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Thermal operator representation for Matsubara sums
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We prove in full generality the thermal operator representation for Matsubara sums in a relativistic field
theory of scalar and fermionic particles. It states that the full result of performing the Matsubara sum
associated to any given Feynman graph, in the imaginary-time formalism of finite-temperature field
theory, can be directly obtained from its corresponding zero-temperature energy integral, by means of a
simple linear operator, which is independent of the external Euclidean energies and whose form depends
solely on the topology of the graph.
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I. INTRODUCTION

Relativistic quantum field theory is the mathematical
formalism that allows us to describe the interactions among
elementary particles, according to the principles of quan-
tum mechanics and special relativity. When considering
the physics of very dense or very hot plasmas, such as the
early universe or the quark-gluon plasma that should be
produced in heavy ion collisions, it becomes necessary to
formulate the relevant questions in terms of thermally
averaged quantities, according to statistical mechanics.
Most of the physical information, for systems both in and
slightly out of thermal equilibrium, can be obtained from
the study of the so-called thermal Green functions, defined
as thermal expectation values of a time-ordered product of
field operators. One fruitful and widely used approach to
study these Green functions is perturbation theory, where
these are computed by means of a systematic expansion in
terms of Feynman diagrams [1].

The simplest diagrammatic analysis is obtained in the
so-called imaginary-time formalism, in which the dia-
grams have the same topology and are computed according
to basically the same Feynman rules as in the zero-
temperature Euclidean theory, except for one very impor-
tant difference: the energy component of both the external
4-momenta and the internal 4-momenta carried by the
propagators is quantized (in slightly different ways, ac-
cording to the nature—bosonic or fermionic—of the as-
sociated particle), that is, it must be a Matsubara frequency
[2]. Accordingly, the calculation of a loop diagram in the
imaginary-time formalism of quantum field theory at finite
temperature necessarily involves sums over internal
Matsubara frequencies [1], an operation that we shall
generically call the Matsubara sum associated with the
graph. Although this sum can be computed in a number
of ways, usually in a systematic fashion, such computa-
tions can become quite tedious for higher loop diagrams
[3,4]. Another related difficulty of the imaginary-time
formalism is the separation of the vacuum contribution
from the finite-temperature corrections, since the naive
address: olivier.espinosa@usm.cl

05=71(6)=065009(7)$23.00 065009
zero-temperature limit of any given loop graph is of the
indeterminate type 0 � 1 [5].

It was discovered some time ago [6] that, for some
particular classes of diagrams in a scalar theory, the full
result of performing the Matsubara sum associated with a
Feynman graph could be completely determined from its
zero-temperature counterpart, by means of a simple linear
operator that depends on the topology of the diagram but is
independent of the Euclidean energies carried by its exter-
nal lines. Because of the simple and well-defined structure
of this operator, dubbed the thermal operator, it was con-
jectured that this result should hold for all Feynman graphs.

In the recent paper [5] it has been partially shown that
this conjecture is actually correct. The authors of Ref. [5]
have rescued from oblivion an old, systematic and very
elegant method to perform the Matsubara sum associated
with an arbitrary graph, due to M. Gaudin [7], and have
used it, as an illustration of the power of Gaudin’s method,
to show that the main part of our conjecture follows
naturally from it. The proof given in Ref. [5] does address
the relationship between the structure of the full thermal
result and the zero-temperature result, but stops short of
explicitly constructing the thermal operator that relates
them. Also, it leaves undiscussed conjectures 2 and 3
presented in Ref. [6].

In this paper we restate all the conjectures of Ref. [6] as
full-blown theorems concerning general properties of the
Feynman graphs in the imaginary-time formalism of ther-
mal field theory, extending their validity to theories con-
taining Dirac fields as well. Following Ref. [5], we make
full use of Gaudin’s method to prove these theorems,
although in a slightly different and more explicit form.

