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The fate of the Nambu-Goldstone modes arising from spontaneous Lorentz violation is investigated.
Using the vierbein formalism, it is shown that up to 10 Lorentz and diffeomorphism Nambu-Goldstone
modes can appear and that they are contained within the 10 modes of the vierbein associated with gauge
degrees of freedom in a Lorentz-invariant theory. A general treatment of spontaneous local Lorentz and
diffeomorphism violation is given for various spacetimes, and the fate of the Nambu-Goldstone modes is
shown to depend on both the spacetime geometry and the dynamics of the tensor field triggering the
spontaneous Lorentz violation. The results are illustrated within the general class of bumblebee models
involving vacuum values for a vector field. In Minkowski and Riemann spacetimes, the bumblebee model
provides a dynamical theory generating a photon as a Nambu-Goldstone boson for spontaneous Lorentz
violation. The Maxwell and Einstein-Maxwell actions are automatically recovered in axial gauge.
Associated effects of potential experimental relevance include Lorentz-violating couplings in the matter
and gravitational sectors of the Standard-Model Extension and unconventional Lorentz-invariant cou-
plings. In Riemann-Cartan spacetime, the possibility also exists of a Higgs mechanism for the spin
connection, leading to the absorption of the propagating Nambu-Goldstone modes into the torsion
component of the gravitational field.
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I. INTRODUCTION

Violations of Lorentz symmetry arising from new phys-
ics at the Planck scale offer a potentially key signature for
investigations of quantum-gravity phenomenology [1].
One elegant possibility is that Lorentz symmetry is sponta-
neously broken in an ultimate fundamental theory [2]. The
basic idea is that interactions among tensor fields in the
underlying theory trigger the formation of nonzero vacuum
expectation values for Lorentz tensors. The presence of
these background quantities throughout spacetime implies
that Lorentz symmetry is spontaneously broken.

In general, spontaneous violation of a symmetry has
well-established consequences. The existence of a non-
trivial vacuum expectation value directly modifies the
properties of fields that couple to it and can indirectly
modify them through interactions with other affected
fields. For example, the vacuum value h�i of the Higgs
field spontaneously breaks the SU�2� � U�1� symmetry of
the standard model (SM), introducing effective fermion
masses via couplings of the fermion fields to h�i.
Moreover, when a continuous global symmetry is sponta-
neously broken, massless modes called Nambu-Goldstone
(NG) modes appear [3]. If instead the local symmetry of a
gauge theory is spontaneously broken, then the gauge
bosons for the broken symmetry become massive modes
via the Higgs mechanism [4].

For spontaneous Lorentz violation, the situation is simi-
lar. The existence of a nontrivial vacuum value for a tensor
field affects the behavior of particles coupling to it, either
directly or indirectly through other particles. These effects
can be comprehensively characterized in an effective the-
ory for the gravitational and SM fields observed in nature
[5–7], via the introduction of coefficients for Lorentz
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violation carrying spacetime indices. This theory, called
the Standard-Model Extension (SME), describes the phe-
nomenological implications of spontaneous Lorentz viola-
tion independently of the structure of the underlying
theory. To date, Planck-scale sensitivity has been attained
to the dominant SME coefficients in many experiments,
including ones with photons [8,9], electrons [10–12], pro-
tons and neutrons [13], mesons [14], muons [15], neutrinos
[16,17], and the Higgs [18], but a substantial portion of the
coefficient space remains to be explored.

As in the case of internal symmetries, the vacuum values
triggering Lorentz violation are accompanied by NG
modes associated with the generators of the broken-
symmetry transformations. The fate of these NG modes
is relevant to gravitational and SM phenomenology. If the
massless NG modes are present as such and propagate over
long distances, their phenomenology must be compatible
with existing or hypothetical long-range forces. For ex-
ample, it has been suggested that the NG modes in a vector
theory with spontaneous Lorentz violation may be equiva-
lent to electrodynamics in a nonlinear gauge [19,20]. If
instead a mass were to develop for the graviton in analogy
with the usual Higgs mechanism, other issues would arise.
For example, even a small mass for the graviton can
modify the predictions of general relativity and disagree
with experiment [21]. In fact, in general relativity with
spontaneous Lorentz breaking, it is known that a conven-
tional Higgs mechanism cannot give rise to a mass for the
graviton since the analogue of the usual Higgs mass term
involves derivatives of the metric [22]. Further complica-
tions occur because the usual simple counting arguments
for the number of NG modes can require modification in
the presence of Lorentz violation [23].
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In the context of gravity in a Riemann geometry, the
investigation of spontaneous Lorentz violation was initi-
ated with a study of a class of vector theories [22], called
bumblebee models, that are comparatively simple field
theories in which spontaneous Lorentz violation occurs.
These models and some versions with ghost modes have
since been investigated in a variety of contexts [5,24,25].
There has also been recent interest in the timelike diffeo-
morphism NG mode that arises when Lorentz symmetry is
spontaneously broken by a timelike vector. If such a mode
were to appear in a theory with second-order time deriva-
tives, it has been shown that it would have an unusual
dispersion relation leading to interesting anomalous spin-
dependent forces [26].

In this paper, we investigate the ultimate fate of the NG
modes associated with spontaneous violation of local
Lorentz and diffeomorphism symmetries. We perform a
generic analysis of theories formulated in Riemann-Cartan
spacetime and its limits, including the Riemann spacetime
of general relativity and the Minkowski spacetime of spe-
cial relativity, and we illustrate the results within the
bumblebee model. The standard vierbein formalism for
gravity [27] offers a natural and convenient framework
within which to study the properties of the NG modes,
and we adopt it here. The basic gravitational fields can be
taken as the vierbein e�a and the spin connection !�

ab.
The associated field strengths are the curvature and torsion
tensors. In a general theory of gravity in a Riemann-Cartan
spacetime [28], these fields are independent dynamical
quantities. The usual Riemann spacetime of general rela-
tivity is recovered in the zero-torsion limit, with the spin
connection fixed in terms of the vierbein. Our focus here is
on models in which one or more tensor fields acquire
vacuum values, a situation that could potentially arise in
the context of effective field theories for a variety of
quantum-gravity frameworks in which mechanisms exist
for Lorentz violation. These include, for example, string
theory [2,29], noncommutative field theories [30],
spacetime-varying fields [31–33], loop quantum gravity
[34], random-dynamics models [35], multiverses [36],
and brane-world scenarios [37], so the results obtained in
the present work are expected to be widely applicable.

The organization of this paper is as follows. A generic
discussion of spontaneous Lorentz violation in the vierbein
formalism is presented in Sec. II. Section III discusses
basic results for the bumblebee model. The three subse-
quent Secs. IV, V, and VI examine the fate of the NG modes
in Minkowski, Riemann, and Riemann-Cartan spacetimes,
respectively. Section VII contains a summary of the results.
Throughout this work, we adopt the notation and conven-
tions of Ref. [5].
II. SPONTANEOUS LORENTZ VIOLATION

For gravitational theories with a realistic matter sector,
the vierbein formalism [27] is widely used because it
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permits a straightforward treatment of fermions in non-
trivial spacetimes. Since this formalism distinguishes
cleanly between local Lorentz frames and coordinate
frames on the spacetime manifold, it is also ideally suited
for investigations of Lorentz and CPT breaking [5], in-
cluding the effects of spontaneous violation.

A. General considerations

A basic object in the formalism is the vierbein e�
a,

which can be viewed as providing at each point on the
spacetime manifold a link between the covariant compo-
nents T������ of a tensor field in a coordinate basis and the
corresponding covariant components Tabc��� of the tensor
field in a local Lorentz frame. The link is given by

T������ � e�
ae�be�c � � �Tabc���: (1)

In the coordinate basis, the components of the spacetime
metric are denoted g��. In the local Lorentz frame, the
metric components take the Minkowski form �ab, but the
basis may be anholonomic. Expressions for contravariant
or mixed tensor components similar to Eq. (1) can be
obtained by appropriate contractions with the components
g�� of the inverse spacetime metric.

