �"ij�Aj�x�

� Aj�x0��g2
�
�1=2

: (50)
2There is another solution of the quadratic equation, which
yields a � with the opposite sign.
III. EXAMPLES

We now study some particular cases, which we define in
terms of special properties of the coordinate
transformation.

A. The case ~A2� 0

When one of the components of ~Aj vanishes (the second,
say) we of course have � ~A1; ~A2�? � 0 and the expression
for ~� becomes

~��y� � ��1� �~f�y�� (51)

with ~f�y� � ��@ ~A1=@y2�. Equivalently, in terms of xi we
have, from (20),

��x� � �
1

1� ��@A1=@x2�
: (52)

To find ��x�, we need the change of variables that yields
yi in terms of xj; this may be written as follows:� y1 � x1;

y2 � x2 � � ~A1�x1; y2�:
(53)

The second line shows that, except for some particular
cases, the explicit form of the inverse transformation for
y2 may not be found exactly. However, one can always use
an expansion in powers of �:

y2 �
X1
l�0

�ly
�l�
2 (54)

where the first terms are given by
065012
y�0�2 � x2; y�1�2 � ~A1�x1; x2�;

y�2�2 � ~A1�x1; x2�@2 ~A1�x1; x2�;

y�3�2 � ~A1�x1; x2��@2 ~A1�x1; x2��
2

�
1

2
~A2
1�x1; x2�@

2
2
~A1�x1; x2�; . . .

(55)

Using the previous expansion we may also write an expan-
sion for �@A1=@x2�, to be used in (52) to find ��x�:

@2A1 � @2 ~A1 � ���@2 ~A1�
2 � ~A1@22 ~A1�

� �2
�
1

2
~A2
1@

3
2
~A1 � 3 ~A1@2 ~A1@

2
2
~A1 � �@2 ~A1�

3

�

� �3
�
~A3
1

�
1

3!
@42 ~A1 � @2 ~A1@32 ~A1 � �@22 ~A1�

2

�

� ~A2
1

�
1

2
�@22 ~A1�

2 � 3@22 ~A1�@2 ~A1�
2

�

� 4 ~A1�@2 ~A1�
2@22 ~A1 � �@2 ~A1�

4

�
�O��4�; (56)

where all the field arguments and the derivatives corre-
spond to the x1 and x2 variables. For example, ~A1 �
~A1�x1; x2�. Finally, expanding in the expression for ��x�,
we see that

��x� � ��1� �@2 ~A1 � �2 ~A1@
2
2
~A1 . . .�: (57)

The power series expansion cannot be summed exactly,
except for some particular cases. We shall consider two of
them, showing how ��x� may be found explicitly by solv-
ing exactly for y as a function of x, or by a summation of
the previous series. The explicit examples we shall exhibit
stem from an ~A1 which is quadratic or linear in y2, respec-
tively. We shall, however, come back to the general case in
the conclusions.

The quadratic case corresponds to

~A 1�y1; y2� � %�y1��y2�2 � &�y1�y2 � '�y1�; (58)

and produces a ~��y� with the form

~��y� � ��1� ��2%�y1�y2 � &�y1���: (59)

On the other hand, we know that y1 � x1 and besides y2
may be obtained from

x2 � y2 � ��%�y1��y2�
2 � &�y1�y2 � '�y1��; (60)

which is a quadratic equation. Inserting its solution for y2,
and y1 � x1 into ~�, we see that2

��x1; x2� � �
																																																																																
�1� �&�x1��2 � 4�%�x1���'�x1� � x2�

q
;

(61)
-5
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a result which depends on both variables, x1 and x2, but can
still be described in terms of the canonical variables y1 and
y2. Therefore, if we start from a space-dependent ��x�,
which can be written in the form (61) for an adequate
choice of the functions %;&; ', then the change of varia-
bles (60) will reduce the problem to the �-constant case.