The structure of the rest of the paper is as follows: In
Sec. II we present, in the form of theorems, the general
properties of the finite-temperature imaginary-time
Feynman graphs that were previously presented as con-
jectures, in terms of the thermal operator, suitably extended
to incorporate possible fermionic lines. In Sec. III we
summarize Gaudin’s method to perform the sums over
Matsubara frequencies, which will be central to the proofs
of the theorems, presented in Secs. IV (scalars) and V
(fermions). Our conclusions are presented in Sec. VI.
-1  2005 The American Physical Society
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II. THE THERMAL OPERATOR

In a scalar field theory, the mathematical expression
corresponding to an amputated graph with V vertices, I
internal lines, and external 4-momenta P� � �p�;p�� has
the form

����V

S

Z "YI
i�1

d3ki
�2�32Ei

YV�1

v�1

�2�3��3��kv�

#
D�p; E; T�;

(1)

where � represents the coupling constant and S is the
symmetry factor of the graph; ki is the spatial 3-
momentum of the i-th internal line and Ei :� �k2

i �

m2
i �

1=2 is its associated kinematic energy; kv denotes the
total 3-momentum entering vertex v; the unsubscripted
symbols p and E denote, respectively, the full set of
Euclidean external and kinematic internal energies, p :�
fp1; p2; . . . ; pVg (with

PV
i�1 pi � 0) and E :�

fE1; E2; . . . ; EIg; and T is the temperature. The delta func-
tions ensure conservation of spatial 3-momentum at each
vertex, so that the integration measure reduces essentially
to an integration over the 3-momenta of the L � I � V �
1 independent loops. In the finite-temperature Euclidean
formalism all scalar lines, external and internal, carry
discrete Euclidean energies which are integer multiples
of 2T. Each internal line has an associated Matsubara
frequency, denoted by ki � !ni : � 2Tni. The
D-function is given by the normalized Matsubara sum

D�p; E; T� � �ET
L
X
fnig

YI
i�1

��ki; Ei���p; k�; (2)

where

�E :�
YI
i�1

2Ei; (3)

L is the number of independent loops in the graph, and
��ki; Ei� is the scalar propagator associated with the i-th
internal line, with

��k; E� :�
1

k2 � E2 : (4)

The sums over each ni (i � 1; . . . ; I) run from �1 to �1.
The �-function, with k � fk1; . . . ; kIg, is a generalized
Kronecker delta which ensures conservation of energy at
each vertex. The topology of the diagram is totally con-
tained in this generalized delta.

In a theory containing both fermions and scalars, the
structure of (1) is basically unchanged, except for extra
spin indices carried by the external fermionic lines and a
possible extra sign associated with fermionic loops. The
D-function is still given by (2), except that each fermionic
line carries a Matsubara frequency consistent with anti-
periodic boundary conditions on the fermionic fields,
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k � ~!n :� 2T�n� 1=2�; (5)

entering through the fermionic propagator, which now has
a matrix structure and depends explicitly on the spatial
momentum k,

~��k;k� �
m� ik�0 � k � �

k2 � E2
k

; (6)

where the �� � ��0; �� are the usual Minkowski space
gamma matrices, obeying the standard anticommutation
relations, f��; ��g � 2���.

In order to state our general theorems in a way that is
applicable to a general theory containing both scalars and
fermions, it will be convenient to define the following
generalized signed thermal occupation number function,
which takes into account the statistics corresponding to
both kinds of internal lines:

N�E� :�
�
n�E�; for a scalar line;
�~n�E�; for a fermionic line;

(7)

where n�E� � �e�E � 1��1 and ~n�E� � �e�E � 1��1 are,
respectively, the Bose-Einstein and Fermi-Dirac thermal
occupation factors, for the case of vanishing chemical
potential.

Additionally, the theorems will be formulated in terms
of a simple reflection operator on the space of functions of
several variables,

Ŝ Ef�E; x� :� f��E; x�; (8)

where E stands for any one variable and x for all the others.
The main result presented in this paper is enunciated in

the next theorem. It basically states that the ‘‘energy part’’
of any Feynman graph in the finite-temperature imaginary-
time formalism, represented here in terms of the
D-function introduced in (1), can be obtained directly
from the corresponding zero-temperature energy integral.