The vierbein formalism permits the treatment of both
basic types of spacetime transformations relevant for gravi-
tation theories: local Lorentz transformations and diffeo-
morphisms. Consider a point P on the spacetime manifold.
Local Lorentz transformations at P act on the tensor com-
ponents Tabc��� via a transformation matrix �a

b applied to
each index. For an infinitesimal transformation, this matrix
has the form

�a
b � �ab 	 �ab; (2)

where �ab � 
�ba are the infinitesimal parameters carry-
ing the six Lorentz degrees of freedom and generating the
local Lorentz group. In contrast, a diffeomorphism is a
mapping of P to another point Q on the spacetime mani-
fold, with an associated mapping of tensors at P to tensors
atQ. The pullback of a transformed tensor atQ to P differs
from the original tensor at P. For infinitesimal diffeomor-
phisms characterized in a coordinate basis by the trans-
formation

x� ! x� 	 ��; (3)

this difference is given by the Lie derivative of the tensor
T������ along the vector ��. The four infinitesimal parame-
ters �� comprise the diffeomorphism degrees of freedom.

The vierbein formalism is natural for studies of Lorentz
violation. Spontaneous violation of local Lorentz invari-
ance occurs when the Lagrangian of the theory is invariant
under local Lorentz transformations but the vacuum solu-
tion violates one or more of the symmetries. The key
feature is the existence of a nonzero vacuum expectation
value for the components Tabc��� of a tensor field in a local
-2
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Lorentz frame [5]:

hTabc���i � tabc��� � 0: (4)

The values tabc��� may be constants or specified functions,
provided they solve the equations of motion of the theory.
Each such expectation value specifies one or more orien-
tations within any local frame, which is the characteristic
of spontaneous Lorentz violation.

The vacuum expectation value of the vierbein is also a
constant or a fixed function, either given by the solution to
the gravitational equations or specified as a background.
For example, in a spacetime with Minkowski background
the vacuum value of the vierbein is he�ai � ��a in a
suitable coordinate frame. It follows from Eq. (1) that the
existence of a vacuum value tabc��� for a tensor in a local
frame implies it additionally has a vacuum value t������ in
the coordinate basis on the manifold. However, a non-
trivial vacuum expectation value for t������ also implies
spontaneous violation of diffeomorphism invariance. This
shows that the spontaneous violation of local Lorentz
invariance implies spontaneous violation of diffeomor-
phism invariance.

In fact, the converse is likewise true: if diffeomorphism
invariance is spontaneously broken, so is local Lorentz
invariance. It is immediate that any violation of diffeo-
morphism invariance via vacuum values of vectors or
tensors breaks local Lorentz invariance, as above. An
alternative source of diffeomorphism violations is possible
via vacuum values of scalars provided the scalars are non-
constant over the spacetime manifold, but this also leads to
violations of local Lorentz invariance because the deriva-
tives of the scalar vacuum values provide an orientation
within each local Lorentz frame.

B. Identification of NG modes

In discussing the consequences of spacetime-symmetry
violations, it is useful to distinguish among several types of
transformations. Treatments of Lorentz-invariant theories
in the literature commonly define two classes of Lorentz
transformations, called active and passive, which act on
tensor components essentially as inverses of each other. In
a Lorentz-violating theory, however, the presence of vac-
uum expectation values with distinct properties implies
that there are more than two possible classes of trans-
formations [7]. For most purposes it suffices to limit atten-
tion to two possibilities, called observer transformations
and particle transformations.

Observer transformations involve changes of the ob-
server frame. It is standard to assume that any physically
meaningful theory is covariant under observer transforma-
tions, and this remains true in the presence of Lorentz
violation [7]. An observer local Lorentz transformation
can be viewed as a rotation or boost of the basis vectors
in the local tangent space. Tensor components are then
expressed in terms of the new basis. Observer coordinate
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transformations on the manifold are general coordinate
transformations, which leave invariant the action. The
statement of observer invariance therefore contains no
physical information other than the assumption of observer
independence of the physics.

Particle transformations are defined to act on individual
particles or localized fields, while leaving unchanged vac-
uum expectation values. A particle Lorentz transformation
involves a rotation or boost only of localized tensor fields.
The components of the tensor are affected, while the basis
and any vacuum values are unchanged. Similarly, particle
diffeomorphisms with the pullback incorporated can be
viewed as changes only in localized field distributions,
with the tensor components transforming via the Lie de-
rivative but the basis and all vacuum values unaffected.

Invariance of a system under particle transformations
has physical consequences, including notably the existence
of conservation laws. Local Lorentz invariance implies a
condition on the antisymmetric components of the energy-
momentum tensor T��, while diffeomorphism invariance
implies a covariant conservation law for it. Thus, for
example, in general relativity the laws are T�� � T��

andD�T
�� � 0. Spontaneous breaking of these spacetime

symmetries leaves unaffected the conservation laws. In
contrast, explicit breaking of these symmetries, which is
described by noninvariant terms in the action, modifies the
laws. For local Lorentz and diffeomorphism transforma-
tions, the conservation laws in the presence of spontaneous
and explicit breaking are obtained in Ref. [5] in the context
of a general gravitation theory.

In a theory with spontaneous breaking of a continuous
symmetry, one or more NG modes are expected. The NG
modes can be identified with the virtual excitations around
the vacuum solution that are generated by the particle
transformations corresponding to the broken symmetry.
According to the above discussion, if the extremum of
the action involves a nonzero vacuum expectation value
tabc��� for a tensor in a local frame, both local Lorentz
invariance and diffeomorphism invariance are spontane-
ously broken. Since these invariances involve 10 genera-
tors for particle transformations [38,39], we conclude that
up to ten NG modes can appear when an irreducible
Lorentz tensor acquires a vacuum expectation value.

In the subsequent parts of this work, it is shown that the
vierbein formalism is particularly well suited for describ-
ing these NG modes. A simple counting of modes illus-
trates the key idea. The vierbein e�a has 16 components. In
a Lorentz- and diffeomorphism-invariant theory, 10 of
these can be eliminated via gauge transformations, leaving
6 potentially physical degrees of freedom to describe the
gravitational field. In general relativity, four of these six are
auxiliary and do not propagate, leaving only the two usual
transverse massless graviton modes; more general metric
gravitational theories can have up to six graviton modes
[40]. However, in a theory with local Lorentz and diffeo-
-3
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morphism violation, the ten additional vierbein modes
cannot all be eliminated by gauge transformations and
instead must be treated as dynamical fields in the theory.
In short, the ten potential NG modes from spontaneous
local Lorentz and diffeomorphism breaking are contained
within the ten components of the vierbein that are gauge
degrees of freedom in the Lorentz-invariant limit.

C. Perturbative analysis

In general, each NG mode can be obtained by perform-
ing on the vacuum a virtual particle transformation for a
broken-symmetry generator and then elevating the corre-
sponding spacetime-dependent parameter to the NG field.
To identify the NG modes and study their basic properties,
it therefore suffices to consider small excitations about the
vacuum and to work in a linearized approximation.

If the vacuum solution of a given theory involves the
metric gvac�� , then the metric g�� in the presence of small
excitations can be written as

g�� � gvac�� 	 h��: (5)

In the general scenario, distinguishing the background
from gravitational fluctuations requires some care. For
instance, in the shortwave approximation [41] the distinc-
tion is made in terms of the amplitude of h�� and the scales
on which gvac�� and h�� vary. For our purposes, however, the
presence of a nontrivial background spacetime is unneces-
sary and serves to complicate the basic study of the prop-
erties of the NG modes. We therefore focus attention here
on spacetimes in which the vacuum geometry is
Minkowski.

Small metric fluctuations about the Minkowski back-
ground can be written as

g�� � ��� 	 h��: (6)

To linear order, the inverse metric is then g�� � ��� 

������h��. In this context, the distinction between coor-
dinate indices �, �, . . . on the manifold and the local
Lorentz indices a, b, . . . is diminished, and Greek letters
can be used for both. The 16-component vierbein can be
written as

e�� � ��� 	
�
1

2
h�� 	 ���

�
; (7)

where the ten symmetric excitations h�� � h�� are asso-
ciated with the metric, while the six antisymmetric com-
ponents ��� � 
��� are the local Lorentz degrees of
freedom.

The vacuum expectation value (4) of an arbitrary tensor
becomes

hT�����i � t�����; (8)

and excitations about this vacuum value are denoted as
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�T������ � �T������ 
 t�������: (9)

There can be many more such excitations than NG modes.
The NG modes are distinguished by the requirement that
�T������ maintains the extremum of the action and corre-
sponds to broken-symmetry generators.

