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We present a symbolic method for organizing the representation theory of one-dimensional super-
algebras. This relies on special objects, which we have called adinkra symbols, which supply tangible
geometric forms to the still-emerging mathematical basis underlying supersymmetry.
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FIG. 1 (color online). Each supersymmetric quantum field
I. INTRODUCTION

There are important examples in which theoretical phys-
ics incorporates elegant motifs to represent mathematical
conceptions that are vastly simplified thereby. One such
example is the widespread use of Feynman diagrams.
Another one of these is Salam-Strathdee superspace, a
stalwart construction which has proven most helpful in
organizing fundamental notions in field theory and in string
theory. Despite its successes, however, there are vexing
limitations which bedevil attempts to use this latter con-
struction to understand certain yet-mysterious aspects of
off-shell supersymmetry. This situation would seemingly
benefit from an improved organizational scheme. In this
paper, we introduce a graphical paradigm which shows
some promise in providing a new symbolic technology
for usefully reconceptualizing problems in supersymmetric
representation theory.

The use of symbols to connote ideas and conceptions
which defy simple verbalization is perhaps one of the
oldest of human traditions. The Asante people of West
Africa have long been accustomed to using simple yet
elegant motifs known as adinkra symbols, to serve just
this purpose. With a nod to this tradition, we christen our
graphical symbols as ‘‘adinkras.’’

Our focus in this paper pertains most superficially to the
classification of off-shell representations of arbitrary
N-extended one-dimensional superalgebras. However, for
some time, we have been aware of evidence that suggests
that every superalgebra, in any spacetime dimension, has
its representation theory fully encoded in the representa-
tions of corresponding one-dimensional superalgebras.
This idea, and much of the relevant mathematical technol-
ogy for substantiating this idea, has been developed in a
series of previous papers [1–3]. One purpose of this current
paper is to introduce a new notational tool which, among
other things, adds tangible conceptual forms useful for
discerning both the content and the ramifications of this
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mathematics. The tool we introduce is a new sort of symbol
which usefully represents supermultiplets.

The relevance of our investigation extends beyond the
realm of representation theory, however. Indeed, there are
reasons to suppose that supersymmetric quantum mechan-
ics might include undiscovered algebraic structures related
to interesting fundamental questions. Consider the simple
observation that every quantum field theory formulated in
any spacetime dimension has a corresponding supersym-
metric quantum mechanical model obtained by dimension-
ally reducing all of the spatial dimensions. We refer to
these quantum mechanical models as ‘‘shadows’’ of the
original quantum field theories. Higher spacetime dimen-
sion D manifests in the shadow version as higher N,
whereas structure group SO�D� 1; 1� transformations
manifest as R transformations. Those quantum field theo-
ries having remarkable algebraic features, anomaly can-
cellation, for example, must have algebraically interesting
shadows as well. Since 11-dimensional supergravity is a
unique theory, the corresponding N � 32 supersymmetric
quantum mechanics certainly exhibits its own special
uniqueness. One might wonder how the feature of anomaly
freedom in effective string-theory descriptions of ten-
dimensional supergravity manifest on corresponding
shadow mechanics. This viewpoint might be useful in
discerning whatever analogs of string-theory modular in-
theory has a shadow in supersymmetric quantum mechanics
obtained by dimensionally reducing all of the spatial dimensions
in the field theory.
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variance exist in M theory. See Fig. 1 for an illustration of
these notions.

We should emphasize the importance of finding an over-
arching off-shell representation theory for supersymmetry.
This is a problem that has been largely ignored as theo-
retical physicists have been able to uncover ever more
interesting and complicated theories that involve super-
symmetry by ever more creative means. We refer to this
as the ‘‘auxiliary field problem.’’ Some familiar systems in
which this problem is observed are 11D supergravity and
all known 10D supersymmetric systems. Since each of
these particular systems are special limits of closely related
M theory and 10D superstrings, it follows that any increase
in our understanding of these special limits is likely to
accrue benefits to our understanding of the full theories.

This paper is structured as follows.
In Secs. II through VII we present an overview of the

mathematical basis for the core part of the paper, which
begins in Sec. VIII. The review sections are included in
part to make this paper relatively self-contained. But these
also include several important new definitions and include
commentary which may prove helpful to the reader. In
these sections we describe the elemental superalgebra
and set our notational conventions. We review that class
of irreducible representations which includes generalized
scalar and generalized spinor multiplets, and discuss as-
pects of automorphic duality transformations. We review
the connection between the multiplets mentioned above
and the algebras GR�d; N�. We review the connection
between the representations of GR�d;N� and those of
the Clifford algebras C�N; 1�. We then review the notion
of a root superfield proposed in [1] which may provide the
mathematical lynch pin for the classification of all
supermultiplets.

In Secs. VIII through XIV we methodically develop the
conception of adinkra symbols referred to above. In suc-
cessive sections, we show how elemental N � 1 adinkra
symbols can be combined to describe higher-N represen-
tations, and how duality maps connect these with adinkras
describing distinct multiplets. We show how the adinkra
symbols fit naturally into the concept of a root space and
how supersymmetry transformations can be viewed in
terms of flows on a lattice. We use these techniques to
describe new multiplets which exhibit interesting topologi-
cal distinctions. We use these techniques to comprehen-
sively describe all of the known irreducible multiplets for
N � 4, and a few interesting reducible multiplets. In so
doing, we are hopeful that the discussion presents a sat-
isfying reconceptualization of traditional superspace re-
duction techniques, and a satisfying reconceptualization
of gauge invariance in supermultiplets.
II. THE ELEMENTAL d � 1 SUPERALGEBRA

The most basic of all superalgebras is the d � 1 N � 1
superalgebra, which can be written as
065002
�	Q��1�; 	Q��2�� � �2i�1�2@�; (2.1)

where �1;2 are real anticommuting parameters and � is a
‘‘proper time’’ which parametrizes the one-dimensional
space. We like to interpret this space as the world line
traced out by a particle in an ambient ‘‘target space.’’ There
are two irreducible representations of (2.1). The first of
these is the d � 1 N � 1 scalar multiplet, which includes a
real commuting field � (� � �� where the * operation
denotes ‘‘superspace conjugation) as the lowest component
and a real anticommuting field  ( �  �) as the highest
component. The other basic multiplet is the d � 1 N � 1
spinor multiplet, which includes a real anticommuting field
� as a lowest component and a real commuting field B as
highest component. The supersymmetry transformation
rules are

	Q� � i� 	Q� � �B

	QB � i� _� 	Q � � _�;
(2.2)

where � is a real anticommuting parameter (� � ��). One
way to describe these multiplets is via the superfields,

� � �	 i� 	 � �	 �B; (2.3)

where � is a real anticommuting coordinate. If we intro-
duce superspace operators

Q � i@=@�	 �@� D � i@=@�� �@�; (2.4)

then the transformation rules (2.2) follow from acting on �
and 	 with 	Q��� � �i�Q. We can write invariant actions
as

S� �
Z
dtd�

�
1

2
�@�D�

�

S	 �
Z
dtd�

�
�

1

2
i	D	

�
:

(2.5)

In terms of components, i.e., after performing the � inte-
grations, these are described by

S� �
Z
dt
�
1

2
_�2 �

1

2
i _ 

�

S
 �
Z
dt
�
�

1

2
i� _�	

1

2
B2

�
:

(2.6)

It is also possible to add a superpotential for � by addingR
dtd�W��� to S�. Other interactions are also possible.
III. AUTOMORPHIC DUALITY
TRANSFORMATIONS

A useful operation which maps between the two irre-
ducible N � 1 multiplets was described in [1]. In terms of
components, this is realized by making the following re-
placements:

� _�; � $ �B;��: (3.1)

In terms of superfields, these are equivalent to
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	 $ �D�: (3.2)

Under this operation, the transformation rules for the scalar
and spinor multiplets are interchanged and the actions S�

and S	 are also interchanged. In other words, a map (3.1)
suffices to replace a scalar multiplet with a spinor multiplet
and vice versa. Since this generates an automorphism on
the space of superalgebra representations, this is referred to
as an automorphic duality, or an AD map for short. The
term duality is used here not in the sense that the multip-
lets, or theories constructed using these multiplets, are
equivalent. Instead, the term implies simply that these
constructions are paired by this operation.

The AD map connecting a scalar multiplet with a spinor
multiplet is intrinsically nonlocal. This is because (3.1)
implies ���� !

R
dtB���. However, this is realized in a

local way on the transformation rules (4.2) and on the
actions (4.4) because � always appears differentiated,
i.e., because there is a shift symmetry �! �	 c, where
c is a constant parameter. (A superpotential would gener-
ally spoil this property.) It is possible to generalize these
actions to describe quantum mechanical sigma models. In
these cases, the presence of a shift symmetry implies that
the target space has an isometry. Interestingly, such isome-
tries are precisely the ingredient needed to couple a back-
ground vector field to the theory so as to switch on a
supersymmetry central charge [4,5]. Therefore, the ability
to perform automorphic duality transformations is equiva-
lent to the ability to include a central term in the super-
algebra. As shown in [4], these charges imply interesting
target-space dualities similar to T dualities in string theory.
This motivates a basic connection between automorphic
duality and nontrivial target-space dualities.

