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High frequency asymptotics for the spin-weighted spheroidal equation
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We fully determine a uniformly valid asymptotic behavior for large, real a! and fixed m of the angular
solutions and eigenvalues of the spin-weighted spheroidal differential equation, which arises from the
separation of the Teukolsky equation in Kerr space-time. We complement the analytic work with a
numerical study.
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I. INTRODUCTION

By making use of the Newman-Penrose formalism,
Teukolsky ([1,2]) showed that the equations describing
linear scalar (spin-0), neutrino (spin- 12 ) electromagnetic
(spin-1), and gravitational (spin-2) perturbations of a gen-
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address: adrian.ottewill@ucd.ie
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eral Type D background can be decoupled. Using the
Kinnersley tetrad and Boyer-Lindquist coordinates,
Teukolsky wrote the field equations in the Kerr background
in compact form for the various spin fields, as one single
‘‘master’’ equation
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where � � r2 � 2Mr� a2 and � � r2 � a2cos2�. The
angular momentum per unit mass of the rotating black
hole is denoted by a and its mass by M. The field �h
and the source term Th are defined in [2]. The parameter
h � 0;�1=2;�1;�2 refers to the helicity of the field.
Following on Carter’s work [3] for the scalar (spin-0)
case, Teukolsky further showed that in the Kerr back-
ground the homogeneous decoupled equations can be
solved by separation of variables:

lm!�h�t; r; �; 
� /h Rlm!�r�hSlmc���e
�i!te�im


where c � a!.
The angular equation resulting from the separation of

the Teukolsky equation is the so-called spin-weighted
spheroidal differential equation and its regular solutions
are the spin-weighted spheroidal harmonics (SWSH). In
terms of x � cos�, the spin-weighted spheroidal differen-
tial equation is�
d

dx

�
�1� x2�

d

dx

�
� c2x2 � 2hcx

�
�m� hx�2

1� x2
� hElmc � h2

�
hSlmc�x� � 0 (1.2)

where hElmc denotes the eigenvalue. The eigenvalue for the
case c � 0, corresponding to Schwarzschild space-time, is
well-known to be

hElm � l�l� 1� � h�h� 1�; (1.3)

with regular solutions being the spin-weighted spherical
harmonics [4].

The corresponding radial equation is

��h d

dr

�
�h�1

dhRlm!
dr

�
� hVhRlm! � 0 (1.4)

where the potential is given by

hV �
2ih�r�M�K � K2

�
� 4ih!r� h�lmc (1.5)

with K � �r2 � a2�!� am. The separation constants are
related by

h�lmc � hElmc � h�h� 1� � c2 � 2mc (1.6)

The differential equation (1.2) has two regular singular
points at x � �1 and one essential singularity at x � 1.
We are only interested in solutions for real values of the
independent variable � corresponding to the interval x 2
��1;�1�. We henceforth restrict x to this range and there-
fore we have only to consider the two regular singular
points at x � �1. The differential equation (1.2), together
with the boundary condition that its solution hSlmc�x� is
regular for x 2 ��1;�1�, defines a parametric eigenvalue
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problem, with parameters c,m and h. The physical require-
ments of single-valuedness and of regularity at x � �1
requires that l and m are integers with jmj � l. Stewart [5]
showed that the SWSH form a strongly complete set if c is
real while he could only prove weak completeness if c is
complex.

In this paper we study the asymptotic behavior for high,
real frequency of the solution and eigenvalues of the spin-
weighted spheroidal differential equation. Following stan-
dard conventions, we refer to ‘‘high frequency’’ in relation
to the angular solution and eigenvalues when in fact what it
is meant is large c�� a!�, where ! is the frequency of the
mode.