For modes �T������ excited via local Lorentz transfor-
mations or diffeomorphisms, the magnitude of T������ at
each point is preserved,

T������g��g��g�� . . .T
������ � t2; (10)

where t2 � t��������������� . . . t������. This holds, for
example, in a theory with potential V having the simple
functional form

V � V�T������g��g��g�� . . .T������ 
 t2�; (11)

which can trigger a vacuum value t������ when V is extre-
mized. For instance, V could be a positive quartic poly-
nomial in T������ with minima at zero, such as
V�x� � �x2=2, where � is a coupling constant. The condi-
tion (10) is automatically satisfied by the choice

T������ � e�
�e��e�� . . . t������; (12)

which also reduces to the correct vacuum expectation value
(8) when the vierbein excitations vanish. This implies all
the excitations in �T������ associated with the NG modes
are contained in the vierbein through Eq. (12).

Using the expansion (7) of the vierbein in Eq. (12) yields
a first-order expression for the tensor excitations �T������
in terms of the 16 fields h�� and ���:

�T������ �
�
1

2
h�� 	 ���

�
t������

	

�
1

2
h�� 	 ���

�
t�
�
���� 	 . . . : (13)

Evidently, the combination �12 h�� 	 ���� contains the in-
teresting dynamical degrees of freedom.

We can observe the effects of local Lorentz and diffeo-
morphism transformations by performing each separately.
Under infinitesimal Lorentz transformations, the vierbein
components transform as

h�� ! h��;

��� ! ��� 
 ���;
(14)

while their transformations under infinitesimal diffeomor-
phisms are

h�� ! h�� 
 @��� 
 @���;

��� ! ��� 

1

2
�@��� 
 @����:

(15)

In these expressions, quantities of order ��h�, ����, ��h�,
����, etc. are assumed small and hence negligible in the
linearized treatment.
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The excitation due to infinitesimal Lorentz transforma-
tions is

�T������ � 
���t������ 
 ���t�
�
���� 
 . . . : (16)

Depending on the properties of the vacuum value t�����, up
to six independent excitations associated with broken
Lorentz generators can appear in this expression. Their
nature is determined by the six parameters ���. It follows
that the corresponding NG modes E�� for the broken
Lorentz symmetries stem from the antisymmetric compo-
nents ��� of the vierbein.

The excitation due to infinitesimal diffeomorphisms is

�T������ � 
�@����t������ 
 �@����t�
�
���� 
 . . .


 ��@�t������: (17)

This can contain up to four independent excitations asso-
ciated with broken diffeomorphisms, depending on the
properties of t�����. Except for the case of a scalar T, the
four potential NG modes �� corresponding to the four
parameters �� enter the vierbein accompanied by deriva-
tives. This can potentially alter their dispersion relations
and couplings to matter currents.

As a simple example, consider spontaneous breaking
due to a nonzero vector vacuum value t�, which could be
timelike, spacelike, or lightlike. Introduce a quantity E� �
E��t� obeying t�E� � 0. The 3 degrees of freedom of E�

correspond to the three Lorentz NG modes associated with
the three Lorentz generators broken by the direction t�.
Similarly, one can introduce a scalar ��t�, which plays
the role of the NG mode corresponding to the diffeomor-
phism broken by t�. In this example, which is studied in
more detail in the next section, there are four potential NG
modes. If a second orthogonal vacuum value t0� is also
present, an additional two Lorentz NG modes appear be-
cause two additional Lorentz generators are broken. All six
Lorentz NG modes E�� enter the theory once a third
orthogonal vacuum value exists. Similarly, as additional
vacuum values are added, more components of the fields
�� enter as NG modes for diffeomorphisms, until all four
are part of the broken theory.

Examples with more complicated tensor representations
also provide insight. For instance, consider a theory with
an expectation value for a two-index symmetric tensor
T�� � T��. In this case, the choice of vacuum value t��
can crucially affect the number and type of NG modes.
There is a choice among many possible scenarios. A subset
of the space of possible vacuum values consists of those
t�� that can be made diagonal by a suitable choice of
coordinate basis, but even if attention is restricted to this
subset there are many possibilities. For instance, a vacuum
value with diagonal elements (3,1,1,1) breaks three boosts
and four diffeomorphisms for a total of seven NG modes,
one with diagonal elements (4,1,1,2) breaks five Lorentz
065008
transformations and four diffeomorphisms for a total of
nine NG modes, while one with diagonal elements
(6,1,2,3) breaks all ten symmetries for a total of ten NG
modes.

In the general case, up to ten NG modes can appear when
a tensor acquires a vacuum expectation value t�����. The
fluctuations of the tensor about the vacuum under virtual
particle transformations are given as the sum of the right-
hand sides of Eqs. (16) and (17). The associated NG modes
consist of up to six Lorentz modes E�� and up to four
diffeomorphism modes ��.

The ultimate fate of the NG modes, and, in particular,
whether some or all of them propagate as physical massless
fields, depends on the specific dynamics of the theory. At
the level of the Lagrangian, the linearized approximation
involves expanding all fields around their vacuum values
and keeping terms of quadratic order or less. The dominant
terms in the effective Lagrangian for the NG modes can
then be obtained by replacing the tensor excitation with the
appropriate NG modes E�� and �� according to Eqs. (16)
and (17). The resulting dynamics of the modes are deter-
mined by several factors, including the basic form of the
terms in the original action and the type of spacetime
geometry in the theory. Disentangling these issues is the
subject of the following sections.
III. BUMBLEBEE MODELS

To study the behavior of the NG modes and distinguish
dynamical effects from geometrical ones, it is valuable to
consider a class of comparatively simple models for
Lorentz and diffeomorphism violation, called bumblebee
models, in which a vector field B� acquires a constant
expectation value b� [5,22]. These models contain many of
the interesting features of cases with more complicated
tensor vacuum values. For example, all the basic types of
rotation, boost, and diffeomorphism violations can be im-
plemented, and the existence and properties of the corre-
sponding NG modes can be studied for various spacetime
geometries. In this section, some general results for these
models are presented.

A. Projectors for NG modes

The characteristic feature of bumblebee models is that a
vector field B� acquires a vacuum expectation value ba in a
local Lorentz frame. This breaks three Lorentz transforma-
tions and one diffeomorphism, so there are four potential
NG modes. According to Eq. (12) and the associated
discussion, the vector field B� can be written in terms of
the vierbein as

B� � e�ab
a; (18)

which holds in any background metric. The vierbein de-
grees of freedom include the NG modes of interest.
-5
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As before, we proceed under the simplifying assumption
that the background spacetime geometry is Minkowski.
The vacuum solution then takes the form

hB�i � b�; he��i � ��� (19)

in a suitable coordinate frame. The vierbein can be ex-
panded in terms of h�� and ���, as in Eq. (7). The
fluctuations about the vacuum can therefore be written as

�B� � �B� 
 b�� �
�



1

2
h�� 	 ���

�
b�: (20)

The results of the previous subsection imply that three of
the four potential NG modes are contained in fields E�

obeying b�E� � 0, while one appears in a combination
��b�. To identify these modes, it is convenient to separate
the excitations (20) into longitudinal and transverse com-
ponents using projection operators. Focusing for definite-
ness on the nonlightlike case (b2 � 0), we define the
projectors

�Pk�
�
� �

b�b�
b!b!

; �P?�
�
� � ��� 
 �Pk�

�
�: (21)

The transverse and longitudinal projections of the fluctua-
tions �B� can then be identified as

E � � �P?�
�
��B� �

�



1

2
h�� 	 ���

�
b� 
 b�"; (22)

and

"� � �Pk�
�
��B� � b�"; (23)

respectively, where we have introduced the quantity

" � 

b�h��b�

2b!b!
: (24)

In terms of these fluctuation projections, the field B� is

B� � �1	 "�b� 	 E�: (25)

The reader is warned that at the same level of approxima-
tion the covariant components B� are given by

B� � g��B� � �1	 "�b� 	 E� 	 h��b�: (26)

One effect of these projections is to disentangle in B�

the NG modes associated with Lorentz and diffeomor-
phism breaking. To see this, start in the vacuum and
perform a virtual local particle Lorentz transformation
with parameters ��� satisfying ���b� � 0. This leaves
unchanged the metric ��� and the projection ".
However, nonzero transverse excitations ���b� are gener-
ated. When 
��� is promoted to a field E��, these become
the Lorentz NG modes E� � E��b�. Note that they auto-
matically obey an axial-gauge condition, b�E� � 0, the
significance of which is elaborated in subsequent sections.

Similarly, the excitations "� about the vacuum contain
the diffeomorphism NG mode. To verify this, note that the
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components �� of the broken diffeomorphism obey

�� � �Pk�
�
��

� �
b���b�
b!b!