The AD map (3.1) describes a quantum mechanical
version of Hodge duality. To see this, note that in field
theories Hodge duality maps a P-form �P into a D� P�

2 form ~�D�P�2 via d�P ! �d ~�D�P�2. If one starts with a
scalar field � in one dimension, then D � 1 and P � 0, in
which case this implements a map �! ��1, where ��1

is a formal ‘‘minus-one’’ form, an object whose exterior
derivative is a zeroform. This is precisely what character-
izes the field B which appears as the image of � under
(3.1).
IV. EXTENDED SUPERSYMMETRY

The N-extended d � 1 superalgebra is described by

�	Q��
I
1�; 	Q��

J
2�� � �2i�I1�

I
2@�; (4.1)

where I � 1; :::; N, and �Ii are a set of real anticommuting
parameters. Although it is possible to include a central
term on the right-hand side of (4.1), we do not do so at
this time.1 In this section we review a particular class of
1See the appendix for a brief discussion pertaining to such
central extensions.
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minimal representations to (4.1). These generalize the N �
1 scalar and spinor multiplets described above. Many other
representations exist which lie outside this class, however.
Likely, all other representations can be discerned and
organized using technology developed in [1]. In this and
in the following three sections we briefly review these
results, since these provide the mathematical basis behind
the core presentation of this paper.

A. Scalar multiplets

One class of representations describes generalized scalar
multiplets. The transformation rules are determined by
making the following ansatz:

	Q�i � �i�I�LI�i
|̂ |̂ 	Q {̂ � �I�RI�{̂

j _�j; (4.2)

where �i��� is a set of real commuting fields and  {̂��� is a
set of real anticommuting fields. Ordinarily, supersymme-
try requires an equal number of bosons and fermions.
Accordingly, the indices i and {̂ each have the same multi-
plicity, denoted d. Accordingly, i � 1; . . . ; d and {̂ �
1; . . . ; d. Furthermore, since �i and  {̂ are each real, it
follows that the matrices �LI�i

|̂ and �RI�{̂
j are real. The

algebra (4.1) imposes the following restrictions on LI and
RI:

�LJRI 	 LIRJ�i
j � �2	IJ	

j
i

�RJLI 	 RILJ�{̂
|̂ � �2	IJ	{̂

|̂:
(4.3)

There is no reason from a purely algebraic point of view to
impose an a priori relationship between LI and RI.
Nevertheless, a certain minimalist dynamical considera-
tion does imply one more restriction. In particular, we
require that the kinetic action described by

SSM �
Z
dt
�
1

2
_�i _�i �

1

2
i {̂ _ {̂

�
(4.4)

be invariant under the transformations (4.2). In (4.4), in-
dices are raised according to �i � 	ij�j and  {̂ � 	{̂ |̂ |̂.
The more general case, describing sigma models with a
curved target space, involves additional subtlety not ad-
dressed in this paper. The action (4.4) is invariant under
(4.2) only if

�LTI �
{̂j � ��RI�{̂j: (4.5)

This final requirement defines the operator RI in terms of
LI, or vice versa. Taken together, the three requirements
given in (4.3) and (4.5) describe an algebra which has been
designated GR�d; N�.

It is possible to define ‘‘twisted scalar multiplets’’ using
the alternate transformation rules obtained by interchang-
ing the placement of LI and RI in the transformation rules
(4.2). In this case, the algebraic requirements on LI and RI
are identical to those in the untwisted case.
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B. Spinor multiplets

Another class of representations describes generalized
spinor multiplets. These are determined by analogy to the
previous discussion. Accordingly, the transformation rules
are determined using the following ansatz:

	Q�{̂ � �I�RI�{̂
jBj 	QBi � �i�I�LI�i

|̂ _�|̂; (4.6)

where �{̂��� describes d real anticommuting fields and
Fi��� describes d real commuting fields. We require that
the transformation rules (4.6) describe the algebra (4.1).
We also impose that the minimalist kinetic action, given by

SFM �
Z
dt��1

2i�
{̂ _�{̂ 	

1
2B

iBi�; (4.7)

be a supersymmetry invariant. Together, these imply pre-
cisely the same restrictions on LI and RI as given in (4.3)
and (4.5).

It is possible to define ‘‘twisted spinor multiplets’’ using
the alternate transformation rules obtained by interchang-
ing the placement of LI and RI in (4.6). In this case, the
algebraic requirements on LI and RI are once again iden-
tical to those in the untwisted case.
V. AN ALGEBRAIC BASIS FOR
GENERALIZED SUPERFIELDS

The existence of the supermuliplets described above
hinges on the GR�d; N� algebras, defined by

�LIRJ 	 LJRI�i
j � �2	IJ	i

j

�RILJ 	 RJLI�{̂
|̂ � �2	IJ	{̂

|̂

	{̂ k̂�RI�k̂
j � �	jk�LI�k

{̂;

(5.1)

where �LI�i
|̂ and �RI�{̂

j describe two sets of N d� d
matrices. Let hatted indices take values in one vector space
V R  Rd and let unhatted indices take values in another
vector space V L  Rd. In this way, the LI matrices de-
scribe linear operators which map elements of V R into
elements of V L, and the RI matrices describe linear op-
TABLE I. Values of dN where N � 8m	 n fo
through d8, the m � 1 row enumerates d9 throug
d24, and the m � 3 row enumerates d25 through d
arbitrary number of rows. The final row indicate
tions.

m 1 2 3 4

0 1 2 4 4
1 16 32 64 64
2 256 512 1024 1024
3 4096 8192 16 384 16 384

Type N AC Q Q
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erators which map elements of V L into elements of V R. It
is useful to define four distinct sets of linear transforma-
tions which act on and between the two vector spaces V L
and V R according to

fMLg:V R ! V L fULg:V L ! V L

fMRg:V L ! V R fURg:V R ! V R;
(5.2)

In this way �LI�i
|̂ 2 fMLg and �RI�{̂

j 2 fMRg.
Furthermore, �LIRJ�i

j 2 fULg and �RILJ�{̂
|̂ 2 fURg.

Each of the sets described in (5.2) define a vector space
in its own right.

For a given value of N, there is a minimal value of d,
called dN , for which N linearly independent real matrices
LI exist which satisfy (5.1). The value dN gives the number
of off-shell bosonic (or fermionic) degrees of freedom in
the minimal supersymmetry matter multiplets for that
value of N. To determine dN , notice that there is a unique
way to write N in terms of a mod 8 decomposition, N �
8m	 n. Here m � 0; 1; 2; 3; . . . counts cycles of 8, and
n � 1; 2; 3; . . . counts the position in the cycle. For in-
stance N � 7 corresponds to �m; n� � �0; 7�, N � 17 cor-
responds to �m; n� � �2; 1�, and N � 714 corresponds to
�m; n� � �89; 2�. The values of dN are given by

dN � 16mfRH�n�; (5.3)

where fRH�n� is the so-called Radon-Hurwitz function
[1,6], defined as fRH�n� � 2r where r is the nearest integer
greater than or equal to log2n. The results are tabulated in
Table I. Explicit matrix representations of LI and RI are
given for N � 8 in Appendix A of [2]. This is generalized
to arbitrary N using a recursive scheme in [3].

The enveloping algebra EGR�d; N�  fMLg �
fMRg � fULg � fURg consists of all linear maps on and
between V R and V L. Note that GR�d; N� � EGR�d; N�.
A subalgebra of EGR�d;N� is generated by the two sets of
p-forms defined as wedge products involving LI and RI,
r all N � 32. The m � 0 row enumerates d1

h d16, the m � 2 row enumerates d17 through
32. This table can be continued to include an

s the ‘‘type’’ of the EGR�dN;N� representa-

n

5 6 7 8

8 8 8 8
128 128 128 128

2048 2048 2048 2048
32 768 32 768 32 768 32 768

(etcetera)
Q AC N N
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fI � LI ~fI � RI

fIJ � L�IRJ� ~fIJ � R�ILJ�

fIJK � L�IRJLK� ~fIJK � R�ILJRK�

(5.4)

and so forth. Each set of p-forms divides into even forms
and odd forms, such that

f�odd� � f�even� � ~f�odd� � ~f�even�

2 fMLg � fULg � fMRg � fURg: (5.5)

Collectively, these operators generate an algebra denoted
^GR�d; N�.

It is generally so that ^GR�dN; N� � EGR�dN; N�,
although for some values of N, it turns out that
^GR�dN;N�  EGR�dN; N�. In the latter case the alge-
bra EGR�dN; N� is said to be normal. Otherwise the
algebra falls into one of two classes, known as almost
complex or quaternionic, depending on whether
EGR�dN;N� contains two or four copies of GR�dN; N�,
respectively. In the almost complex case, EGR�dN; N�
includes an operator, called D which interconnects the
two copies of ^GR�dN; N�. In the case of quaternionic
algebras there is a triplet of operators E1;2;3 which inter-
connect the four copies of ^GR�d; N�. In the balance of
this paper we concern ourselves with constructions built
using the algebras ^GR�dN;N�, rather than EGR�dN; N�.
A consequence is that the operators D and E) will not play
a role in this paper. We suspect, however, that the operators
D and E) will contribute in an interesting way in a more
comprehensive supersymmetry representation theory. At
the present time, however, their significance is not yet fully
appreciated.2 We distinguish the vector spaces spanned by
^GR�d; N� by use of a ‘‘prime’’ symbol. For instance,
f�odd� 2 fMLg

0. The vector space fMLg
0 may be smaller

than fMLg in the case of almost complex or quaternionic
algebras. Similar statements pertain to the other three
vector spaces defined in (5.2).

In [1–3] a close connection between the algebras
GR�dN; N� and C�N; 1� was exploited to describe the
representation theory of the former algebra in terms of
the representation theory of the latter. This is helpful
because Clifford algebra representations have been studied
extensively, and are readily available in the literature. The
same Clifford algebras play a seemingly different role in
describing spinors in higher-dimensional field theories.
This may imply interesting ‘‘shadow’’ relationships be-
tween representations of D � 2 superalgebras with analo-
gous representations of d � 1 superalgebras.