Note that ��x� may vanish on a region (a curve, in
general) of the plane. That region is defined by the equation

��x1; x2� � �1� �&�x1��
2 � 4�%�x1���'�x1� � x2� � 0

(62)

where � is the discriminant of the quadratic equation (60).
In [13] we have analyzed the physical effects of such a
behavior in the noncommutativity parameter.

We conclude our analysis of the ~A2 � 0 example by
mentioning the linear case: ~A1 � y2&�y1�, which leads to

@2A1 �
%�x1�

1� �&�x1�
(63)

and

��x� � ��1� �&�x1��; (64)

in agreement with [10] [after making the identification
t�x1� � 1� �&�x1�], and with the proper limit of the qua-
dratic case. We will consider, in the next section, a general-
ization of this result to d > 2.

It is worth noting that this kind of change of variables
can be extended to more general cases. Indeed, it is suffi-
cient to have the possibility of solving explicitly the equa-
tion for x2 in terms of yi, and that can be done for many
polynomial transformations. Besides, we note that any
polynomial transformation may always be equivalently
written as a polynomial (of the same degree) in the algebra,
when that is required. This follows from the repeated
application of the property

%�y1��y2�
n � %�y1� ? �y2�

n �
Xn
l�1

n
l

� ��
i
�
2

�
l
%�l��y1�

� �y2�n�l; (65)

valid for all n 2 N. The resulting ‘‘? polynomial’’ shall be
real, since it should be equivalent to a real function (the
polynomial which only involves commutative products).

B. The case "ij@i
~Aj� 0

We shall assume here that ~Aj verifies

"ij@i ~Aj�y� � 0 (66)

for all the points in the plane, except for the origin yi � 0.
We have in mind an Abelian vortexlike configuration for
the vector field ~Aj; then, for the change of variables we
shall assume the domain of definition for the y variables to
be contained in R2 � f�0; 0�g. We can write locally the
gauge field as the gradient of a function ~’, namely,
065012
~A i � @i ~’�y�; (67)

where ~’, to have a vortex configuration, has to be a multi-
valued function. The function ~��y� will be given by the
expression

~��y� � ��1� i�� ~A1�y�; ~A2�y��?�: (68)

Since the vortex is located at the origin, we fix the ~’
function to be proportional to the polar angle:

~’�y� �
q
2#

arctan
�
y2
y1

�
; (69)

where q 2 Z is the ‘‘charge‘‘ (i.e., vorticity) of the
configuration.

Let us now consider the equations for the change of
variables under the previous assumptions

� x1 � y1 � � @ ~’@y2 �y�;

x2 � y2 � � @ ~’@y1 �y�;
(70)

or, by taking (69) into account,

� x1 � y1 �
q�
2#

y1
�y1�2��y2�2

;

x2 � y2 �
q�
2#

y2
�y1�2��y2�2

:
(71)

These can be more easily represented (and inverted) by
introducing polar coordinates:

x1 � R cos�; x2 � R sin�;

y1 � r cos%; y2 � r sin%;
(72)

since (71) yields

� � % �0 � %< 2#�; R � r�
q�
2#
r�1: (73)

Regarding the range of the variables r and R, we can
distinguish two different situations, depending on the
sign of the product q�. If q� > 0, then from (73), we see
that R � 0 requires the condition r �

																		
�q�=2#�

p
to be

satisfied:

q� > 0 )

							
q�
2#

s
� r <1; 0 � R<1: (74)

An identical condition is obtained for r when q� � 0, in
order to have a one-to-one transformation, i.e., to satisfy
dR
dr � 0, 8r:

q� < 0 )

							
q�
2#

s
� r <1;

									
2q�
#

s
� R<1: (75)
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The inverse transformation becomes, in both cases,

r �

0@R�

																				
R2 �

2q�
#

s 1A (76)

and, of course, % � �.
Let us consider now the expression for ~� for the ex-

ample at hand. From (68), we see that

~��y� � �
�
1� i

q2�

�2#�2

�
y2

�y1�2 � �y2�2
;

y1
�y1�2 � �y2�2

�
?