; (27)

with ��b� � ��b�. Then, a virtual diffeomorphism gen-
erates a nonzero value for ", but the field E� is unaffected.
Promoting �� to the NG field ��, the expression for "
becomes

" �
b�@���b

�

b!b!
� @���: (28)

We see that the longitudinal excitation of B� can indeed be
identified with the diffeomorphism NG mode, as claimed
above. Note that an associated fluctuation in the metric,
given by

��� ! g�� � ��� 
 @��� 
 @���; (29)

is also generated by the diffeomorphism.

B. Bumblebee dynamics

The dynamical behavior of B� and the associated NG
modes is determined by the structure of the action that
defines the specific model under study. In general, the
Lagrangian LB for a single bumblebee field B� coupled
to gravity and matter can be written as a sum of terms

L B � Lg 	LgB 	LK 	LV 	LJ: (30)

Here, Lg is the gravitational Lagrangian, LgB describes
the gravity-bumblebee coupling, LK contains the kinetic
terms for B�, LV contains the potential, including terms
triggering the spontaneous Lorentz violation, and LJ de-
termines the coupling of B� to the matter or other sectors
in the model.

Various forms for each of these partial Lagrangians are
possible, and for certain purposes some can be set to zero.
As an explicit example containing all types of terms,
consider the Lagrangian

L B �
1

2%
�eR	 �eB�B�R��� 


1

4
eB��B��


 eV�B�B
� � b2� 
 eB�J

�; (31)

where % � 8'G and e �
�������

g

p
is the determinant of the

vierbein. The Lorentz-invariant limit of this theory has
been studied previously in the context of alternative theo-
ries of gravity in Riemann spacetime [42]. The simplified
Lorentz-violating limit of the theory with � � 0 was in-
troduced in Ref. [2], while the theory (31) and some
versions including ghost vectors have been explored
more recently in Refs. [5,24,25].

In the model (31) and its subsets, which are among those
used in the sections below, the gravitational Lagrangian Lg

is that of general relativity. The specific nonminimal
gravity-bumblebee interaction LgB in this example is con-
trolled by the coupling constant �. The last term in Eq. (31)
-6
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represents a matter-bumblebee interaction LJ, involving
the matter current J�. The theory (31) is written for a
Riemann or Riemann-Cartan spacetime, but the limit of
Minkowski spacetime is also of interest below, and the
corresponding Lagrangian can be obtained by eliminating
the first two terms and setting e � 1.

The partial Lagrangian LV in the model (31) involves a
potential V of the general form in Eq. (11), inducing the
spontaneous Lorentz and diffeomorphism violation. The
quantity b2 is a real positive constant, related to the vacuum
value ba of the bumblebee field by b2 � jba�abbbj, while
the � sign in V determines whether ba is timelike or
spacelike. As before, V can be a polynomial such as
V�x� � �x2=2, where � is a coupling constant. An alter-
native explicit form for V of particular value for studies of
NG modes is the sigma-model potential

V�B�B
� � b2� � ��B�B

� � b2�; (32)

where the quantity � is now a Lagrange-multiplier field.
The Lagrange multiplier acts to constrain the theory to the
extrema of V obeying B�B� � b2 � 0, thereby eliminat-
ing fields other than the NG modes. This model is a
limiting case of the previous polynomial one in which
the massive mode is frozen. Note that in any case the
potential V excludes the possibility of a U(1) gauge invari-
ance involving B�, whatever the form of the bumblebee
kinetic term in the action.

The kinetic partial Lagrangian LK in the model of
Eq. (31) involves a field strength B�� for B�, defined as

B�� � D�B� 
D�B�; (33)

where D� are covariant derivatives appropriate for the
chosen spacetime geometry. In a Riemann or Minkowski
spacetime, where the torsion vanishes, this field strength
reduces to B�� � @�B� 
 @�B�. In either case, with B�

given by Eq. (25), it follows that the diffeomorphism mode
contained in " cancels in the kinetic partial Lagrangian LK
in Eq. (31), and LK propagates two modes. If an alternative
kinetic partial Lagrangian LK is adopted instead an addi-
tional mode can propagate. A simple example is given by
the choice [43]

L K;ghost �
1

2
eB�D�D�B�; (34)

which propagates three modes, although this kinetic partial
Lagrangian can be unphysical as such because it can con-
tain ghost dynamics.

The above discussion demonstrates that the fate of the
Lorentz and diffeomorphism NG modes depends on the
geometry of the spacetime and on the dynamics of the
theory. To gain further insight into the nature and fate of
the NG modes, we consider in turn the three cases of
Minkowski, Riemann, and Riemann-Cartan spacetimes,
each in a separate section below.
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IV. MINKOWSKI SPACETIME

A. Role of the vierbein

In Minkowski spacetime, the curvature and torsion van-
ish by definition, and global coordinate systems exist such
that

g�� � ���: (35)

Particle Lorentz transformations can be performed using

��
� � ��

� 	 ��
� (36)

to rotate and boost tensor components. These transforma-
tions are global if ��� is independent of the spacetime
point; otherwise, they are local. In any case, they maintain
the metric in the form ��� at each point. It is instructive to
compare the expression (36) with the form of the vierbein
when h�� � 0:

e�� � ��� 	 ���: (37)

It follows that a vierbein with h�� � 0 in Minkowski
spacetime can be identified with a local particle Lorentz
transformation. Also, starting from a vacuum solution with
e�

� � ��
�, a local Lorentz transformation (36) generates

��� � ���.
In Minkowski spacetime, the diffeomorphisms main-

taining h�� � 0 are global spacetime translations, corre-
sponding to constant �� in Cartesian coordinates. Under
local diffeomorphisms with nonconstant ��, the metric
transforms as [44]

��� ! g�� � ��� 	 h��; (38)

where h�� � 
@��� 
 @���. A corresponding term is
generated in the vierbein, given by Eq. (15).

To study the NG modes in Minkowski spacetime, con-
sider first a theory with tensor field T������ satisfying the
condition (10). As before, the NG modes can be identified
with small excitations �T������ maintaining this constraint.
The constraint is invariant under global Lorentz transfor-
mations and translations, as is evident by writing Eq. (10)
in a coordinate frame in which Eq. (35) holds. More
importantly, the constraint also is invariant under local
Lorentz transformations and diffeomorphisms. It follows
that even in Minkowski spacetime there are up to ten NG
modes when spontaneous Lorentz violation occurs.

As a more explicit example, consider a bumblebee
model with the vacuum solution of the form (19). Local
Lorentz transformations and local diffeomorphisms
change the components B� and the metric g�� while
maintaining the equality B�g��B

� � �b2, but some of
these transformations are spontaneously broken by the
vacuum values. As before, there are potentially four NG
modes that can appear, consisting of three Lorentz NG
modes E� � E��b� obeying b�E

� � 0, and one diffeo-
morphism NG mode contained in " and given by Eq. (28).

In a bumblebee model, the vacuum solution can break
global Lorentz transformations while preserving transla-
-7
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tions, so that energy-momentum is conserved. This type of
assumption is sometimes adopted within the broader con-
text of the SME as a useful simplification for experimental
studies. Translation symmetry holds if b� is a constant in a
coordinate frame in which the metric takes the form (35).
However, the vacuum solution b� in this frame in principle
also could be a smoothly varying function of spacetime
obeying b����b

� � �b2, such as a soliton solution.
Then, b� has constant magnitude but different orientation
at different spacetime points, and both global Lorentz and
translation symmetries are broken. In this case, a vierbein
can be introduced at each point that transforms b� into a
local field ba obeying baba � �b2 at each point but hav-
ing components that are constant over the spacetime. The
role of the vierbein in this context can be regarded as a link
to a convenient anholonomic basis in which ba appears
constant. Whatever the fate of the global transformations,
however, local Lorentz transformations and diffeomor-
phisms are broken by the vacuum solution (19), and the
behavior of the four potential NG modes contained in E�

and " is determined by the dynamics of the theory.

B. Fate of the NG modes

Since gravitational excitations are absent in Minkowski
spacetime, no kinetic terms for h�� can appear and there is
no associated dynamics. Any propagation of NG modes
must therefore originate from Lagrangian terms involving
T������. Diffeomorphisms produce infinitesimal excitations
of the vacuum solution given by (17), which generate NG
modes in the combination @���. It might therefore seem
that even nonderivative terms for T������ in the Lagrangian
could generate derivative terms for some NG modes and
hence possibly lead to their propagation. However, when a
potential V drives the breaking, any nonderivative term in
T������ is intrinsically part of V, so its presence may affect
the specific form of the vacuum solution (8) but cannot
contribute to the propagator for the NG modes. Indeed, no
contributions from V arise in the effective action for the
NG modes because this action is obtained via virtual
particle transformations leaving V invariant and at its
extremum. This result can equivalently be obtained using
the vierbein decomposition (13) of T������, since this ex-
pansion automatically extremizes V and also contains the
NG modes as shown before. It follows in this case that any
propagation of NG modes must be determined by kinetic or
derivative-coupling terms for T������.