A very brief synopsis of the connection between repre-
sentations of GR�d;N� and those of C�N; 1� follows. For a
more detailed description, the reader is referred to [1] and
references therein. The Clifford algebra C�N; 1� is defined
2One possibility is that these operators are needed to describe
multiplets with a central charge.
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by
f�Î ;�Ĵg � �2�Î Ĵ; (5.6)

where Î; Ĵ � 1; . . . ; N 	 1 and �Î Ĵ � diag�1; . . . ; 1;�1�.
For each positive integer N there exists a 2d� 2d matrix
representation to (5.6) such that the first N Gamma matri-
ces �I � f�1; . . . ;�Ng are real and antisymmetric, and
where

�I �
0 LI
RI 0

� �
: (5.7)

The smaller matrices LI and RI which appear here are each
d� d, and provide a representation of GR�d; N�.

VI. CLIFFORD ALGEBRA SUPERFIELDS

The multiplets reviewed in Sec. IV arise from a deriva-
tion on a superspace SM  V L �V R, where V L and
V R are the vector spaces described above. For instance, in
the case of the scalar multiplet, �i��� 2 V L and  {̂��� 2
V R are the superfield ‘‘components.’’ In this way, the
world line of a superparticle is described by a pair of
trajectories, one in V L and the other in V R. There are
other possibilities, however.

Consider instead a different superspace defined as
SM0  UL �MR. Parametrize SM0 using as compo-
nent fields

�i
j��� 2 fULg

0 
{̂
j��� 2 fMRg

0: (6.1)

Therefore, �i
j��� and 
{̂

j��� describe fields on the particle
world line which take values in these vector spaces. We can
expand the fields in terms of the bases f�even� and f̂�odd� as
follows:

�i
j � �	i

j 	�IJ�fIJ�i
j 	�IJKL�fIJKL�i

j 	 � � �


{̂
j �  I�f̂I�{̂

j 	  IJK�f̂IJK�{̂
j 	 � � � :

(6.2)

The pair f�i
j���;
{̂

j���g describe a Clifford algebraic
superfield. The expansions (6.2) terminate for any given
finite value of N since any antisymmetric product with
more than N terms vanishes (i.e., an N-form in N dimen-
sions is a top-form.) Define a supersymmetry transforma-
tion according to

	Q����i
j � �i�I�LI�i

k̂

k̂
j

	Q���
{̂
j � �I�RI�{̂

k@��k
j:

(6.3)

These rules automatically satisfy (2.1) since by construc-
tion LI and RI obey (5.1).

One can apply (6.3) to extract the transformation rules
level-by-level in the expansion (6.2). This requires careful
use of the expressions in (5.1). In the general case, super-
field transformation rules (6.3) imply the following rules
for the level-expansion:

	��peven� � �i��I1 I2���Ip� 	 �p	 1�i�J 
I1���IpJ

	 �podd� � ���I1 _�I2���IP� 	 �p	 1��J _�I1���IPJ:
(6.4)
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Notice that the first term in 	��p� is a p-form obtained as a
wedge product between the one-form parameter �I and a
fermionic �p� 1�-form. In the case p � 0 this term van-
ishes because �p� 1�< 1, and therefore there is no corre-
sponding fermion.

In traditional superfields S � S��; �1; . . . ; �N� one re-
fers to the sequence of component fields in terms of ‘‘low-
est component’’ to ‘‘highest component’’ where, roughly
speaking, the component number corresponds to the asso-
ciated power of �I which appears in a formal Taylor series
expansion of S. In Clifford algebra superfields we refer to
the analogous sequence using the terms ‘‘level-zero’’ to ‘‘-
level-N’’. In this case the ‘‘level’’ corresponds to the
^GR�dN;N� form-degree of the terms in question. For
each choice of N there are two distinct Clifford algebra
superfields. One has a level-zero boson and one has a level-
zero fermion. We refer to the former as a bosonic Clifford
algebra superfield and to the latter as a fermionic Clifford
algebra superfield. The bosonic Clifford algebra superfield
is also called the ‘‘base superfield’’ for the corresponding
value of N. In the case of a bosonic Clifford algebra
superfield, the even levels are described by the field
�i

j��� and the odd levels are described using the field

{̂

j���. For instance, the N � 3 base superfield has a
level-zero boson �, three level-one fermions organized
as a vector  I, three level-two bosons organized as a
two-form �IJ , and one level-three fermion organized as
a three-form  IJK. The three-form is equivalently de-
scribed as a one-form in terms of �� �I � "IJKL JKL.

VII. ROOT SUPERFIELDS

Clifford algebraic superfields describe only a restricted
class of multiplets. Moreover, for the cases N � 4 these
representations are reducible. This construction comple-
ments the superfields described previously using elements
of V L �V R as component fields. Nevertheless, these two
sorts of superfields do not yet provide a sufficient basis for
a comprehensive representation theory. A big step in that
direction is obtained by using the Clifford algebraic super-
fields as a ‘‘base’’ upon which a variety of operations can
be performed so as to obtain a much larger class of
representations.

Take a Clifford algebraic superfield (6.2), and write the
components as3

��; I; �IJ; . . .� � �@�a0
� ~�; @a1

� ~ I; @�a2
� ~�IJ . . .�; (7.1)

etcetera, where ai 2 Z. For the case where all of the ai are
zero, the components � ~�; ~ I; ~�IJ; . . .� describe the base
superfield. However, when at least one of the labels is
nonzero, then the structure of the superfield changes in
3The convention used here is slightly different than the con-
vention defined in [1]. In this modified convention, the odd labels
ai�odd in the base superfield differ by a minus sign as compared
to that paper.

065002
an interesting way. For instance, when one of the bosonic
labels is 1, this means that the corresponding component is
written as the antiderivative of a ‘‘dual’’ component. To be
more concrete, if a2 � 1 this would imply that �IJ��� �R
� d~� ~�IJ�~�� or, equivalently, that @��IJ � ~�IJ. Note that

this describes an automorphic duality transformation. The
relationship between the base mutliplet and a generic root
multiplet is described in terms of sequences of AD maps.

It is also important to realize that the usual level of a
component field in the conventional superspace approach
is no longer rigidly linked to the order of the Clifford
algebra elements when at least one of the exponents is
nonvanishing.

The root superfields utilizing various choices of ai, in
general, describe distinct representations of supersymme-
try. It is useful to invent a nomenclature to refer to these.
Accordingly, we designate the base multiplet, where all of
the ai vanish, using a so-called root label �0 . . . 0�	, which
includes N 	 1 zeros. The subscript 	 designates that the
zero form is a boson. In the case where the zero form is a
fermion, the corresponding root label is �0 . . . 0��. Starting
with the base superfield, another superfield is obtained by
dualizing on one of the component levels. For instance, if
we started with the N � 3 base superfield �0000�	 and
dualized at level two, i.e., dualized the two-form �IJ, then
we would obtain the superfield �0010�	. Other cases are
labeled similarly.

At each value of N the base superfield �0 . . . 0�	, plays a
special role in the representation theory. It proves helpful to
give this multiplet the special symbol ��N�

0	 . Similarly, we
denote the Clifford algebraic superfield having a fermionic
zero form, i.e., �0 . . . 0��, as ��N�

0� .
The numbers ai in the root superfield label �a0; . . . ; aN��

can take on any integer value. However, the multiplets for
which ai 2 f0; 1g are of particular interest. We refer to the
set of such multiplets as the ‘‘root tree.’’ In these cases, the
label can be read as a binary number. For instance, the
sequence of numbers in the label �0101�	 can be read as
0 � 23 	 1 � 22 	 0 � 21 	 1 � 20 � 5. We therefore denote
this multiplet using the notation ��3�

5	. In this way, we can
describe a useful class of multiplets using the concise
names ��N�

-�, where - are integers such that 0 � - �

�2N	1 � 1�. As it turns out, there is in general much
redundancy in these names. For instance, for each choice
of N, the multiplets in the root tree having root label
�1; a1; . . . ; aN�� are the same as the multiplets �0; 1 �
a1; . . . ; 1 � aN��. Thus, without loss of generality we con-
sider 0 � - � �2N � 1�.

VIII. MULTIPLET ADINKRAS

In this section we define a powerful diagrammatic tech-
nique which usefully encodes many aspects of supersym-
metry multiplets. According to this scheme, each multiplet
has a corresponding distinctive symbolic form, which we
-6
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refer to as an adinkra symbol, or an adinkra for short. An
adinkra uses white circles to represent bosons and black
circles to represent fermions. In either case the circles are
called nodes. The nodes are interconnected using oriented
line segments, referred to as arrows. The arrows are di-
rected from nodes representing lower component fields
toward nodes representing higher component fields.

A. N � 1 adinkras

Each of the two irreducible N � 1 multiplets include
off-shell one bosonic and one fermionic degree of freedom.
Accordingly, the adinkras for these multiplets include one
white node, to represent the boson, and one black node, to
represent the fermion. In the case of the scalar multiplet,
the boson is the lower component and the fermion is the
higher component. Accordingly, the adinkra for the scalar
multiplet is

.

Since the arrow points toward the black node, it is clear that
the fermion is the higher component in this multiplet. We
can use the adinkra as a method for identifying this mul-
tiplet. We recall, however, that the scalar multiplet can also
be described with a root label, as �00�	, or using Omega
notation, as ��1�

0	. Each of these three schemes has advan-
tages and disadvantages. In the balance of this paper we
demonstrate how the adinkra is useful for organizing the
assembly of N � 1 multiplets into higher-N multiplets, for
identifying irreducible multiplets, and for describing gauge
invariance. We will use root labels or Omega notation in
cases where these choices are advantageous, however,
since the three notational schemes usefully complement
each other.

In the case of the spinor multiplet the fermion is the
lower component and the boson is the higher component.
Accordingly, the adinkra for the spinor multiplet is

.