�
:

(77)

The leading term on the rhs is determined by the Poisson
bracket of the corresponding elements. This yields, for
small �,

~��y� � �
�
1�

1

�2#�2
q2�2

��y1�2 � �y2�2�2
�O��4�

�
; (78)

or, by using (76),

��x� � �
�
1�

1

24�2#�2
q2�2

��x1�
2 � �x2�

2�2
�O��4�

�
: (79)
IV. A HIGHER-DIMENSIONAL EXAMPLE

We will now deal with d > 2, showing first some of the
general features that survive from the d � 2 case, and then
considering an example.

Our starting point is the formula for ~�ij�y� in d dimen-
sions:

~� ij�y� � �ij �
1

2
��ik�jl � �il�jk� ~Fkl�y�: (80)

In general, all the properties described in Sec. II are valid,
except those relying on the explicit form �ij � �"ij. In
particular, the construction of the field theory in d dimen-
sions follows the same steps as in Sec. II B.

As an example, we consider here the natural general-
ization to d > 2 of the case considered at the end of
Sec. III A. The condition we impose on the gauge field
configuration is now

~A i�y� � 0; 8i � 2; . . . ; d; ~A1�y� �
Xd
j�2

yj%j�y1�:

(81)

This leads to an ~Fij tensor whose only nonvanishing com-
ponents are

~F k1 � � ~F1k � %k�y1�: (82)

Since, for the gauge field configuration defined above y1 �
x1, we see that the answer for �ij�x�, the commutator
between xi and xj, is
065012
�ij�x� � �ij � ��ik�j1 � �i1�jk�%k�x1�; (83)

which is a function of x1 only.
The measure for integration over the x variables can also

be obtained explicitly, in terms of the corresponding
Jacobian:

d� � ddy � ddx
@�y1; . . . ; yd�
@�x1; . . . ; xd�

; (84)

where

@�y1; . . . ; yd�
@�x1; . . . ; xd�

�
1

j1� �1i%i�x1�j
; (85)

as a little algebra easily shows.
V. REDUCTION OF THE GENERAL CASE TO
CANONICAL VARIABLES

In the previous sections we considered a noncommuta-
tive theory with canonical Moyal variables �y1; y2�? � i�,
and we studied the effect of a general change of variables
yi ! xi of the form (4). Now we have the necessary tools to
address the inverse problem, namely, mapping a noncom-
mutative theory with the general space-dependent parame-
ter ��x� to a new theory with constant �.

In the general case, the noncommutative space is a
deformation of the classical Poisson structure:

fx1; x2g � ��x� ! �x1; x2�?K � i��x�

with Kontsevich’s star product [7] over C1�R2� functions:

f ?K g � fg� i
�

2
.ij@if@jg�

�2

8
.ij.kl@i@kf@j@lg

�
i
12

�@j�.ij.kl�@i@kf@lg� @kf@i@lg� � . . . :

(86)

This satisfies the defining axioms of a star product and thus
gives a well-defined noncommutative space [14].

We have to construct an explicit map xi ! yi such that
the star product ?K, or more generally, a gauge equivalent
product [see Eq. (22)] denoted simply by ‘‘?,’’ gives
�y1; y2�? � i�, with � a constant. From the approach de-
scribed in Sec. II, it follows that this is equivalent to finding
a solution ~Aj to

��yi � �ij ~Aj�y�� � ��1� � ~F�y��; (87)

obtained from Eqs. (4) and (14).
Since ~F contains the term � ~A1; ~A2�?, this is in fact an

infinite-order nonlinear differential equation. Therefore,
we do not expect to get a conclusive answer from this
approach. However, as we learned from Sec. III A, a pos-
sible way to simplify this is to use the ansatz ~A2 � 0. In this
case, (87) becomes
-7
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@x2
@y2

�y1; y2� � ��1��y1; x2�: (88)

This should be regarded as a nonlinear first order differen-
tial equation for x2 as a function of y2, with y1 playing the
role of a parameter (no derivatives with respect to y1
appear in the equation). Its solution may be found (for-
mally) by one quadrature:

y2 � �
Z dx2

��y1; x2�
(89)

where the integral is of course indefinite, and the result is
not unique unless one imposes extra (initial) conditions.