Theorem 1. (Thermal operator representation)—The
D-function defined in (2) for an amputated Feynman graph
can be expressed in the form

D�p; E; T� � Ô�E; T�D0�!;E�j!�p; (9)

where D0�!;E� is the D-function of the Euclidean zero-
temperature graph and Ô�E; T�, the thermal operator, is the
following linear operator:

Ô�E; T� :� 1�
XI
i�1

Ni�1� Ŝi�

�
X0

hi1;i2i

Ni1Ni2�1� Ŝi1��1� Ŝi2� � . . .

�
X0

hi1;...;iLi

YL
l�1

Nil�1� Ŝil�: (10)

Here Ni � N�Ei�, where N�E� is the generalized signed
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thermal occupation factor defined in (7); Ŝi: � ŜEi
, where

ŜE is the reflection operator defined in (8); the indices
i1; i2; . . . run from 1 to I (the number of internal propaga-
tors) and the symbol hi1; . . . ; iki stands for an unordered
k-tuple with no repeated indices, representing a particular
set of internal lines. The primes on the summation symbols
imply that certain tuples hi1; . . . ; iki are to be excluded
from the sums: those such that if we snip all the lines
i1; . . . ; ik then the graph becomes disconnected.

Note that the operator Ô�E; T� contains products of at
most L thermal occupation factors N�Ei�, since for a
L-loop graph the maximum number of lines that can be
snipped without disconnecting the graph is precisely L.
This generic feature of the thermal graph in the imaginary-
time formalism is of course well known. However, based
on a general property of the zero-temperature D-function,
formulated in theorem II below, it is also possible to use a
modified thermal operator, which has a simpler algebraic
form:

Theorem 2. (Simpler form of the thermal operator)—
When acting on the zero-temperature D-function,
D0�p; E�, the thermal operator Ô�E; T� can be replaced
by the simpler

Ô ?�E; T� �
YI
i�1

�1� Ni�1� Ŝi��: (11)

Note that the operator Ô?�E; T� in (10) can be expanded
as in (10), with the only difference that the summation
symbols will carry no primes, that is, all tuples hi1; . . . ; iki
(1 � k � I) will be allowed in the sum. Clearly, forms (10)
and (11) of the thermal operator will be equivalent if we
can prove that tuples associated with disconnected graphs
[the ones excluded from the summations in (10)] give rise
to operators that produce a vanishing contribution to the
D-function in (9). This is the content of our last theorem:

Theorem 3. (Cut sets do not contribute)—The zero-
temperature D-function, D0�!;E�, is annihilated by the
operators

Â�C� :�
Y
il2C

�1� Ŝil�; (12)

where C stands for a cut set of the graph, that is, any set of
indices i1; . . . ; ik such that the graph becomes disconnected
if the corresponding lines are snipped.

The concept of cut set, as used here, bears no connection
to the concepts of cut and cut diagrams as they are usually
understood in diagrammatic quantum field theory. Cut sets
are determined solely by the topology of the diagram, and
have no further mathematical or physical meaning.
III. GAUDIN METHOD

Here we present a summary of Gaudin’s method and its
use in the computation of the Matsubara D-function, in the
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purely scalar case. For all the details see Refs. [5,7]. The
changes in the presence of fermionic lines are commented
upon at the end of this section.