Since the arrow points toward the white node, it is clear
that the boson is the higher component in this multiplet.
The spinor multiplet can also be described with a root
label, as �00��, or using Omega notation, as ��1�

0�.
The adinkras symbolically encode the supersymmetry

transformation rules for the corresponding multiplets. This
is seen easily in the N � 1 case by comparing the adinkras
shown above with the transformation rules given in (2.2).
The supersymmetry transformation rule for a generic com-
ponent field f��� corresponding to an adinkra node is given
in this case by
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	Q���f � �ib�@/�f; (8.1)

where b � 1 for bosons and b � 0 for fermions, and / � 1
for lower components and / � 0 for higher components.
The ambiguous sign appearing in this rule must be chosen
identically at each of the two nodes. The choice of which
sign is irrelevant in the N � 1 case, since this can be
flipped by redefining either node with a multiplicative
minus sign.4 We refer to this sign choice as the ‘‘arrow
parity.’’ The concept of arrow parity becomes important
when combining N � 1 multiplets to form higher-N mul-
tiplets, as we explain below. The reader is encouraged to
derive the transformation rules (2.2) from the two N � 1
adinkras presented above. This is a simple exercise which
illustrates only a part of the hidden meaning in these
symbols. The useful mnemonic is that each boson receives
a factor of i in its transformation rule, and higher compo-
nents appear differentiated. This rule generalizes to gen-
erate the transformation rule corresponding to any arrow in
any of the adinkras in the root tree for any value of N, but
requires modification for adinkras not in the root tree.

An adinkra symbol does not have an intrinsic orienta-
tion; either of the adinkras shown above can be rotated
arbitrarily in the plane of the page. For certain purposes, it
is useful to draw the symbol in a particular manner, how-
ever. For instance, it is conventional to present transforma-
tion rules, starting with the lowest component at the top of
a list, and work toward the highest component at the
bottom of a list. The adinkra most faithfully represents
this structure if all arrows point downward. This was the
choice made in the case of the scalar adinkra, shown above,
but not in the case of the spinor adinkra. The choice made
in the case of the spinor adinkra serves a different purpose,
as will become clear. Since arrows typically point from
lower components to higher components we refer to a node
as being ‘‘higher’’ than an adjacent node if an arrow points
from the former node toward the latter node. For multiplets
in the root tree all nodes conform to an unambiguous
hierarchy such that each node is either higher, lower, or
at the same height as each of the other nodes. There are
interesting other adinkras, not in the root tree, for which
there is not an unambiguous hierarchy.

Recall that the scalar multiplet can be mapped into the
spinor multiplet using an AD map. The effect of this map is
to exchange the roles of which of the two adjacent nodes is
higher or lower. Accordingly, this map can be visualized as
a reversal of the ‘‘sense’’ on the arrow connecting the two
adjacent nodes in the adinkra,
-7
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AD

.

We can interpret the boson in the scalar multiplet as the
lowest level in the Clifford algebra superfield �00�	. The
boson in the spinor multiplet can be interpreted as the
lowest level in the root superfield �01�	. Thus, if the
adinkra is oriented in such a way that the superfield levels
are manifest, then by representing the AD map as an
operation which reverses the sense of an arrow, but which
leaves the position of the nodes unchanged, we faithfully
preserve the manifestation of levels on the structure of the
adinkra.

When we implement the map described above, �00�	 !
�01�	, we have replaced the level-one fermion in �00�	
with a dual component. Accordingly, we say that we have
‘‘dualized’’ at level-one. This is readily visualized not only
on the adinkra, but also on the root label, since level-one
corresponds to the second index in the root label. The rule
for implementing AD maps on adinkra symbols is that
dualizing at a certain level corresponds to flipping all
arrows with connect to nodes at that level.

Suppose we implement a different AD map, this time by
dualizing at level-zero. This corresponds to �00�	 !
�10�	, since level-zero corresponds to the first index in
the root label. Using the rules described above, we repre-
sent this by reversing the sense of every arrow connecting
to the top node in the �00�	 adinkra. This produces the
same diagram obtained by our previous duality operation.
In other words, the adinkra for �10�	 is the same as the
adinkra for �01�	. Thus, the N � 1 spinor multiplet is
described by the equivalent labels �01�	  �10�	.

TheN � 1 spinor multiplet is also described by the label
�00��, since it corresponds to the N � 1 Clifford algebra
superfield having a level-zero fermion. Using this label, an
AD map could be performed at level-one as �00�� !
�01��. This is implemented by reversing the sense of every
arrow which connects to the level-one node in the spinor
multiplet adinkra. Each of the AD maps described so far
merely toggle between the two possible N � 1 adinkras.
We discover in this way a nexus of congruencies in the root
labels. Specifically, �00�	  �01��  �10�� and �00�� 
�01�	  �10�	. In terms of Omega notation, this result
corresponds to ��1�

0	  ��1�
1�  ��1�

2� and ��1�
0�  ��1�

1	 

��1�
2	. In the N � 1 case AD maps comprise Z2 generators

which link the two congruency classes.
There is another useful Z2 map which is distinct from

the AD maps described so far. This second map is de-
scribed by replacing every bosonic node in a given adinkra
with a fermionic node, and vice versa. This operation was
introduced in [7], where it was deemed a Klein flip. In the
case of N � 1 supersymmetry a Klein flip has the same
effect as an AD map, since it toggles between the two
adinkras. The circumstance that AD maps and Klein flips
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generate indistinguishable automorphisms is special to the
case N � 1 where it is a consequence of the relative
simplicity of the space of irreducible representations.
IX. N � 2 ADINKRAS

Consider the N � 2 scalar multiplet described by (4.2).
To be specific, chose the GR�2; 2� matrices according to
L1 � R1 � i02 and L2 � �R2 � �I2, where Id is the d�
d unit matrix. This describes the unique representation of
GR�2; 2�. It is easy to translate the corresponding trans-
formation rules into an adinkra symbol using the rules
described above. The result is

,

where we have distinguished one of the arrows for a reason
to be explained shortly. But first, we explain the general
structure of this adinkra. Each pair of parallel arrows
corresponds to one of the two supersymmetry transforma-
tions. For the sake of concreteness, let us say that the red
arrow and the arrow opposite the red arrow correspond to
the first supersymmetry, described by parameter �1, and
that the remaining two arrows correspond to the second
supersymmetry, parametrized by �2.

The reader is encouraged to use (4.2) along with the
representation of GR�2; 2� given above, to verify the rule
(8.1) node-by-node and arrow by arrow. To do this, let the
top node represent �1 and the bottom node represent �2,
and let the left node represent  1̂ and the right node
represent  2̂. This exercise will expose the special charac-
teristic which distinguishes the red arrow in this diagram.
Namely, this arrow corresponds to a choice of minus sign
in (8.1), whereas the remaining three arrows correspond to
a choice of plus sign in this rule. This indicates a topologi-
cal characteristic required of any adinkra symbol for the
casesN � 2, as explained presently. Each of these symbols
has closed circuits which can be traced on the diagram by
following arrows from node to node. A consequence of the
minus signs in the first two equations in (5.1) is that the
sum of the arrow parities associated with any four-node
closed circuit must be negative.5

It is possible, of course, to redefine any component field
by use of a multiplicative minus sign. We refer to this
benign operation by saying that we have flipped the sign
of a node. Notice that by flipping a sign on either of the
nodes adjacent to the negative-parity arrow, the position of
the negative-parity arrow shifts around the diagram.
Another possibility is to flip the sign on one of the nodes
not adjacent to the negative-parity arrow. The effect of this
-8
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is to grow two more negative-parity arrows. Note that in
the case of the square diagram flipping node signs neces-
sarily changes the parity of exactly two arrows. In this way
the sum rule is preserved under such operations, although
the parity of any given arrow can be flipped by field
redefinitions.

The reader might imagine that keeping proper track of
arrow parities could become a complicated business in
higher-N diagrams. Fortunately, there is a simple algo-
rithm which handily takes care of this for us in many, if
not all, circumstances. This algorithm relies on the root
superfields described in Sec. VII, each of which is derived
from the base superfields by AD maps and Klein flips. The
arrow parities for the base superfields are consistently
dictated by the transformation rules given in (6.4). As a
result, one can draw the adinkra symbol for a base super-
field without specifying the arrow parities, knowing that
these can be chosen in a consistent manner. It is then
possible to derive a variety of related multiplets by imple-
menting AD maps (by flipping arrows) and Klein flips (by
flipping node colors), again without regard for arrow par-
ity, since consistency is ensured by the fact that the base
adinkra is consistent by construction.

It is a noteworthy fact that the N � 2 scalar multiplet
described above is, in fact, the N � 2 base multiplet ��2�

0	.
This can be verified by determining the transformation
rules for ��2�

0	 using (6.4), and then translating these into
an adinkra symbol. The reader is encouraged to do this.

We are now in a position to describe the N � 2 root tree
using adinkra symbols. Consider the following four N � 2
adinkras,

.

The first of these is the base adinkra �000�	 which we have
described at length already. By convention, we have sup-
pressed any special markers indicating arrow parity, since
as explained above these are not necessary. We have ori-
ented this adinkra such that the top node corresponds to
level-zero, the middle nodes correspond to level-one, and
the bottom node corresponds to level-two. The second of
the adinkras shown here is obtained from the first by
dualizing at level-two. This is clear because the relation-
ship between the second adinkra and the first is that both
arrows which connect with the level-two node have been
flipped. This second multiplet has root label �001�	 and
Omega designation ��2�

1	. The third adinkra is obtained
from the first by flipping all arrows which connect to
level-one nodes. (In this case this describes all arrows!)
Thus the third multiplet has root label �010�	 and Omega
designation ��2�

2	. The fourth adinkra is obtained from the
first by flipping both arrows which connect with the level-
zero node. Thus, this multiplet has root label �100�	. This
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fourth adinkra is also obtained by flipping all arrows con-
necting to the level-one nodes and then flipping both
arrows connecting to the level-two nodes. According to
this second interpretation the fourth adinkra has the equiva-
lent root label �011�	 and Omega designation ��2�

3	. The
three distinct adinkras ��2�

-	 where - � 0; 1; 2, form a
sequence, which we refer to as the ‘‘base sequence’’ for
N � 2.