Therefore, under adequate regularity conditions, every
��x� may in principle be mapped to a constant �, by using
Eq. (89). Among the regularity conditions is of course the
nonvanishing of � as a function of its arguments, what is
here clearly linked to the fact that the Jacobian is different
from zero everywhere.

In this way, the geometry defined by ��x� and the field
theories constructed on such a space can be traced back to
the canonical case. Of course, it may not be possible to
obtain an analytic expression for y2 in the general case;
however, in the context of deformation quantization, where
�! 0, (88) can always be solved by iterations.

The explicit map (89) connecting a general ��x� to the
canonical constant case should not be a surprise. Indeed,
we expect noncommutative theories to emerge as certain
low energy limits of quantum gravity; besides, we know
that in two dimensions, every metric is conformally flat,
with no dynamical degrees of freedom. Only the Euler
number, of topological nature, distinguishes different
gravitational backgrounds. In fact, we have a similar situ-
ation at the level of the noncommutative theory: compute
the integral of the difference between the commutators

1

i�2

Z
d2y��x1; x2�? � �y1; y2�?� �

Z
d2y ~F�y�; (90)

where the commutator between x1 and x2 is written as a
function of the y variables. We moved the constant factors
in order to have dimensionless objects on both sides. Note
that the object on the rhs is, for well-behaved changes of
variables, a topological invariant. Indeed, the ‘‘non-
Abelian‘‘ term vanishes for an ~Aj which decreases suffi-
ciently fast at infinity:Z

d2y� ~A1; ~A2�? � 0 (91)

(i.e., when the cyclicity of the trace is valid), and we then
have

1

i�2

Z
d2y��x1; x2�? � �y1; y2�?� �

Z
d2y"ij@i ~Aj; (92)

which, of course, can be written as a line integral at infinity,
and thus it makes the topological invariance of the object
more explicit. Note that the integral of each separate
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commutator is, in general, divergent, but the integral of
their difference can indeed have a well-defined, finite
value, at least for a class of ~Aj’s.

As a nontrivial example, the case

��x� � ���0�x1� ��1�x1�x2� (93)

is particularly interesting, because (88) is exactly solvable
yielding

x1 � y1; x2 � �
�0�y1�
�1�y1�

� C�y1�e
�1�y1�y2 ; (94)

here C�y1� is an arbitrary smooth function. The same can
be done in the even simpler case �1 � 0, obtaining the
same result as in Sec. III A.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have examined the effect of a general
coordinate transformation on a theory with constant ?
commutator, with the aim of mapping (for certain cases)
a space-dependent �ij�x� theory to another where that
object is constant.

The method was first developed for d � 2, where we
explicitly evaluated the effect of the change of variables on
both the noncommutative space structure and on a scalar
field theory action.

An interesting feature of the present approach is that, by
defining the coordinate transformation in terms of a vector
field Aj as in [12], one can interpret (a subgroup of)
Kontsevich’s equivalence relations between ? products as
noncommutative gauge transformations on Aj.

The examples constructed in Sec. III led to the central
question of whether the reduction from the space-
dependent case to the constant-� one is always applicable
or not. And indeed, in Sec. V we showed that this is true by
constructing an explicit map. This agrees with Darboux’s
Theorem [15], which states that given a symplectic mani-
fold M it is always possible to find local coordinates in the
neighborhood of any point x 2 M such that the symplec-
tic 2-form is given by

! � dpi ^ dq
i:

For the case M � R2, with ��x� positive definite,
Darboux’s Theorem holds globally because (a) the sym-
plectic form is nonsingular everywhere, and (b) the domain
where the symplectic form is defined allows for a global
(not just local) application of the inverse Poincare Lema, as
required by the proof of Darboux’s Theorem. From the
point of view of deformation quantization, this result may
be regarded as a classical limit of our map Eq. (89).
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