Gaudin’s method to perform the Matsubara sum associ-
ated to a given graph is based on two main ideas. The first
is to make use of the spectral representation of the propa-
gator, which puts the dependence on the Matsubara fre-
quency linearly in the denominator. For the scalar case it
reads

��!n;k� �
Z 1

�1

dk0

2
$�k0;k�
k0 � i!n

; (13)

with the spectral function given by

$�k0;k� � 2%�k0���k2 �m2� (14)

�
2
2Ek

���k0 � Ek� � ��k0 � Ek��: (15)

%�k0� is the sign of k0.
Once all the propagators have been represented by

means of (13), the Matsubara sum to be performed takes
the form

TL
X
fnig

YI
i�1

1

k0i � iki
��p; k�; (16)

where the ki � !ni are the Matsubara frequencies and the
k0i are external real variables. The generalized Kronecker
delta ��p; k� enforces V � 1 independent linear relations
satisfied by the Matsubara frequencies k, also involving the
external Euclidean energies p, which we shall write (fol-
lowing Ref. [5]) as

Rv�p; k� � 0; for v � 1; . . . ; V � 1: (17)

This system of linear equations allows us to solve for V �
1 of the I Matsubara frequencies in terms of a set of L �
I � V � 1 independent ones. In general, there will be
several distinct ways of choosing this set of independent
Matsubara frequencies. As shown by Gaudin, there is a
one-to-one correspondence between the collection of all
possible sets of independent Matsubara frequencies and the
set of all trees associated to the given (connected) diagram
�.

A tree is a set of lines of � joining all vertices and
making a connected graph with no loops. Every tree T

will contain V � 1 lines and its complement �T (the set of
lines which do not belong to T ) will have L lines. The
Matsubara frequencies corresponding to the L lines in �T ,
denoted by kl, will constitute a set of independent
Matsubara frequencies in terms of which the system (17)
can be solved. The Matsubara frequencies associated with
the lines of the tree, kj, with j 2 T , will be linear combi-
nations of the independent Matsubara frequencies and the
-3
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external Euclidean energy variables,

kj � T
j �p; kl�; j 2 T ; l 2 �T : (18)

As a simple example, in Fig. 1 we show the three
possible trees for the two-loop two-vertex graph shown.
In this case, each tree T is composed by a single internal
line (heavy line), whose Matsubara frequency can be ex-
pressed, after using energy conservation at one of the
vertices, in terms of the two independent Matsubara fre-
quencies associated with the (thin) lines that do not belong
to the tree (these are the lines in �T ) and the external energy
p. For instance, for the first tree we have k3 � p� k1 �
k2, etc.

Gaudin’s main insight is the following identity for the
rational function appearing in (16):

X
fnig

YI
i�1

1

k0i � iki
��p; k� �

X
T

Y
j2T

1

k0j � iT
j �p;�ik0l �

�
X
fnlg

Y
l2 �T

1

k0l � ikl
: (19)

In our example in Fig. 1, this identity takes the form

X
n1;n2;n3

��p� k1 � k2 � k3�

�k01 � ik1��k
2
0 � ik2��k

0
3 � ik3�

�
1

�k01 � k02 � k03 � ip�

(X
n1;n2

1

�k01 � ik1��k
0
2 � ik2�

�
X
n1;n3

1

�k01 � ik1��k
0
3 � ik3�

�
X
n2;n3

1

�k02 � ik2��k
0
3 � ik3�

)
:

So, using Gaudin’s decomposition (19), for any given
graph the full Matsubara sum is split into a number of
other sums, one for each tree T , where each one of these
sums is actually simply a product of independent sums over
each of the Matsubara frequencies in �T . Each independent
sum has to be regulated. Gaudin assigns to each internal
line a regulator eiki(i , where the time (i is taken to zero at
the end. The sum that results is well defined,

T
X
nl

ei!lTl

k0l � ikl
� %ln�%lk

0
l �e

k0l Tl ; (20)

where n�k0� is the Bose-Einstein occupation factor. Tl is
FIG. 1. The trees of a simple two-loop graph, shown as dark
lines.

065009
some linear combination of the times (i associated to the
lines that belong to the loop defined by l 2 �T , and %l is the
sign of Tl. Only %l matters when the regulators are
removed.