The N � 2 adinkras presented so far describe all of the
adinkras which can be obtained from the base adinkra by
AD maps. Notice that the �001�	 adinkra is homologous to
the �100�	  �011�	 adinkra. This is seen by rotating
either of these by 180 degrees. Thus, �001�	  �100�	,
or equivalently ��2�

3	  ��2�
1	. Thus, the number of multip-

lets in the AD orbit connected to the N � 2 base multiplets
is three, not four.

There is still another multiplet in the N � 2 root tree yet
to be described. To locate this missing multiplet, consider
that multiplet obtained from the base mutliplet by imple-
menting a Klein flip, namely �000��. Consider as well the
set of multiplets connected with this one via AD maps.
This set is described by the following four adinkra sym-
bols,

.

The first of these is the image of the base adinkra under a
Klein flip, i.e., �000��. The other three adinkras shown here
are obtained from this one by dualizing at levels two, one
and zero, respectively. Accordingly, these describe the
respective multiplets �001��, �010�� and �100�� 

�011�� or, using Omega notation, ��2�
1�, ��2�

2� and ��2�
3�,

again, respectively. This sequence of four adinkras de-
scribes the respective images under Klein flips of the
base sequence shown previously. This is easily verified
by flipping the color of all nodes and then comparing these
two sequences. By rotating the ��2�

3� adinkra by 180 de-
grees, we observe that this is homologous to the ��2�

1�

adinkra. The three distinct adinkras ��2�
-� where - �

0; 1; 2, form a sequence, which we refer to as the ‘‘mirror
sequence’’ for N � 2.

We now see more congruencies, this time showing
equivalences between elements of the base sequence with
elements in the mirror sequence. For instance, by rotating
the ��2�

0� adinkra by 90 degrees, we see that this is identical
to the ��2�

2	 adinkra. Also, by rotating the ��2�
2� adinkra by

90 degrees we see that this is identical to the ��2�
0	 adinkra.

Therefore, the only adinkra which appears in the mirror
sequence which is distinct from all of those in the base
sequence is ��2�

1�. In this way we determine that the N � 2
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root tree has four elements, which can be described as ��2�
0�

and ��2�
1�.

A. Adinkra folding

We have seen that the irreducible N � 1 adinkra sym-
bols each comprise two nodes connected by an oriented
line segment. Thus, these symbols span only one linear
dimension. By way of contrast, the irreducible N � 2
adinkra symbols comprise four nodes configured at the
corners of a square, which has oriented line segments as
edges. Thus, theN � 2 adinkras span two dimensions. The
reason for this is that the two supersymmetries are repre-
sented by orthogonal arrows. Following this logic, the N �
3 adinkras span three dimensions, so that the three super-
symmetries can be represented using three mutually or-
thogonal sets of arrows. As N increases this leads to
complicated symbols which would be difficult to render
on a page. However, there is a useful operation one can
perform on adinkras, which allows the drawing of many of
these for any N as a linear chain, yet retains the full
symbolic power. In this subsection we describe this process
for the case N � 2, although the technique generalizes to
higher N.
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We can squash or fold any adinkra by moving bosonic
nodes onto other bosonic nodes and at the same time
moving fermionic nodes onto other fermionic nodes, while
simultaneously maintaining all arrow-node connections.
This can be done provided that all arrows land on identi-
cally oriented arrows. For instance, consider the ��2�

1	
adinkra shown above. In this case, we can pinch the two
fermionic nodes together, as follows,

=~ =~⇒ ⇒ 2

1

1 .

At the end of the process, the two fermionic nodes are
coincident. We indicate the multiplicity of this compound
node by placing a numeral 2 next to the node. Nodes
representing more degrees of freedom occur in more com-
plicated adinkra symbols. The node multiplicity is indi-
cated by a numeral placed adjacent to the node.

In many cases, the arrows in an adinkra symbol are
structured in such a way that permits additional folds after
the first one. Consider, for instance, the N � 2 base
adinkra, which can be folded as follows,
=~ =~
=~

⇒ ⇒ 2

1

1

=~
2

2

2

11

⇒

.

In this case we begin by pinching the two fermionic nodes
together in a manner identical to the operation performed
above on the ��2�

1	 adinkra. In this case, since all the arrows
continue to point to the multiplicity-two fermionic node, it
is possible to swivel the bottom bosonic node, using the
compound fermionic node as a pivot, until it coincides with
the top bosonic node. In this way we obtain a folded form
which involves two multiplicity-two nodes, one bosonic
and one fermionic, connected by one arrow which now
represents both supersymmetries.

By using similar folding operations, all of the elements
of the root tree for any value of N can be arranged into a
linear chain. Many other adinkras, which are not elements
of the root tree cannot be folded into a linear chain; these
describe an interesting class of multiplets which is de-
scribed in the following section. Each distinct adinkra
has a fully folded form which is distinct from the fully
folded forms of all other distinct adinkras. It is possible to
identify each distinct supersymmetric multiplet with a
unique fully folded adinkra symbol. The folded adinkras
can be unfolded, using certain rules, in such a way as to
recover the fully unfolded adinkra. As we explain below, it
is often useful to start with a fully folded adinkra symbol,
and then only partially unfold this before implementing
duality maps, by making arrow reversals. This can then be
refolded to obtain a new adinkra.

X. ESCHERIC MULTIPLETS

In this section we describe some surprising unantici-
pated aspects of supersymmetry representations which
become evident when this subject is structured in terms
of adinkra symbols. We present these observations at this
point, immediately following our description of the basic
N � 2 adinkras, because these aspects are most clearly
illustrated in the context of N � 2 supersymmetry. We
continue the main thrust of the paper, by generalizing our
technology to the cases N � 3 and N � 4, in the sections
which follow this one.

By including AD maps and Klein flips together, we are
able to effectively realize dualities on the N � 2 base
adinkras node-by-node rather than level-by-level. To illus-
trate this, start with the N � 2 base adinkra, perform a
Klein flip, then dualize at level-two in the resulting
adinkra, then rotate the adinkra by 90 degrees,
-10
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→ →
K

=~
AD2

.

The result of this sequence of operations is the same as if
we dualized on only one of the two level-one fermion
nodes in the base adinkra. In other words, this operation
is equivalent to

→
.

This begs the question as to whether we can realize dual-
ities node-by-node rather than level-by-level as a general
rule. The answer is that, generally, such transformations
cannot be implemented by a combination of Klein flips and
AD maps. The reason for this is connected to the fact that
the AD maps, as described above, act in a strictly level-
specific manner on the root superfields. The case of the
N � 2 base adinkra provides an exception, as we have
seen. Is it nevertheless possible to implement dualities
node-by-node on any given adinkra? Does this supply us
with new representations of supersymmetry? The answer
to both questions is, interestingly, yes. These operations
generally produce new multiplets which lie outside of the
root tree and which have noteworthy nontrivial topological
features. It is also possible in this way to obtain multiplets
which represent centrally extended superalgebras.

The simplest example of this phenomenon is described
by starting with the ��2�

2	 adinkra and dualizing at one of the
two level-one fermionic nodes. As it turns out, there are
two rather different senses to interpret ‘‘dualization’’ in
this context. The first sense is to simply reverse the sense of
each arrow which connects to the node being dualized. As
we will see, in the current context this process produces a
rather different sort of multiplet, one which does not
strictly represent the superalgebra (4.1), but rather repre-
sents a centrally extended version of this algebra. As a
result, this new multiplet cannot be described in terms of
the basic root superfields described above. The second
sense in which dualization can be interpreted is more
properly aligned with the duality maps described so far.
In this second sense we identify the designated fermionic
node with the proper-time derivative of a dual node. In this
second sense, we obtain a multiplet which can be described
by a root superfield, and which does represent the super-
algebra (4.1). But this multiplet lies outside the root tree.
For reasons made more clear in the appendix this multiplet
requires a slight modification to the diagrammatics intro-
duced to this point. In cases where AD maps are imple-
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mented levelwise, the two senses of dualization described
above coincide. Otherwise, as we have just explained,
theses senses differ, and each sense maps multiplets in
the root tree into multiplets outside the root tree.

First, let us consider dualization in the first sense. By
reversing both arrows which connect to only one of the two
level-one fermion nodes in the ��2�

2	 we obtain the follow-
ing new adinkra,

.

This particular adinkra symbol has several noteworthy
features. First of all, it is impossible to fold this adinkra
into a linear form. This is because of a topological obstruc-
tion which relates in an interesting way to the correspond-
ing transformation rules. As explained above, a given node
is designated as ‘‘lower’’ than another node if the second
node can be reached from the first by using the arrows to
define a flow pattern. Nodes which are downstream in such
a flow describe higher components. For the interesting
multiplet shown above, each node is at the same time
both upstream and downstream of every other node; there
is no highest component and there is no lowest component.
We shall refer to multiplets with this feature as escheric
multiplets, owing to the similarity with patterns found in
many drawings of Escher. Another, rather surprising fea-
ture is manifested by writing down the corresponding
transformation rules using the procedure described above.
This is done in the appendix. It turns out that this multiplet
does not strictly represent the N � 2 superalgebra (4.1).
Instead, this represents a centrally extended version of this
superalgebra. At the time of this writing, the implications
of this are not perfectly clear. But we find this intriguing.

Next, let us consider dualization in the second sense. By
writing one of the two level-one fermions in the ��2�

2	
adinkra as the proper-time derivative of a dual fermion,
we obtain a new multiplet which does properly represent
theN � 2 superalgebra without a central charge. However,
in this case the transformation rules for one of the fermions
include the antiderivative of one of the boson fields. The
details are explained in the appendix, where it is also
shown that this multiplet includes as a submultiplet the
N � 1 root multiplet �2; 0�	  �0; 2�	  �0;�1�� 
��1; 0��. Since these labels include integers which are
neither 0 nor 1, this multiplet lies outside the N � 1 root
tree. Accordingly, this is not properly described by the
-11
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adinkra symbols defined to this point. (A relevant adden-
dum to the notation introduced above is also included in
the appendix.) We refer to this sort of multiplet as a ‘‘type
II escheric multiplet’’ to distinguish these from the central
charge escherics described previously. The appearance of
the antiderivatives in the transformation rules is another
circumstance which may have interesting relevance to
physics, especially in cases where the corresponding field
describes the coordinate on a compact dimension.