Next, we illustrate some of the possibilities for generat-
ing propagators for the NG modes using kinetic terms in a
bumblebee model. Consider first a special Minkowski-
spacetime limit of the theory (31), for which the
Lagrangian is

L B � 

1

4
B��B�� 
 ��B�B� � b2� 
 B�J�: (39)

The ghost-free kinetic term chosen involves the zero-
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torsion limit of the field strength B�� in Eq. (33), and the
adoption of the sigma-model potential (32) ensures a focus
on the NG modes.

For this theory, a coordinate frame can be chosen in
which the vacuum solution is

hB�i � b�; he��i � ���; h�i � 0: (40)

For simplicity, in what follows we take b� to be constant in
this frame. The relevant virtual fluctuations of the bumble-
bee field around the vacuum solution, generated by the
broken particle Lorentz transformations and diffeomor-
phisms, can be decomposed using the projector method.
The result is Eq. (25), where E� and " contain the NG
modes. As before, the Lorentz NG modes satisfy an axial-
gauge condition b�E� � 0 and so represent 3 degrees of
freedom.

With the vacuum (40) and the choice of kinetic term in
Eq. (39), the diffeomorphism mode contained in " cancels
in B��. It therefore cannot propagate and is an auxiliary
mode. In fact, the kinetic term in Eq. (39) reduces to the
form of a U(1) gauge theory in an axial gauge, so one of the
three Lorentz modes is auxiliary too. Adopting the sugges-
tive notation E� � A� and denoting the corresponding
field strength by F�� � @�A� 
 @�A�, we find that the
Lagrangian (39) reduces at leading order to

LB !LNG �

1

4
F��F��
A�J�
 b�J�	b�@���J�:

(41)

This is the effective quadratic Lagrangian determining the
propagators of the NG modes in the theory (39). Note that
the axial-gauge condition b�A� � 0 includes the special
cases of temporal gauge (A0 � 0) and pure axial gauge
(A3 � 0), and it ensures the constraint term is absent in
LNG. Note also that varying with respect to �� yields the
current-conservation law, @�J� � 0.

We see that the NG modes for the Minkowski-spacetime
bumblebee theory (39) have the basic properties of the
massless photon, described as a U(1) gauge theory in an
axial gauge. This result is consistent with an early analysis
by Nambu [20], who investigated the constraint B�B� �

�b2 as a nonlinear gauge choice that spontaneously breaks
Lorentz invariance. In the linearized limit with B� � b� 	
E�, this gauge choice reduces to an axial-gauge condition
b�E

� � 0 at leading order. The discussion here involves a
Lagrange-multiplier constraint rather than a direct gauge
choice and so the theories differ, but the result remains
unaffected.

The masslessness of the photon in the effective theory
(41) is a consequence of the spontaneously broken Lorentz
symmetry in the original theory (39). An interesting ques-
tion is whether this idea has experimentally verifiable
consequences. Indeed, a version of the theory (39) with
an explicit matter sector has been presented in Ref. [24] as
-8
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a model for quantum electrodynamics (QED) that gener-
ates a Lorentz-violating term in the SME limit. The latter
appears in Eq. (41) as the Lorentz-violating term b�J�,
along with a conventional charged-current interaction
A�J

�.
If the current J� represents the usual electron current in

QED, then the term b� can be identified with the coeffi-
cient ae� for Lorentz violation in the QED limit of the SME
[7]. If this coefficient is spacetime independent, it is known
to be unobservable in experiments restricted to the electron
sector [45], but coefficients of this type can generate
signals in the quark [14,46] and neutrino [7,17] sectors.
Moreover, various other possible sources of experimental
signals can be considered, such as spacetime dependence
of the coefficients, the presence of multiple fields and other
types of current, and interference between several sources
of Lorentz violation. Nonminimal couplings to other sec-
tors, including the gravitational couplings discussed in the
next section, also can produce experimental signals. All
these effects are contained within the SME. More radical
options for interpretation of the NG modes from Lorentz
and diffeomorphism breaking in a general theory likewise
can be envisaged, ranging from new long-range forces
weakly coupled to matter with possible implications for
dark matter and dark energy to the identification of many
or all massless modes in nature with the NG modes. A
careful investigation of these possibilities lies outside our
present scope but would be of definite interest.

Another interesting issue is whether a consistent theory
exists in Minkowski spacetime in which the diffeomor-
phism mode contained in " propagates. Consider, for
example, substituting an alternative kinetic term of the
form (34) in the Lagrangian (39), yielding the model

LB;ghost �
1

2
B�@�@�B� 
 ��B�B� � b2� 
 B�J� (42)

in Cartesian coordinates. This model may have a ghost, but
the behavior of the NG modes can nonetheless be exam-
ined. Proceeding via the projector method as before, we
find the kinetic term becomes 1

2 E
�@�@�E�, so the diffeo-

morphism NG mode contained in " is auxiliary while the
three E� modes propagate. More generally, in the covariant
derivative D�B� relevant for a general coordinate system
in Minkowski spacetime, the NG excitations reduce to
@�E� when b� is constant in Cartesian coordinates, so
kinetic terms contain no propagation of the diffeomor-
phism mode �� in this case.

This example illustrates a general difficulty in forming a
covariant kinetic term that permits propagation of the
diffeomorphism modes for the case of constant vacuum
value t������. To be observer independent, the Minkowski-
spacetime Lagrangian must be formed from contractions of
a tensor T������ and its derivatives. Only terms with one or
more derivatives can contribute to the propagation, as
shown above. However, for covariant derivatives of
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T������ with constant t������, the diffeomorphism modes
always enter combined with a derivative, @���, while the
connection acquires a corresponding change induced by
the metric fluctuation (29) that cancels them. Other possi-
bilities would therefore need to be countenanced, such as a
nonconstant t������. In any case, the structure of terms
containing derivatives of �� in the effective Lagrangian
for the NG modes represents a major difference between
spontaneous breaking of internal and spacetime symme-
tries. In the former, the relevant fields carry internal indices
that are independent of spacetime derivatives, and so theo-
ries with compact internal symmetry groups can be con-
structed that propagate all the NG modes without
generating ghosts. In contrast, the spontaneous violation
of spacetime symmetries involves fields with spacetime
indices, and for the diffeomorphism NG modes this
changes the derivative structure in the effective
Lagrangian.

V. RIEMANN SPACETIME

In this section, we revisit for Riemann spacetimes the
results obtained in the Minkowski-spacetime case. The
general features obtained in the previous section apply to
a nondynamical Riemann spacetime with fixed background
metric. The primary interest here therefore lies instead
with Riemann spacetimes having a dynamical metric.

A. Vierbein and spin connection

In a Riemann spacetime with dynamical metric g��, the
nature and properties of the NG modes for spontaneous
Lorentz and diffeomorphism violation still can be analyzed
following the general approach of Secs. II and III. We
assume that the solutions to a theory for a tensor T������
satisfy the condition (10), thereby inducing a nonzero
vacuum value t������. This condition is automatically sat-
isfied by writing T������ in terms of the vierbein,

T������ � e�
ae�be�c . . . tabc���; (43)

where tabc��� is the vacuum value of the tensor in a local
Lorentz frame. For definiteness in what follows, we sup-
pose that tabc��� is constant over the spacetime manifold in
the region of interest. This assumes appropriate smooth-
ness of t������ and compatibility with any boundary con-
ditions. For example, if the Riemann spacetime is
asymptotically Minkowski and the vacuum value of the
vierbein e�� is taken as���, then the components of t������
must be asymptotically constant.

A primary difference in Riemann spacetime is that up to
six of the 16 independent components of the vierbein e�a

can represent dynamical degrees of freedom of the gravi-
tational field. The Lagrangian for the theory must therefore
contain dynamical terms for the vierbein. This raises the
issue of the effect of these additional terms on the other 10
components of the vierbein, all of which are potential NG
-9
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modes for the spontaneous violation of spacetime
symmetries.