Consequently, Gaudin’s result for the D-function in the
purely scalar case is

D�p; E; T� �
YI
i�1

Z 1

�1
dk0i �$�k

0
i ; Ei�

�
X
T

 Y
j2T

1

k0j � iT
j

Y
l2 �T

%ln�%lk
0
l �

!
; (21)

where T
j � T

j �p;�ik0l � and �$ is the reduced spectral
function,

�$�k0; Ek� �
2Ek

2
$�k0;k� � ��k0 � Ek� � ��k0 � Ek�:

(22)

Gaudin’s method applies equally well in the case the
graph contains fermionic lines. As for the scalar propaga-
tor, the fermionic propagator (6) admits a spectral repre-
sentation,

~�� ~!n;k� �
Z 1

�1

dk0
2

~$�k0;k�
k0 � i ~!n

; (23)

with

~$�k0;k� � 2"�k0��k6 �m���k2 �m2�; (24)

where the metric signature is that of Minkowski space, k6 �

k��� � k0�0 � k � � and k2 � k20 � k2. Note that the
spectral representation of the fermionic propagator (6)
‘‘hides’’ the dependence on the Matsubara frequency k
appearing in its numerator, so that the only difference
with the scalar case is the extra matrix structure �k6 �m�.

Gaudin’s method to perform the Matsubara sum in the
form (16), through the decomposition in terms of trees,
makes no reference to the bosonic or fermionic nature of
the frequencies to be summed over. If an independent
frequency ~kl (l 2 �T ) is fermionic, we shall need the sum

T
X
nl

ei~klTl

k0l � i~kl
� �%l~n�%lk

0
l �e

k0l Tl ; (25)

which can be obtained from the bosonic analog by writing
k0l � i~kl � �k0l � iT� � ikl. ~n�k0� is the Fermi-Dirac
function,

~n�k0� �
1

e�k
0
� 1

: (26)

We see that the fermionic result (25) can be simply
obtained from its bosonic analog (20) through the replace-
ment

n ! �~n:
-4
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Therefore, the result for the D-function in the presence of
fermionic propagators will be identical in form to (21),
except that for the fermionic lines the reduced spectral
function �$ will have an extra matrix factor, and the thermal
factor %ln�%lk0l � will be replaced by �%l~n�%lk

0
l �.
IV. PROOFS OF THE THEOREMS FOR THE
SCALAR CASE

In order to prove the theorems enunciated in Sec. II, we
shall need to identify the vacuum (T � 0) limit of Gaudin’s
result (22) for the Matsubara D-function D�p; E; T�. The
temperature dependence is solely contained in the thermal
factors n�%lk

0
l �. Following Ref. [5], we use the identity

n�k0� � �*��k0� � %�k0�n�jk0j�; (27)

from which it follows that

%ln�%lk0l � � �%l*��%lk0l � � %�k0l �n�jk
0
l j�:

Writing the reduced spectral function defined in (22) in
terms of the reflection operator ŜE as

�$�k0; E� � �1� ŜE���k
0 � E�; (28)

and using the notation Ŝl � ŜEl
, we can perform the

integrations over each of the variables k0l (l 2 �T ) in (21)
as Z 1

�1
dk0l �$�k

0
l ; El�%ln�%lk

0
l �f�k

0
l �

� �1� Ŝl�
Z 1

�1
dk0l ��k

0
l � El�%ln�%lk

0
l �f�k

0
l �

� �1� Ŝl�%ln�%lEl�f�El�

� �1� Ŝl���%l*��%lEl� � %�El�n�jElj��f�El�;

where El is for the moment considered as an arbitrary real
variable. We now apply the reflection operator Ŝl explicitly
and then use the fact that El is actually a positive quantity.
The vacuum part is given by

�1� Ŝl���%l*��%lEl�f�El�� � �%l*��%lEl�f�El�

� %l*�%lEl�f��El�

� f��%lEl�;

whereas the thermal part is given by

�1� Ŝl��%�El�n�jElj�f�El�� � %�El�n�jElj�f�El�

� %��El�n�j � Elj�f��El�

� nlf�El� � nlf��El�

� nl�1� Ŝl�f�El�

� nl�1� Ŝl�f��%lEl�;
065009
since �1� Ŝl�f�El� � �1� Ŝl�f��El�, and where we
have denoted nl � n�El�.