In this paper we are concerned principally with the
elements of the root tree. As a result we will not describe
escheric multiplets any further in this main text. More
details are included in the appendix. We intend to study
these constructions further in ongoing work, and hope to
have more to say on this topic in the future.

XI. N � 3 ADINKRAS

Consider the N � 3 scalar multiplet described by (4.2).
To be specific, choose the GR�4; 3� matrices according to
L1 � R1 � i01 � 02, L2 � R2 � i02 � I2 and L3 �
R3 � �i03 � 02. It is easy to translate the corresponding
transformation rules into an adinkra symbol using the rules
described above. The result is

.
In this adinkra, the four bosonic and the four fermionic
nodes are situated at the corners of a cube. Each of three
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quadruplets of parallel arrows corresponds to a different
supersymmetry.

In rendering the adinkra shown above we have distin-
guished the negative-parity arrows. We have done this in
order to make a couple of basic points. First of all, it is easy
to verify the sum rule, described above, which says that the
sum of the four arrow parities associated with any square
subadinkra, must be odd. This rule is easily verified on this
diagram by tracing around each of the six faces of the cube,
counting arrow parities in the process. Next, recall that the
arrow parities of every arrow connected to a given node
flips when the node has its sign flipped. In this way, the
position of the negative-parity arrows can be shifted around
the adinkra symbol without changing the representation. In
the case of the cubic adinkra shown here, each time a node
has its sign flipped, three arrows have their parity flipped.
This process flips either exactly zero or exactly two arrows
in each subset of four arrows forming the edges of each
face. Since zero and two are even numbers this proves that
the sum rule is maintained when any node has its sign
flipped.

Starting with the adinkra shown above, it is possible to
cycle through a sequence of node flips, that cycles through
all possible distributions of negative-parity arrows which
satisfy the sum rule. We will not describe a complete proof
of this statement in this paper, however. This shows that the
GR�4; 3� representation given above is unique.

Consider next the N � 3 base multiplet. This has trans-
formation rules given by (6.4). If we translate these into an
adinkra symbol we find that this symbol is identical to the
N � 3 scalar adinkra shown above. By following the fold-
ing rules described above, it is possible to reduce the N �
3 base adinkra into a linear form. This diagram can be
folded as follows,
2

2

3

3

1

1

3

4

1

3

3
1

1

4

1
3

4

4

⇒ ⇒

⇒ ⇒
=∼ =∼ =∼ =∼ =∼

=∼ ⇒

⇒

.

In this sequence, we first pinch together two of the bosonic
nodes and two of the fermionic nodes, as shown, thereby
collapsing two opposite square faces into lines. This step
reduces the figure to two dimensions. Next we pinch the
resultant multiplicity-two boson node together with an-
other bosonic node, forming one multiplicity-three bosonic
node. At the same time we do a similar thing to form a
multiplicity-three fermionic node. This reduces the adinkra
into a linear form. Two additional folds then transform the
adinkra into its final form, given by two multiplicity-four
nodes, one bosonic and one fermionic, connected by an
arrow representing all three supersymmetries.

The N � 3 base adinkra has root label �0000�	 and

Omega designation ��3�
0	. The level-zero bosonic node

corresponds to the topmost node appearing in the two-
dimensional projection of the fully unfolded form of
adinkra shown above. Successive levels in the root super-
field correspond to the sequence of horizontal node group-
ings which appear in this projection. We can form distinct
-12
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multiplets starting with the N � 3 base adinkra, by performing AD maps and Klein flips. For example, we dualize at level-
three by flipping all arrows which connect to the level-three boson (the bottommost node in the above diagram.) Doing this
and then folding the resultant adinkra, we observe the following,

2

2

3

3

1

1

3

4

1 3

4

13

3
1

1 .

In the final step we have rotated the adinkra by 180 degrees, so that all arrows point downward. In this case, we see that the
arrow structure precludes the analog of the final fold made previously in the case of the �0000�	 adinkra.

As another example, start with the �0001�	 adinkra and dualize at level-two. This generates the map �0001�	 !
�0011�	. This is implemented by flipping all arrows which connect to the level-two nodes in the fully unfolded �0001�	
adinkra. In this way we obtain

2

2

3

3

1

1 .

Here fewer folds are permitted by the arrow structure than in the previous case, so that the fully folded �0001�	 adinkra has
four nodes, rather than two. The maximal number of nodes in a fully folded adinkra is N 	 1. We denote the fully folded
adinkra which has N 	 1 nodes as the ‘‘top adinkra’’ for that value of N.

As a final example, start with the �0011�	 adinkra and dualize at level-zero. This generates the map �0011�	 !
�1011�	  �0100�	. This is implemented by reversing all arrows connecting to the level-one nodes in the �0011�	 adinkra.
In this way we obtain

2

2

3

3

1

1

3

3
1

1

3

4

1 .
In this case we see that the fully folded adinkra has three
compound nodes, having the multiplicities shown in the
final diagram.

As described previously, every adinkra in the root tree
for any value of N can be folded into a linear chain having
N 	 1 nodes. Most adinkras can be folded further, so that
in fully folded form these exhibit fewer than N 	 1 com-
pound nodes. The number of compound nodes in the fully
folded form corresponds to the number of distinct compo-
nent heights. On the other hand, the partially unfolded form
describing a chain with N 	 1 nodes is more useful for
implementing AD maps. This is because in this form the
065002
adinkra nodes sequentially correspond to root superfield
levels. Since AD maps are implemented in a level-specific
manner, these can be implemented on this form by revers-
ing the compound arrows which connect to the nodes
corresponding to desired levels. To implement AD maps
on elements of the root tree it is not necessary to unfold the
diagram into more than one dimension.

We define the ‘‘depth’’ of an automorphism as the
number of dimensions that an adinkra has to be unfolded
into before the particular automorphism can be imple-
mented. Thus, the AD maps which we have described
above comprise depth-zero automorphisms on the space
-13
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of superalgebra representations. Arrow reversals and Klein
flips at each depth greater than zero form separate Abelian
groups, since each of these operation generates its own Z2

subgroup. We define the ‘‘rank’’ of a supermultiplet as one
less than the minimal number of dimensions spanned by
the fully folded adinkra. In this way the root tree comprises
depth-zero multiplets. The escheric multiplets described
above correspond to multiplets having depth greater than
zero.
XII. THE N � 3 ROOT TREES AND
AUXILIARY FIELDS

A field is typically deemed ‘‘auxiliary’’ if it describes no
dynamical (on-shell) degrees of freedom. However, it is
possible to make an equivalent nondynamical definition
using the flow pattern generated by the arrows in adinkra
symbols. According to this definition, auxiliary bosons are
defined as bosonic nodes which appear as flow sinks, nodes
to which all associated arrows point toward. Auxiliary
fermions are defined as fermionic nodes which appear as
flow sources, nodes from which all associated arrows point
away. For all supersymmetric actions with minimal kinetic
derivatives, fields deemed auxiliary from the dynamics-
free point of view are also auxiliary from the usual dy-
namical definition. As a notational convention, we some-
times place a box around auxiliary nodes in adinkra
symbols.

The 14 adinkras which describe the N � 3 root trees are
shown in Figs. 2–4. These tables comprehensively exhibit
the off-shell state counting for each of the minimal rank-
zero multiplets, and also clearly indicate the interconnec-
tions between these generated by AD maps and Klein flips.
For each choice of N, the adinkras are displayed in cells
which include numbers describing the Omega designation
for that multiplet. For instance, the N � 3 adinkra labeled
4	 corresponds to ��3�

4	. Extra numbers in any cell corre-
spond to a notational redundancies, such as ��3�

7	  ��3�
4�.

The root label for any of these multiplets are readily
obtained by writing the decimal number in the Omega
notation as the binary equivalent. Accordingly, the root
label for ��3�

4	 is �0100�	. This multiplet is obtained from
the base multiplet ��3�

0	 by dualizing on the level-one
nodes. The reader is encouraged to verify the tables using
the techniques described previously.

Figures 2–4 clearly exhibit the Z2 representation gen-
erated by Klein flips; adinkras on the right sides of each
tabulation are obtained from those on the left by perform-
ing this operation. The correspondence is easy to read,
since the Klein flip manifests by flipping the sign on the
Omega label. The field multiplicity of each multiplet can
be read off of the adinkras. Bosons correspond to white
nodes and fermions correspond to black nodes. Boxed
nodes correspond to auxiliary fields. For instance, the
multiplet ��3�

4	 is seen to have off-shell fields consisting
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of three physical bosons and one physical fermion and to
have one auxiliary boson and three auxiliary fermions.
XIII. N � 4 ADINKRAS

New structures appear at N � 4 which are absent in the
cases N � 3. The reason for this is that, in contrast to the
cases N � 3, the base multiplets ��4�

0	, and all representa-
tions obtained from this by AD maps and Klein flips,
describe reducible representations. For instance, the mini-
mal N � 4 multiplets have 4 	 4 off-shell degrees of free-
dom, as shown in Table I. However, each element of the
N � 4 root tree has 8 	 8 off-shell degrees of freedom, or
twice the minimum. In this section we explain two meth-
ods for reducing such multiplets using the structure of
adinkra symbols as a conceptual guide. The first method
uses consistent node identifications to describe the embed-
ding of irreducible multiplets inside the root space. The
second method is to identify irreducible subadinkras de-
scribing gauge degrees of freedom. These methods prove
sufficient for describing all known N � 4 irreducible
multiplets.