At first sight the situation might seem to be further
complicated by the existence of the spin connection
!�

ab, which permits the construction of the covariant
derivative and in principle can have up to 24 independent
components. However, the requirement that the connection
be metric,

D�e�a � 0; (44)

and the vanishing of the torsion tensor in a Riemann space-
time imply that the spin connection !�

ab can be specified
completely in terms of the vierbein and its derivatives
according to

!�
ab �

1

2
e�a�@�e�

b 
 @�e�
b� 


1

2
e�v�@�e�

a 
 @�e�
a�



1

2
e�ae�be�c�@�e�c 
 @�e�c�: (45)

It is therefore sufficient to consider the behavior of the
vierbein in studying the properties of the NG modes. For
example, a Higgs mechanism is excluded for the spin
connection in a Riemann spacetime, since no independent
propagating massless modes for !�

ab exist to absorb the
NG degrees of freedom. In the next section, we revisit this
issue in the context of the more general Riemann-Cartan
geometry, for which the spin connection is an independent
dynamical field.

Covariant derivatives acting on T������ in the Lagrangian
can also generate propagators for the vierbein and hence
for the NG modes. The covariant derivative D�T������ is
given by

D�T������ � e�
ae�be�c . . .D�tabc���: (46)

The term D�tabc��� in this equation contains products of the
spin connection with the vacuum value tabc���, which ac-
cording to Eq. (45) generates expressions involving a
single derivative of the vierbein. In the presence of sponta-
neous violation of spacetime symmetries, it follows that
any piece of the Lagrangian involving a quadratic power of
D�T������ can produce quadratic-derivative terms involv-
ing the vierbein.

The above discussion shows that in a Riemann space-
time the fate of the NG modes can depend on both the
gravitational terms in the Lagrangian and the kinetic or
other derivative-coupling terms for the tensor field. In what
follows, we consider implications of these results for bum-
blebee models.

B. Bumblebee and photon

For a bumblebee model in an asymptotically flat
Riemann spacetime, the vacuum structure is similar to
the Minkowski case. We take the vacuum values for B�

and the vierbein to be those of Eq. (19). The projector
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method can be applied, leading to the decomposition (25)
of B�. There are four potential NG modes contained in the
fields E� and ", and the axial-gauge condition b�E� � 0
holds. Note that the field strength B�� in Eq. (33) can be
rewritten to give

B�� � �@�e�a 
 @�e�a�ba; (47)

where ba is taken constant as in the previous subsection.
The properties of the NG modes depend on the kinetic

terms for B� and the gravitational terms in the Lagrangian.
To gain further insight, consider the Lagrangian (31) with a
Lagrange-multiplier potential,

L B �
1

2%
�eR	 �eB�B�R��� 


1

4
eB��B

��



1

2
e��B�B

� � b2� 
 eB�J
�: (48)

The vacuum solution for this theory is that of Eq. (40).
The effective Lagrangian LNG determining the proper-

ties of the NG modes can be obtained by expanding the
Lagrangian LB to quadratic order, keeping couplings to
matter currents and curvature, and using the decomposition
(25) of B�. Disregarding total derivative terms, we find

LNG �
1

2%
�eR	 �eb�b�R�� 	 �eA�A�R��

	 �e"�"	 2�b�b�R�� 	 2�e�"	 1�b�A�R���



1

4
eF��F�� 
 eA�J� 
 eb�J� 	 eb�@���J�;

(49)

Here, we again relabel A� � E�, which obeys b�A� � 0,
and write F�� � @�A� 
 @�A�, which is the field strength
of a gauge-fixed U(1) field. In Eq. (49), the gravitational
excitations h�� obey h��b� � 0. In the absence of curva-
ture sources, Eq. (49) reduces to the Minkowski-spacetime
result (41).

The form of LNG reveals that only two of the four
potential NG modes propagate. The propagating modes
are transverse Lorentz NG modes, while the longitudinal
Lorentz and the diffeomorphism NG modes are auxiliary.
In particular, with the kinetic term given by the square of
the field strength B�� in Eq. (47), the diffeomorphism NG
mode in " again cancels, as in the Minkowski-spacetime
case. Moreover, the curvature terms in LB also yield no
contributions for " in LNG. This is because, in an asymp-
totically Minkowski spacetime, metric excitations of the
required NG form h�� � 
@��� 
 @��� produce only a
vanishing contribution to the curvature tensor at linear
order and contribute only as total derivatives at second
order when contracted with ��� or b�.

As in the Minkowski-spacetime case, it is interesting in
the present context with gravity to consider the possibility
that the photon observed in nature can be identified with
-10
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the NG mode resulting from spontaneous Lorentz viola-
tion. We see that, in a Riemann spacetime, the theory of the
form (49) produces a free propagator for the Lorentz NG
mode consistent with this idea at the linearized level. Also,
the interaction with the charged current J� has an appro-
priate form. Indeed, the effective action LNG contains as a
subset the standard Einstein-Maxwell electrodynamics in
axial gauge.

The issue of possible experimental signals can be revis-
ited for the present Riemann-spacetime case. The discus-
sion in the previous section about potential SME and
related signals in Minkowski spacetime still applies, but
further possibilities exist. In particular, there are interesting
unconventional couplings of the curvature with A�, ", and
b�. The photon acquires Lorentz-invariant curvature cou-
plings of the form eA�A�R��, which are forbidden by
gauge invariance in conventional Einstein-Maxwell elec-
trodynamics but are consistent here with the axial-gauge
condition. The term �eb�b�R��=2% corresponds to a non-
zero coefficient of the s�� type in the pure-gravity sector of
the SME [5]. The other terms with curvature also represent
Lorentz-violating couplings. This Lagrangian therefore
gives rise to additional effects that could serve to provide
experimental evidence for the idea that the photon is an NG
mode for spontaneous Lorentz violation. The analysis of
the associated signals is evidently of interest but lies out-
side our present scope.

It also is of interest to ask whether there exists a theory in
Riemann spacetime with a nontrivial propagator for the
diffeomorphism mode contained in ". Indeed, for a purely
timelike coefficient b�, for which " � @0�0, it has been
shown that if a kinetic term for the diffeomorphism NG
mode were to appear with second-order time derivatives,
then an unusual dispersion relation would follow with
potentially interesting phenomenological consequences
[26]. In general, the presence of curvature makes this
question more challenging than in Minkowski spacetime.

In the context of the bumblebee model (48) with the field
strength (47) having constant ba, we have seen that the
diffeomorphism NG mode fails to propagate. Attempting
to change this by modifying the gravitational terms in the
Lagrangian (48) to any combination of covariant contrac-
tions of the curvature tensor R%���, including theories with
general quadratic curvature terms [47,48], also fails to
yield a nontrivial propagator for the diffeomorphism NG
mode for the same reason as above. However, possibilities
exist that might overcome this difficulty, such as allowing
for nonconstant ba. Another interesting option is to relax
the requirement of an asymptotically Minkowski space-
time, perhaps by adding a cosmological-constant term to
the theory. This leads to modifications in the projector
analysis and changes in the effective action for the NG
modes. For example, in a curved background a term of the
form �e"�"	 2�b�b�R�� in Eq. (49) would generate
quadratic terms for " in the effective Lagrangian, as
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needed for the propagation of ��. A cosmological term
e� also contains quadratic terms h��h�� 


1
2h

2 in the
weak-field limit, which might serve as a suitable source
of quadratic terms because a virtual diffeomorphism gen-
erates time derivatives for the spacelike components of
��. Exploration of these issues is of definite interest but
lies beyond the scope of this work.

VI. RIEMANN-CARTAN SPACETIME

In a Riemann-Cartan spacetime, the vierbein e�a and the
spin connection !�

ab represent independent degrees of
freedom determined by the dynamics [28]. It follows that
the effects of spontaneous Lorentz breaking can be strik-
ingly different from the cases examined above. In particu-
lar, we focus in this section on the possibility that the NG
modes are absorbed into the spin connection via a Higgs
mechanism.

A. Higgs mechanism for the spin connection

As in the Riemann-spacetime case, we suppose that a
tensor T������ obeys the condition (10) and acquires a
nonzero vacuum value. This condition can be satisfied by
expressing T������ in terms of the vierbein according to
Eq. (43). This result can be used to calculate the covariant
derivative of the field T������, which enters the kinetic
Lagrangian for T������ and therefore affects the NG modes
for the spontaneous Lorentz violation. A key feature of
Riemann-Cartan spacetime is that this covariant derivative
now involves the spin connection as an independent degree
of freedom. For instance, assuming constant t������, the
linearized expression in a Minkowski background is

D�T������ � !�
"
�t"����� 	!�

"
�t�"���� 	 . . . : (50)

It follows that a kinetic term involving a quadratic expres-
sion in the covariant derivative of T������ generates a non-
derivative quadratic expression in the spin connection. This
could represent a mass for the spin connection, so the
spontaneous violation of Lorentz symmetry in Riemann-
Cartan spacetime could incorporate a gravitational version
of the Higgs mechanism. Note that this Higgs mechanism
cannot occur in a Riemann spacetime, where the spin
connection is identically the derivative expression (45)
for the vierbein, because the same calculation produces
instead a kinetic term for the NG modes, as shown in the
previous section.