The high-frequency approximation of the spin-weighted
spheroidal equation is a particularly important subject that
has been left unresolved thus far, except for the spin-0 case,
due to its difficulty. This asymptotic study is important
when considering both classical and quantum perturba-
tions. In the classical case it is important, for example,
when calculating gravitational radiation emitted by a par-
ticle near the black hole since the typical time-scale of the
motion is short compared to the scale set by the curvature
of the black hole. In the quantum case its importance lies in
the fact that the high-frequency limit is at the root of the
divergences that the expectation value of the stress-energy
tensor possesses. The correct subtraction of the divergent
terms from the expectation value of the stress-energy ten-
sor is extremely troublesome in curved space-time, par-
ticularly in one that is not spherically symmetric. As the
divergent terms arise from the high-frequency behavior of
the field, knowledge of this behavior is fundamental in
such a subtraction. This limit has also been recently con-
sidered in the Kerr background in the context of quasinor-
mal modes (see [6]), which have associated complex—
rather than real—frequencies. In particular, the asymptotic
behavior of the eigenvalues for large, purely imaginary
frequency given by Breuer [7] has been corrected in [6].
Quasinormal frequencies with large imaginary part have
acquired great importance since Hod [8] suggested a cor-
respondence between these frequencies and transitions in
energy level of the quantum black hole.

All analysis in this paper has been performed for general
spin, so that it applies to the scalar, neutrino, electromag-
netic and, in particular, gravitational perturbations, which
are of great interest in astrophysics. However, we should
note that the asymptotic study in this paper is valid for
fixed m as c tends to infinity, a fuller understanding of the
asymptotic behavior of the solution would require an
analysis uniform in m.

In the remainder of this introductory section we discuss
the results for high-frequency asymptotics of SWSH that
have been obtained in the literature up until now, show
their shortcomings and outline what our new results
achieve. In the next section we lay down the basic theory
that we use in the following sections. In Sections III A,
064025
III B, III C, and IV, we fully determine the asymptotic
behavior of the angular solution that is uniform in x and
the asymptotic behavior of the eigenvalue. In Section V we
describe the numerical method and programs used to ob-
tain the numerical results, which in Section VI we show,
analyze and compare to our asymptotic results and to
numerical results in the literature. In the last section we
summarize the results obtained in this paper and lay out
future research.

The spin-weighted spheroidal equation has been exten-
sively studied in the regime of small a!. Press and
Teukolsky [9] used ordinary perturbation theory to obtain
an expansion in small c for the eigenvalue—obtained to a
higher order in [10]—and used a continuation technique
for the SWSH. Fackerell and Grossman [11] expressed the
SWSH as a series involving Jacobi polynomials to find a
certain transcendental equation involving a continued frac-
tion for the determination of the eigenvalue as a power
series in c (particularly useful in the case of complex
frequencies), which was later corrected by Seidel [12].

Different authors have obtained high-frequency approx-
imations to the solution and eigenvalues of the spheroidal
differential equation, which results from the spin-weighted
spheroidal differential equation when h � 0. Erdélyi et al.
[13], Flammer [14] and Meixner and Schäfke [15] have all
done so using the fact that the spheroidal differential
equation becomes the Laguerre differential equation in
the high-frequency limit.

Breuer [7] was the first author to study the high-
frequency behavior of the spin-weighted spheroidal har-
monics. Based on the work on the spin-0 case by the above
authors he related the solution of a transformation of the
spin-weighted spheroidal equation for large, real c and
finite m to generalized Laguerre polynomials. His work,
however, was fundamentally flawed as it assumed that the
solution was either symmetric or antisymmetric under �!
�� �, which is only true for spin-0.

Breuer, Ryan and Waller [16] (hereafter referred to as
BRW) corrected this error and further developed this study
by first relating the SWSH to the confluent hypergeometric
functions and then reducing them to the generalized
Laguerre polynomials by imposing regularity far from
the boundary points x � �1. Unfortunately, their study
of the high-frequency behavior was also flawed and in-
complete. The behavior for high frequency of both the
spherical functions and the eigenvalues obtained by BRW
depend critically on a certain parameter q which they were
unable to determine for the case of nonzero spin.