The 18 adinkras which comprise the N � 4 root-tree are
shown in Fig. 5, which is structured in the same manner as
Figs. 2–4. The Omega designation for each multiplet is
clearly indicated, including notational redundancies.
Adinkras on the right side of Fig. 5 are obtained from those
on the left by making a Klein flip.

A. Irreducible N � 4 multiplets

A class of irreducible multiplets is described by the
scalar multiplets, with transformation rules given in (4.2).
These are determined by choosing a representation of
GR�dN; N�. For the case GR�4; 4�, we can make the
choice L1 � R1 � i01 � 02, L2 � R2 � i02 � I2, L3 �
R3 � �i03 � 02 and L4 � �R4 � I2 � I2. It is possible
to translate the transformation rules into an adinkra sym-
bol, but there are extra subtleties not encountered in the
cases N � 3.

The first subtlety is relatively simple. Since each adinkra
node connects with N mutually orthogonal arrows, one for
each supersymmetry, it follows that the fully unfolded
form spans N dimensions. This makes the unfolded form
relatively awkward to render on a page. This problem can
be overcome, at least for small values of N, by making
small compromises with angles and with parallel lines, or it
can overcome quite satisfactorily by folding the diagram
down to one or two dimensions, if possible.

The second subtlety has to do with combinatorics. For
any value of N the root multiplets have a total of 2N nodes,
just the right number to sit on the corners of an
N-dimensional hypercube. The irreducible multiplets
have fewer than 2N nodes, so it is not straightforward to
connect the nodes with an N-dimensional orthogonal lat-
tice. Many irreducible adinkras permit an embedding into
-14



FIG. 2 (color online). The root tree for the case N � 1.

FIG. 3 (color online). The root tree for the case N � 2. FIG. 4 (color online). The root tree for the case N � 3.

FIG. 5 (color online). The N � 4 root tree.
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an N-dimensional orthogonal lattice by including multiple
copies of the original adinkra into the lattice. Since there
are 16 corners to a tesseract, and eight total nodes in a
scalar adinkra, it is conceivable that a double copy of the
scalar adinkra could fit properly into the tesseract. In fact,
this works perfectly well, as can be seen by the following
diagram,
a

a

a

a

b

bb

bc

cc

cd

d

d

d

.

Here we have designated each node with a distinctive label.
The cube on the right is an upside-down copy of the cube
on the left. Thus the bosonic node a on the top of the left
side is the same as the bosonic node a on the bottom of the
right side. Each cube describes a representation of an N �
3 subalgebra. The horizontal arrows describe the fourth
supersymmetry. We have suppressed arrows pointing from
the white c node to the black c node and from the white d
node to the black d node, so as not to confuse the diagram.
This represents an accurate depiction of the transformation
rules corresponding to the N � 4 scalar multiplet de-
scribed above. The adinkra diagram corresponding to the
N � 4 base multiplet is the same as the double-box dia-
gram shown above, except with all of the identifications
removed. Thus, this method shows a way to embed the
scalar multiplet into the N � 4 root space.

We can simplify the presentment of the scalar adinkra by
folding the N � 3 subdiagram in the manner described in
Sec. XI. In this way, the diagram takes the simpler form
6Different elements of a given conjugacy class are often
considered distinct. For instance, chiral multiplets and antichiral
multiplets in supersymmetric field theories describe two distinct
elements of a common conjugacy class of representations.
In the folded form, the pairwise node identifications remain
indicated by labels. Another simplifying convention is to
divide the two equivalent parts of this diagram using a
‘‘mirror plane,’’ and to redraw as follows,
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3

3

1

1

3

3

1

1

Mirror
Plane

.

Here we have replaced the labels a, b, c and d with the
numerals representing node multiplicity. The top node on
the left side of the mirror is identified with the bottom node
on the right side, the second node on the left is identified
with the third node on the right, and so forth. The mirror is
inverting, since the object side is projected upside-down on
the image side.

In fact, there is some extra freedom in making these
identifications: The image nodes can be identified with the
object nodes with a change of sign. There are four con-
sistent ways to arrange this, denoted by including plus
signs and minus signs on the mirror plane. Since the right
side of the mirror is superfluous, this can be omitted when
rendering the adinkra. The four possible multiplets ob-
tained in this way have the following adinkras

3

3

1

1

+

+

+

+ 3

3

1

1

+

+ 3

3

1

1

+

+

3

3

1

1
.

The reason these are the only possibilities is that there is a
consistency condition on the placement of the sign flips.
Since the image is inverted, it follows that the bottom
arrow is a continuation of the top arrow. Similarly the
two middle arrows are images of each other. Thus, there
are, in essence, only two independent choices of sign flips.
The four multiplets obtained in this way describe the four
separate scalar multiplets described in [7]. The different
sign choices on the mirror plane describe different ways to
assign arrow parity to the diagram. These four choices
describe different elements of a particular conjugacy class
of multiplets, a quaternionic analog of the difference be-
tween chiral and antichiral multiplets.6 The first multiplet
shown above is the same as the chiral multiplet described
previously. It is possible to neglect arrow parity and use the
-16
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undecorated adinkra symbols to describe multiplets as
conjugacy classes.

In fact, the manner in which we have organized the
discussion of the N � 4 scalar multiplets allows for a
rigorous proof that the four scalar N � 4 scalar multiplets
are in fact distinct. The proof relies on the fact that once the
N � 3 subadinkras are given a particular arrow parity then
every nontrivial inner automorphism of these representa-
tions alters this arrow parity assignment. Inner automor-
phisms are generated by permutations of nodes and by sign
flips. Distinct multiplets are described by adinkras which
cannot be mapped into each other by such operations. It is
impossible to alter the parity of any arrow which crosses
the mirror plane by virtue of node permutations or node
sign flips and, at the same time, maintain the intrinsic
arrow parity specific to the N � 3 cube diagram on either
side of the mirror plane. We hope that this discussion may
help alleviate skepticism regarding the multiplicity of N �
4 scalar multiplets.

There is another interesting way to fold the double-cube
diagram shown above. In this maneuver, we pinch the
white a node together with the white c node, and at the
same time pinch the black a node together with the black c
node. The diagram then flattens into the following form

=~

a,c

a,c

b,d

b,d

a,c

a,c

b

bd

d

.

The dotted lines represent the fourth supersymmetry de-
scribed by the horizontal lines in the double-cube diagram.
(Two more dotted lines are coincident with the vertical line
connecting the a and c nodes.) We have folded this dia-
gram a final time, by using the middle vertical line as a
hinge, lifting the right vertical line out of the page and then
placing this on top of the left vertical line. It is clear that the
dotted lines land on top of each other with the proper
orientation. This is what enables this operation. We are
left with a diagram which can be drawn as follows,

2

22

2

4

4
=~

.

In this form, we see that this adinkra describes a pairwise
assembly of the N � 2 base adinkras, connected using
parallel arrows representing a second pair of supersymme-
tries. This fully folded form is more satisfactory for many
purposes, as compared to the more complicated forms
shown above. But the embedding inside of the root space
given above is illuminating and useful in its own right. This
multiplet corresponds to the shadow of the d � 1 N � 4
linear multiplet.
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By drawing the analog of the double-cube adinkra for
the root multiplet ��2�

1	 rather than for the base multiplet,
and then going through a completely analogous sequence
of identifications and folding steps, we arrive at an adinkra
symbol which can be drawn as follows,

2

22

2

2

4

2

=∼

.

This adinkra is another example of a pairwise assembly of
N � 2 root multiplets. This time it describes a pair of ��2�

1	
multiplets rather than a pair of N � 2 base multiplets. This
adinkra corresponds to the shadow of the D � 4 N � 1
chiral multiplet. Since we have suppressed arrow parity in
this discussion, this more accurately actually describes the
conjugacy class corresponding to the chiral multiplet.
(Thus, this adinkra also depicts antichiral multiplet, if
different choice of arrow parity is selected.)

So far we have explained how the shadows of three of
the four irreducible D � 4 N � 1 multiplets can be de-
scribed using adinkra symbols. There is one more D � 4
N � 1 irreducible multiplet, however, the vector multiplet.
This is explained in the following subsection.

B. Gauge invariance

Consider the reducible multiplet ��4�
6	, which is de-

scribed by the top adinkra in the root tree. This can be
drawn in partially folded and in folded form as follows,

4

4

1

6

1

=~
2

4

2

22

1

1

11

.

This adinkra exhibits yet another way to reduce degrees of
freedom.

A reducible adinkra can be redefined by adding to it an
irreducible adinkra, provided the structure of the smaller
adinkra can be layered on top of the larger adinkra such
that all arrows line up. In this way, one includes the larger
multiplet into a class of multiplets related by a gauge
transformation. For example, we notice that chiral adinkra
described previously fits onto the topmost diamond inside
of the reducible ��4�

6	 adinkra. We can represent the re-
moval of the associated gauge degree of freedom using the
following adinkra calculus,
-17
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2
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2
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2

4

1

4
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4

2

2

=~=~ 2

22

-1

1

11

+ +0 0 0
In this diagrammatic equation we see various noteworthy
mnemonics at work. First of all, we see how the structure of
the chiral multiplet is embedded inside of the reducible
vector multiplet. Next, we see how node-by-node the de-
grees of freedom are subtracted. Most noteworthy of all is
the fact that the topmost node has been left with a formally
negative field multiplicity. What this means is that one of
the two gauge degrees of freedom on the topmost node in
the chiral multiplet has been used to remove the single
degree of freedom at the topmost node in the vector mul-
tiplet. The remaining degree of freedom in the chiral
multiplet exists as a residual gauge degree of freedom after
all of the possible node subtractions have been performed.
The residual gauge degree of freedom then ‘‘flows’’ along
the ghost structure as far as possible before finding itself on
one of the unremovable nodes. This node then exhibits the
gauge degree of freedom in its multiplicity. This demon-
strates another rule for locating subadinkras which de-
scribe embedded gauge structures. Namely, the ‘‘flow’’
of the gauge subadinkra must flow ‘‘out’’ of the gauge
subadinkra onto a nonremovable node. This example pro-
cess is more concisely described in terms of fully folded
adinkras as follows,

4

1

4

−1

4

1

6

4

1

4

2

2

=∼ =∼
+

4

1

3

4

2

2

+

.