The Lagrangian for a generic theory with spontaneous
Lorentz violation in Riemann-Cartan spacetime can be
written as

L � L0 	LSSB; (51)

where L0 describes the unbroken theory and LSSB induces
spontaneous Lorentz violation. We suppose for simplicity
that L0 contains only gravitational terms formed from the
curvature and torsion, while the Lagrangian LSSB for a
-11
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tensor field T������ contains a kinetic piece and a potential
driving the spontaneous Lorentz violation.

A priori, it might seem that a large range of models
could implement this Higgs mechanism, since numerous
types of tensors could acquire a vacuum expectation value.
However, a complete Higgs mechanism requires a theory
L0 that has a massless propagating spin connection prior to
the spontaneous Lorentz violation. A fully satisfactory
example also requires the theory to be free of ghosts. It
turns out that these conditions severely restrict the possi-
bilities for model building.

General studies exist of theories L0 with a propagating
spin connection [47,48], including ones with both massive
and massless propagating modes. However, the subset of
ghost-free models is relatively small, especially for the
case of a massless spin connection. The total number of
propagating modes in these models depends on the pres-
ence of certain accidental symmetries. Our investigations
reveal that the symmetry-breaking Lagrangian LSSB typi-
cally breaks one or more of the accidental symmetries of
L0 when the tensor field acquires a vacuum expectation
value. This significantly complicates the analysis of mod-
els, but also offers interesting new avenues by which
spontaneous Lorentz violation could affect the physical
modes in a realistic theory.

We are primarily interested in ghost-free Lagrangians
L0 formed from powers of the curvature and torsion with
at most two derivatives in the equations of motion for the
vierbein and spin connection. In this case, up to 18 of the
24 components of the spin connection !�

ab in principle
can behave as propagating degrees of freedom. The six
components !0ab are auxiliary fields, irrespective of any
gauge choices imposed for the Lorentz symmetry or any
simplifications from accidental symmetries.

The behavior of the 18 modes can be studied by assum-
ing a background Minkowski spacetime and linearizing the
equations of motion along the lines discussed in Sec. II.
Note that, at linear order in infinitesimal quantities, the
spin connection transforms under Lorentz transformations
according to

!�
ab ! !�

ab 
 @��ab; (52)

while infinitesimal diffeomorphisms leave !�
ab invariant

at lowest order. The vacuum solution now takes the form

hT�����i � t�����; he��i � ���; h!�
abi � 0

(53)

in a suitable coordinate frame. The vanishing of h!�
abi

and the invariance of !�
ab under diffeomorphisms sug-

gests that the fate of the diffeomorphism NG mode is
unlikely to be appreciably altered by the new role of the
spin connection in the present context, and this is con-
firmed in what follows.
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B. Decompositions

The investigation of various models is facilitated by
introducing two different decompositions of the 24 fields
!���. The first is a decomposition according to Lorentz
indices,

!��� � A��� 	M��� 	
1

3
����T� 
 ���T��; (54)

where A��� is totally antisymmetric, M��� has mixed
symmetry, and T� is the trace piece. The antisymmetric
components define a dual V% � �%���A

���=2 that has four
independent components. The mixed components M���

satisfy eight identities, which can be written M��
� � 0

and M��� 
M��� � M���, and they therefore contain
16 degrees of freedom. The trace T� contains the remain-
ing 4 degrees of freedom. The reader is cautioned that
Eq. (54) is not a Lorentz-irreducible decomposition in
the usual sense because the field being decomposed is a
connection rather than a tensor.

The second useful decomposition involves the spin-
parity projections JP of the fields !���. These are particu-
larly appropriate for the case of timelike Lorentz violation
induced by t�����, such as a bumblebee vacuum value of the
form b� � �b; 0; 0; 0�. The 18 dynamical fields in this case
include the projections 2	, 2
, 1	, 1
, 0	, 0
, while the
six auxiliary fields !0�� contain two triplet projections we
denote by ~1	, ~1
. Again, we stress that these projections
involve the connection rather than a tensor, so the notation
fails to reflect the true transformation properties. For ex-
ample, the 1	 projection yields a triplet of scalars under
spatial rotations.

Explicit expressions for each of these projections can be
found. For example, we find

!�0	� � !j0j; !�0
� �
1

2
�jkl!jkl;

!�1	�
l � �jkl!j0k; !�1
�

k � !jkj;

!�~1	�
k �

1

2
�klm!0lm; !�~1
�

k � !00k;

!�2	�
jk �

1

2
�!j0k 	!k0j� 


1

3
�jk!l0l;

!�2
�
jk �

1

4
��klm!jlm 	 �jlm!klm� 


1

6
�jk�lmn!nlm;

(55)

where spatial components are denoted by j; k; . . . .
The two sets of projections can be related. We find

!�1	�
k �!�~1	�

k 
 Vk �
1

2
�k0lmM

0lm 

2

3
Vk;

!�1
�
k � 
!�~1
�

k 
 Tk � 
M00k 

2

3
Tk;

!�0	� � 
T0; !�0
� � V0:

(56)
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C. Bumblebee

To gain further insight, we investigate a definite form for
the Lagrangian LSSB, namely, the simple bumblebee
model

L SSB � 

1

4
eB��B

�� 
 e��B�B
� � b2� (57)

with a Lagrange-multiplier potential freezing any non-NG
modes. In a Riemann-Cartan spacetime, the field strength
B�� in the kinetic term of this theory is defined in Eq. (33).
Its expression in terms of the vierbein and spin connection
is

B�� � �e�
b!�

a
b 
 e�

b!�
a
b�ba: (58)

Note that this form reduces to Eq. (47) in the limits of
Riemann and Minkowski spacetimes, for which the spin
connection is given in terms of derivatives of the vierbein
by Eq. (45).

When B�� is squared to yield the kinetic term, quadratic
terms in !�

a
b appear in the Lagrangian LSSB. For ex-

ample, for a Minkowski background we find

L K � 

1

4
eB��B��

� 

1

4
�!�"� 
!�"���!

�!� 
!�!��b"b!: (59)

The appearance of these quadratic terms again suggests
that a Higgs mechanism can occur involving the absorption
of the NG modes by the spin connection.

In terms of the Lorentz decomposition in the previous
subsection, the kinetic term LK for B� becomes

LK �
2

9
�b�b�V�V� 
 b�V�b�V�� 


1

4
M"

��M!��b"b!



1

18
�b�b�T�T� 
 b�T�b�T��

	
1

3
����"V

"M!��b�b!



1

6
M�

���b�T� 
 b�T��b�: (60)

This result holds for any vacuum value b�, but its physical
interpretation can be involved in the general case.

For the special case of timelike Lorentz violation in-
duced by a vacuum expectation value b� � �b; 0; 0; 0�, the
JP decomposition provides a more convenient expression.
With this assumption, we find

L K � 

1

2
b2!�1	�

j !�1	�j 	
1

2
b2!�~1
�

j !�~1
�j: (61)

We see that this expression contains an apparent physical
mass term for the 1	 and a wrong-sign mass term for the
~1
. Since the ~1
 is an auxiliary field, it cannot propagate
independently. However, the 1	 is an independent dynami-
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cal field, so interpreting its apparent mass term requires a
study of the dynamical content of L0.

D. Illustrative models

Next, we present three different sample models L0, all
containing dynamical terms for the spin connection, to
illustrate some of the possible effects and issues emerging
from the presence of the Lorentz-breaking term LSSB. In
the first model, denoted L0;1, ghosts are present but an
analysis shows that a Higgs mechanism occurs when LSSB

is added. The second L0;2 initially has only auxiliary or
gauge degrees of freedom, but the addition of the Lorentz-
violating term LSSB breaks some accidental symmetries
and hence causes some modes to propagate. The third
model L0;3 is ghost free and has a massless propagating
spin connection.