Therefore,

D�p; E; T� �
X
T

Y
l2 �T

�1� nl�1� Ŝl��D
T
0 �p; E� (29)

where DT
0 �p; E� is the contribution to the vacuum

D-function associated with the tree T :

DT
0 �p; E� �

Y
j2T

Z 1

�1
dp0

j �$�k
0
j ; Ej�

1

k0j � iT
j �p; i%lEl�

�
Y
j2T

�1� Ŝj�
1

Ej � iT
j �p; i%lEl�

: (30)

Eqs. (29) and (30) are our starting points for the proofs of
our three theorems. To start with, we notice that the func-
tion DT

0 �p; E� is annihilated by each of the operators �1�

Ŝj� with j 2 T , due to the identity

�1� ŜE��1� ŜE� � 1� Ŝ2
E � 0: (31)

This allows us to extend the index of the product
Q

l2 �T
in

(29) to all possible values, for any tree T :Y
l2 �T

�1� nl�1� Ŝl��D
T
0 �p; E�

�
YI
j�1

�1� nj�1� Ŝj��D
T
0 �p; E�:

In this form, the operator acting on DT
0 �p; E� becomes

T -independent, which allows us to move the sum over
all trees in (29) through it:

D�p; E; T� �
YI
j�1

�1� nj�1� Ŝj��
X
T

DT
0 �p; E�

� Ô��E; T�D0�p; E�;

and this proves theorem 2.
Theorem 3 is readily proven by noticing that if C is a cut

set of the graph �, then the operator

Â�C� �
Y
k2C

�1� Ŝk�

will contain at least one factor �1� ŜjT � with jT 2 T for
every tree T . As we have already pointed out, this factor
will annihilate the corresponding DT

0 �p; E�, and therefore
D0�p; E� will be annihilated by Â�C�. This proves
theorem 3.

Finally, as explained in Sec. II, theorem 1 follows di-
rectly from theorems 2 and 3.
-5



OLIVIER ESPINOSA PHYSICAL REVIEW D 71, 065009 (2005)
V. EXTENSION TO FERMIONS

As it was shown in Sec. III, in the presence of fermionic
lines the Matsubara D-function has essentially the same
structure as in the scalar case. Now we use the identity

~n�k0� � *��k0� � %�k0�~n�jk0j�; (32)

which has the same contents as the well-known ~n��E� �
1� ~n�E�. We note that both identities (27) and (32) can be
written in terms of the generalized occupation number
function defined by (7) as

N�k0� � �*��k0� � %�k0�N�jk0j�; (33)

and therefore the manipulation of Sec. IV are valid in
general, with ni replaced by Ni.

The only other difference with the scalar case is the
spectral function. The reduced spectral function for fermi-
ons is

~�$�k0;k; Ek� �
2Ek

2
~$�k0;k�

� �k6 �m����k0 � Ek� � ��k0 � Ek��

� �1� ŜEk
���k0 � Ek��k6 �m�: (34)

The propagator for a fermionic line i will be represented
in the form

~�� ~!i;ki� �
1

2Ei
�1� Ŝi�

�
Z 1

�1
dk0i ��k

0
i � Ei��k6 �m�

1

k0i � i ~!i
; (35)

which has the necessary structure for the derivations pre-
sented in the previous section to hold. Hence, in the pres-
ence of fermionic lines the Matsubara D-function will still
have the form (29), apart from the change n ! �~n to
account for the Fermi-Dirac statistics for fermions and
some extra structure in the numerator of the right-hand
065009
side of (30). Therefore, the proofs presented at the end of
the previous section are unaffected.
VI. CONCLUSIONS

In this paper we have proven rigorously, extending the
approach presented in Ref. [5], a very general property of
Feynman diagrams in the imaginary-time formalism for
finite-temperature relativistic field theories (including sca-
lar and fermionic fields), previously put forward as a con-
jecture in Ref. [6]. This property states that the full result of
performing the Matsubara sum associated to any given
Feynman graph can be obtained from its zero-temperature
counterpart, by means of a simple linear operator, given by
(10), whose form depends solely on the topology of the
graph.