Here the extra circle on the gauge node indicates the ability
to perform a gauge shift in the degree of freedom corre-
sponding to this node. This simple example is the diagram-
matic representation of the shadow of the well-known
Wess-Zumino gauge choice made in the context of D �
4 N � 1 vector multiplets.

XIV. SPINNING PARTICLES

As a final example, we show how spinning particle
multiplets can be described using adinkra symbols. Start
with the base adinkra ��4�

0	, then dualize on the level-two
and level-four bosons. This produces the ��4�

5	 adinkra,
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given by

=~ =~

4

1

6

4

1

4

7

4

1

4

7

4

1

,

where in the final step we have oriented the nodes by
height, so that all arrows point downward. As a rule, we
keep the auxiliary fields separated in adinkra symbols. This
adinkra corresponds to the N � 4 off-shell spinning parti-
cle multiplet first described in [2,3].

By using a similar process, we can describe the
‘‘Universal Spinning Particle Multiplet,’’ also called the
USPM, by drawing the base adinkra ��N�

0	 , then dualizing
on all bosons except at level-zero. After a sequence of
folds, this leads to the USPM adinkra,

N

1

-1

-N

2N

2N

N

-1

-N

2N

2N

1

=~

.
We see that the USPM has 2N 	 2N off-shell degrees of
freedom, including 2N � 1 auxiliary bosons and 2N � N
auxiliary fermions.
XV. CONCLUSIONS

We have described the rudiments of a symbolic method
for organizing the representation theory of one-
dimensional superalgebras. This relies on special objects,
which we have called adinkra symbols, which supply
tangible geometric forms to the still-emerging mathemati-
cal basis underlying supersymmetry. We are optimistic that
these symbols will prove useful in organizing a more
rigorous and comprehensive representation theory for
off-shell supersymmetry, not just in one dimension but in
higher dimensional field theories as well.

As a demonstration of their power, we have used adink-
ras to codify, organize and reproduce all known minimal
supermultiplets for the cases N � 4. Building on the con-
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cept of root superfields introduced in [1], we have used
these symbols to interpret supersymmetry transformations
in terms of flows on a corresponding root lattice. At the
same time, we have shown how scalar multiplets and
reduced chiral multiplets can be explained in terms of
embeddings in these lattices, and have given an elegant
description of gauge invariance in the case of a reduced
Abelian vector multiplets.

We have described a method for altering the appearance
of adinkra symbols by folding. This serves several pur-
poses beyond the obvious one, to enable the rendering of
multidimensional diagrams on a page. Another use for
folding adinkras is to allow a topological characterization
of supermultiplets. All of the known multiplets fit into the
simplest category, described by diagrams which can be
folded into a linear chain. The existence of other multip-
lets, which we have called escheric multiplets, is curious,
and we have to wonder what sorts of dynamics might be
associated with these.

The adinkra symbol for a given multiplet encodes the
corresponding supersymmetry transformation rules. As a
consequence, many cumbersome algebraic manipulations
characteristic of supersymmetry calculations obtain a fresh
look when phrased in terms of these symbols. We wonder if
there might be a way to incorporate these adinkras so as to
describe superfield dynamics as well. Toward this end, we
wonder how our technology should be modified to describe
sigma models formulated on curved target spaces.

It has been suggested that all supersymmetric theories in
all dimensions are connected to each other by different
sorts of dualities. The approach to one-dimensional super-
symmetry centered on root superfield technology seems to
substantiate this. From this point of view very many mul-
tiplets are interconnected by AD maps and by Klein flips.
This poses an intriguing dynamical riddle, however. Using
a chain of reasoning described in Sec. III, these duality
maps correlate with sigma model target-space dualities
when an extra central term is switched on in the super-
algebra. The riddle is to obtain more comprehensive under-
standing of the relationships between automorphic
dualities and geometric dualities, and to determine the
role of supersymmetry central charges in this story. We
feel that these observations are hinting at something fun-
damentally interesting.

Future directions for this investigation include issues
pertaining to supersymmetry representation theory and
also issues pertaining to dynamics. We intend to generalize
the preliminary results described in this paper to include
higher values of N, and to establish an understanding for
how to ‘‘oxidize’’ one-dimensional multiplets into higher-
dimensional multiplets. We would like to use this technol-
ogy to study supergravity multiplets, and hopefully obtain
an aesthetically pleasing alternative way to understand the
ad hoc superfield constraints which plague traditional ap-
proaches to this subject. An unapologetic ambition which
065002
we have is to use this technology as a step towards finding
an off-shell representation of D � 11 supergravity.
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APPENDIX: ESCHERIC MULTIPLETS AND
CENTRAL CHARGES

In this appendix we provide a few details explaining
some of the subtleties associated with the escheric multip-
lets described in Sec. X. Although the main presentation of
this paper concerns superalgebras without a central exten-
sion, we briefly indicate some connections with such ex-
tended superalgebras in this appendix. Consider the
centrally extended N � 2 superalgebra defined by

fQ;Qyg � H Q2 � Z	 iY �H;Z� � �H; Y� � 0;

(A1)

whereH � i@� and Z and Y are Hermitian operators which
comprise the real and imaginary parts of a supersymmetry
central charge. If we define a supersymmetry transforma-
tion via 	Q��� � �Q	 �yQy, where � is a complex pa-
rameter, then (A1) can be rewritten as

�	Q��1�; 	Q��2�� � �2i�y
�1�2�@t 	 2��1�2 	 �y1�

y
2 �Z

� 2i��1�2 � �y1�
y
2 �Y: (A2)

The real part of the central charge Z appears in dimension-
ally reduced field theories, where it appears as a shadow of
internal momenta modes. The imaginary part of the central
charge may have an algebraic connection with conformal
supersymmetry. In [4] implications of Z � 0 were studied,
but Y was constrained to vanish.

In Sec. X we described two different sorts of duality
operations which can be performed on only one of the two
level-one nodes in the ��2�

2	 adinkra, and explained how
each of these operations produce new topologically inter-
esting multiplets. In this following two subsections we
present the transformation rules for these multiplets, in
order to better substantiate the discussion in that section.
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A. Type I escherics

If we perform the first sort of duality transformation on
the ��2�

2	 adinkra, by merely reversing the two arrows which
connect with one of the two fermionic nodes, we obtain the
following dual adinkra,

.

If we write down the transformation rules associated with
this adinkra, by following the rules described in
Sec. VIII A, we find that the algebra it represents includes
a central extension. To see this, first determine the trans-
formation rules from the diagram using the procedure
described above,

	�1 � i�1 _ 1 	 i�2 2 	 2 � �1�2 	 �2 _�1

	�2 � i�1 _ 2 � i�2 1 	 1 � �1�1 � �2 _�2:
(A3)

Here we have chosen one of the arrows to have negative
parity in order to satisfy the proper sum rule for these
parities. If we complexify the supersymmetry parameters
by writing � � �1 	 i�2 then the algebra satisfied on each
of the component fields is the following:7

�	Q��1�; 	Q��2�� � �2i�y
�1�2�@t �

1
2i��1�2 � �y1�

y
2 �	Y

(A4)

where

	Y � �@2
t 	 1�: (A5)

Notice that this multiplet includes a purely imaginary
central charge, which acts in a nontrivial manner. We refer
to escheric multiplets with a nontrivial central charge as
‘‘type I’’ escherics, to distinguish these from the different
sorts of multiplets described below.

B. Type II escherics

If we perform the second sort of duality transformation
on the ��2�

2	 adinkra, by writing one of the fermionic nodes
as the proper-time derivative of a dual fermion, we obtain
transformation rules different than those described in (A3).
In fact, in contrast to that type I escheric multiplet, the
7There is a difference between subscripts and superscripts on sup
parameters describing the same supersymmetry whereas superscript

065002
transformation rules obtained in this second way do obey
the N � 2 superalgebra without a central charge. To see
this, start with the multiplet ��2�

2	 and dualize on one of the
two fermionic nodes by writing the corresponding fermion
field as the proper-time derivative of a dual fermion, which
we will now call  2. This produces the following trans-
formation rules,

	 1 � ��1�1 	 �2
Z t

d~t�2�~t�

	�1 � �i�1 _ 1 	 i�2 2

	 2 � �1�2 	 �2 _�1

	�2 � i�1 _ 2 	 i�2 " 1:

(B1)

It is easy to check that the algebra (A1) is satisfied with
Z � Y � 0 on each of the component fields. These rules
can be described by the following adinkra symbol,

~ ,

where the newly distinctive type of arrow describes the
multiplet �2; 0�	  �0; 2�	  �0;�1��  ��1; 0��, a sort
of N � 1 multiplet not described in the main text. The fact
that the root labels for this multiplet include integers which
are neither 0 nor 1 tell us that this multiplet is not in the root
tree. This N � 1 multiplet, which has the newly defined
adinkra

~
has transformation rules

	 � �
Z t

d~t��~t� 	� � i� " : (B2)

This describes an N � 1 supermultiplet which is interest-
ingly distinct from those in the N � 1 root tree. The
presence of the antiderivatives in (B1) and (B2) take on a
particular topological significance if the boson which ap-
pears under these integrals describes a compact circular
dimension. In this case, the antiderivative counts the num-
ber of times a particle winds around this circle.
ersymmetry parameters: Subscripts indicate different choices of
s distinguish supersymmetries.
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