The Lagrangian for the first example is

L 0;1 �
1

4
R�%��R

�%��: (62)

To lowest order in the spin connection, the curvature tensor
becomes R�%�� � @%!��� 
 @�!%��. In this model, all
the fields !��� with � � 0 propagate as massless modes.
However, when resolved into JP projections, the second-
derivative terms in the equations of motion for the even-
and odd-parity states have opposite signs, so the theory
contains ghosts. When L0;1 is combined with LSSB, the
linearized equations of motion become

@"@
"!���
@�@

"!"���

1

2
�!�!�
!�!��b�b

!

	
1

2
�!�!�
!�!��b�b!: (63)

These 24 equations can be diagonalized to determine the
nature of the modes in the combined theory, and we find
that among the propagating modes is a massive one. This
confirms the existence of a Higgs mechanism for the spin
connection in this model.

The idea behind the second model is to start with a
special theory L0 in which accidental symmetries exclude
all propagating physical modes, but chosen such that
physical propagating modes emerge when the Lagrangian
LSSB triggering spontaneous Lorentz violation is added.
The appearance of the physical modes via this ‘‘phoenix’’
mechanism can be traced to the breaking of some acciden-
tal symmetries of L0 by LSSB.

A number of models in which all modes are auxiliary or
gauge are known [48]. Here, we consider one explicit
example, with Lagrangian given by

L 0;2 �
1

2
R��R�� 


1

2
R��R��; (64)

where R�� is the Ricci tensor in Riemann-Cartan space-
time. Since our focus is on the spin connection, we restrict
attention for simplicity to solutions in background
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Minkowski spacetime. With this choice, the vierbein dis-
appears from the linearized theory, so the spin connection
is the only relevant dynamical field.

The unbroken Lagrangian can be written in terms of the
Lorentz decomposed fields as

L 0;2 �
1

9
F��F�� 


1

9
G��G�� 	

1

4
@"M"

��@!M!��



1

3

�
F�� 	

1

2
���"!G

"!
�
@�M

���:

(65)

The corresponding equations of motion are

@�

�
@!M!�� 


2

3

�
F�� 	

1

2
���"!G"!

��
� 0; (66)

@�F�� �
3

2
@�@!M!��; (67)

@�G�� � 

3

4
���!"@

!@�M�
"�: (68)

In these equations, F�� � @�T� 
 @�T� and G�� �

@�V� 
 @�V� are the field strengths for T� and V�,
respectively.

A cursory inspection might suggest that this theory has
at least two sets of massless fields, T� and V�, which
correspond to the 1	 and the 1
 modes in the JP decom-
position. However, there are a number of accidental sym-
metries in this theory associated with the projection
operators for the 2	, 2
, 0	, and 0
 fields. These and
Lorentz transformations can be used to remove all physical
propagating degrees of freedom [48]. In particular, the 1


mode can be gauged away using only rotations, while the
1	 mode can be gauged away using only boosts:

!�1
�
j ! !�1
�

j 
 @k"jk;

!�1	�
j ! !�1	�

j 	 �j0
lm@l"0m:

(69)

The net result is that the Lorentz-invariant theory (64) has
no physical content.

Suppose now the term LSSB in Eq. (61) for the case of a
timelike vacuum expectation value b� is added to the
Lagrangian (64). This spontaneously breaks boosts while
maintaining rotation symmetry. The 1
 mode can still be
gauged away via rotations, but the 1	 mode can no longer
be removed using boosts and so might be expected to
propagate as a massive mode. However, the mass term in
LSSB also affects the structure of the gauge and auxiliary
fields in the theory by breaking some of the accidental
symmetries, so other field combinations now become
physical. We find two such massless modes, involving
superpositions of the JP projections.

For our third example, we take for L0 a ghost-free
model with a massless propagating spin connection. A
general analysis under the assumption of Lorentz invari-
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ance finds only four ghost-free possibilities [48]. All share
the property of the previous example that the propagating
modes consist of mixtures of JP projections. In two mod-
els, the massless propagating mode incorporates contribu-
tions from the 1	 projections, while in the other two it
includes contributions from the 1
 projections. It is there-
fore of interest to adopt for L0 either of the first two models
and investigate the effect on the propagating modes of
adding the Lorentz-violating term LSSB.

As an explicit example, consider the Lagrangian [48]

L 0;3 � R��R�� 

1

3
R2: (70)

It turns out that the propagating modes of this Lorentz-
invariant model are a mixture of 1	 and 2	 projections. In
contrast, LSSB contains quadratic terms for the 1	 and the
auxiliary ~1
 states. In the theory resulting from the combi-
nation of the two, the nature of the modes can be deter-
mined by diagonalizing the 24 linearized equations for the
spin connection. We find that the propagation of the mass-
less modes is altered, but there is no massive propagating
1	. The incompatibility between the mixture of JP states
appearing in L0;3 and that appearing in LSSB prevents the
occurrence of a clean Higgs mechanism for the JP modes
in this example.

In the context of these ideas, a number of issues of
interest remain open for future investigation. Studies of
the large variety of possible Lorentz-invariant Lagrangians
L0 could lead to additional features beyond those identi-
fied in the three examples above. It also would be of
interest to explore more explicitly the effects of lightlike
and spacelike b� in the Riemann-Cartan spacetimes. The
JP decomposition is less appropriate for these cases, so
alternative decompositions with respect to the correspond-
ing little group are likely to be useful. Different choices for
LSSB, including ones in which the spontaneous Lorentz
violation involves one or more tensor fields, similarly can
be expected to affect the dynamics of the NG modes. From
a broader theoretical perspective, the incorporation of
Lorentz violation opens an arena for the search for ghost-
free theories with dynamical curvature and torsion.

Various implications for phenomenology in the context
of Riemann-Cartan spacetime also merit exploration. The
scale of the emergent mass in the models considered here is
set by b2. Even if this is of order of the Planck mass, the
existence of fields with Lorentz-violating physics could
have effects on cosmology and in regions with strong
gravitational fields such as black holes. The couplings to
other known fields also merit attention and could lead to
interesting signals for experiments. All relevant terms as-
sociated with gravitational and SM fields are included in
the gravitational couplings of the Lorentz- and
CPT-violating SME in Riemann-Cartan spacetime [5],
which therefore provides the appropriate framework for
investigating phenomenological implications of these
models.
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VII. SUMMARY

In this paper, we have examined the fate of the Nambu-
Goldstone modes when Lorentz symmetry is spontane-
ously broken. The analysis is performed in the context of
the vierbein formalism, which is well suited for this pur-
pose because it admits a clear separation between local
Lorentz and coordinate frames on the spacetime manifold.
Within this formalism, we have demonstrated in Sec. II that
spontaneous particle Lorentz violation is accompanied by
spontaneous particle diffeomorphism violation and vice
versa, and that up to 10 NG modes can appear. These
modes can naturally be matched to those 10 of the 16
modes of the vierbein that in a Lorentz-invariant theory
are gauge degrees of freedom. This match provides further
evidence for the value of the vierbein formalism in studies
of spontaneous violations of spacetime symmetries. We
have also provided a generic treatment for background
Minkowski spacetimes. The fate of the NG modes is found
to depend both on the spacetime geometry and also on the
dynamics of the tensor field triggering the spontaneous
violation of local Lorentz and diffeomorphism symmetries.

As illustrative models for the analysis, we have adopted
a general class of bumblebee models, involving vacuum
values for a vector field that break some of the local
Lorentz and diffeomorphism symmetries. Some properties
of these models have been presented in Sec. III, where
projectors are constructed that permit separation of the
Lorentz and diffeomorphism NG modes.
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In the later sections of this work, we have studied the
behavior of the NG modes in Minkowski, Riemann, and
Riemann-Cartan spacetimes. Each of these offers distinc-
tive general features, which can be illustrated within bum-
blebee models. In Minkowski and Riemann spacetimes,
Lorentz NG modes exist that can propagate as massless
modes, with effective Lagrangians containing the Maxwell
and Einstein-Maxwell theories in axial gauge. Suitable
bumblebee models thereby provide dynamical methods
of generating the photon as a Nambu-Goldstone boson
for spontaneous Lorentz violation. Various possibilities
exist for experimental signals in these models, including
both unconventional Lorentz-invariant couplings and
Lorentz-breaking couplings in the matter and gravitational
sectors of the SME. In Riemann-Cartan spacetimes, the
interesting possibility exists that the spin connection could
absorb the propagating NG modes in a gravitational ver-
sion of the Higgs mechanism. This unique feature of
gravity theories with torsion may offer another phenom-
enologically viable route for constructing realistic models
with spontaneous Lorentz violation.
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