The thermal operator (10) has the important feature of
being independent of the discrete Euclidean energies car-
ried by the external lines of the graph. It follows from this
that all issues related to analytic continuations of
imaginary-time formalism Green’s functions [8–11] can
be completely settled at the zero-temperature level. The
implications of this fact as well as the connections of the
thermal operator representation with the real-time formal-
ism are under investigation and will be presented
elsewhere.

We have not studied the validity of the thermal operator
representation in the case of gauge theories. It would be
interesting to determine the classes of gauge fixings under
which it holds, clarifying the role of ghost fields in the
formalism.
ACKNOWLEDGMENTS

The diagrams presented in this paper were produced
with JaxoDraw [12]. This work was supported by
CONICYT, under Grant Fondecyt No. 1030363.
[1] For a review of the early literature on the subject see, for
example, N. P. Landsman and Ch. G. van Weert, Phys.
Rep. 145, 141 (1987). For more modern introductions to
the subject see, for instance, J. Kapusta, Finite-
temperature field theory (Cambridge University,
Cambridge, England, 1993); M. Le Bellac, Thermal field
theory (Cambridge University, Cambridge, England,
1996); A. Das, Finite temperature field theory (World
Scientific, Singapore, 1997).

[2] T. Matsubara, Prog. Theor. Phys. 14, 351 (1955).
[3] R. Balian and C. de Dominicus, Nucl. Phys. 16, 502

(1960); G. Baym and A. M. Sessler, Phys. Rev. 131,
2345 (1963); I. E. Dzyaloshinski, Sov. Phys. JEPT 15,
778 (1962); R. P. Pisarski, Nucl. Phys. B309, 476
(1988); E. Braaten and R. D. Pisarski, Nucl. Phys. B337,
569 (1990).

[4] F. Guerin, Phys. Rev. D 49, 4182 (1994).
[5] J-P. Blaizot and U. Reinosa, hep-ph/0406109.
[6] O. Espinosa and E. Stockmeyer, Phys. Rev. D 69, 065004

(2004).
[7] M. Gaudin, Nuovo Cimento 38, 844 (1965).
[8] F. T. Brandt, A. Das, J. Frenkel, and A. J. da Silva, Phys.

Rev. D 59, 065004 (1999).
[9] R. Kobes, Phys. Rev. D 42, 562 (1990); Phys. Rev. Lett.

67, 1384 (1991); T. S. Evans, Phys. Lett. B 249, 286
(1990); Phys. Lett. B 252, 108 (1990); Nucl. Phys.
B374, 340 (1992); P. Aurenche and T. Becherrawy,
Nucl. Phys B379, 259 (1992); R. Baier and A. Niégawa,
-6



THERMAL OPERATOR REPRESENTATION FOR . . . PHYSICAL REVIEW D 71, 065009 (2005)
Phys. Rev. D 49, 4107 (1994); M. A. van Eijck, R. Kobes,
and Ch. G. van Weert, Phys. Rev. D 50, 4097 (1994).

[10] R. L. Kobes and G. W. Semenoff, Nucl. Phys B260, 714
(1985); B272, 329 (1986); R. Kobes, Phys. Rev. D 43,
1269 (1991); P. V. Landshoff, Phys. Lett. B 386, 291
(1996); P. F. Bedaque, A. Das, and S. Naik, Mod. Phys.
065009
Lett. A 12, 2481 (1997); A. Niégawa, Phys. Rev. D 57,
1379 (1998); M. E. Carrington, H. Defu, and R. Kobes,
Phys. Rev. D 67, 025021 (2003);

[11] H. A. Weldon Phys. Rev. D 28, 2007 (1983).
[12] D. Binosi and L. Theußl, Comput. Phys. Commun. 161, 76

(2004).
-7