BRW obtained the analytic value of q for the spin-0 case,
however for nonzero spin they could only calculate it
numerically for a handful of sets of values of fl;mg for
spin-2. BRW achieved this numerical calculation for the
spin-2 case by matching the high-frequency asymptotic
expression for the eigenvalue that they obtained with the
expression for the eigenvalue given by Press and Teukolsky
-2



HIGH FREQUENCY ASYMPTOTICS FOR THE SPIN-. . . PHYSICAL REVIEW D 71, 064025 (2005)
[9] valid for low frequency. Not only their analytic expres-
sions for both the angular solution and the eigenvalue for
high frequency were thus left undetermined, but also their
expressions for the angular solution are only valid suffi-
ciently close to the boundary points x � 1 and x � �1, not
for the region in between them. This results in the possi-
bility that a zero of the solution near x � 0, away from x �
�1, be overlooked. Furthermore, and crucially, their as-
sumption that the confluent hypergeometric functions
should reduce to the generalized Laguerre polynomials
by imposing regularity far from the boundary points is
not correct. The reason why it is not correct is that in the
cases for which the confluent hypergeometric function
diverges far from one of the boundaries, the coefficient in
front of it decreases exponentially with c so that the
solution remains finite in the whole region x 2 ��1;�1�.
We believe that the reason why they were not able to
analytically determine the value of the parameter q is
because they ignored the behavior of the solution far
from the boundaries, thus overlooking a possible zero,
and wrongly imposed regularity.

The study of the behavior of the solution and eigenval-
ues of the spin-weighted spheroidal equation for high, real
frequency and finite m has not been developed any further
by these or any other authors and therefore BRW’s work is
where this study stood until the present paper.

In this paper we correct and complete BRW’s study for
high, real frequency and finite m. We thus obtain an
asymptotic solution for large, real frequency to the spin-
weighted spheroidal equation which is uniformly valid
everywhere within the range x 2 ��1;�1�, not just near
the boundaries. We also analyze the existence and location
of a possible zero of the solution near x � 0. We analyti-
cally determine the value of q by matching the number of
zeros that our asymptotic solution has with the number of
zeros the SWSH has. As a consequence, the asymptotics of
the eigenvalue in the same limit also become fully deter-
mined. Finally, we have complemented all the analytic
work with graphs produced with data that we obtained
numerically. The graphs show the behavior of the eigen-
values for large frequency and how they match with Press
and Teukolsky’s approximation for low frequency. They
also show the behavior of the SWSH in this limit and the
location of its zeros.
II. SYMMETRIES OF THE SPIN-WEIGHTED
SPHEROIDAL DIFFERENTIAL EQUATION

Certain symmetries of the spin-weighted spheroidal
equation (1.2) are immediate: the equation remains invari-
ant under the change in sign of two quantities among
�h; �m; c�; x�, where we are considering that �m; c� consti-
tutes one single quantity, i.e., m and c change sign simul-
taneously. As a consequence, the SWSH satisfy the
following symmetries, where the choice of signs ensures
consistency with the Teukolsky-Starobinski�� identities be-
064025
low:

hSlmc��� � ��1�l�m�hSlmc��� �� (2.1a)

hSlmc��� � ��1�l�hhSl�m�c��� �� (2.1b)

hSlmc��� � ��1�h�m�hSl�m�c��� (2.1c)

Here any one symmetry follows from the other two. The
eigenvalues must consequently also satisfy the symme-
tries:

hElmc � �hElmc (2.2a)

hElmc � hEl�m�c (2.2b)

The SWSH with helicity h is related to the SWSH with
helicity �h via the Teukolsky-Starobinski�� identities [17].
We start by defining the operator

L
fyg
n � @� � c sin��

m
sin�

� n cot�: (2.3)

Then for spin- 12 , the Teukolsky-Starobinski�� identities may
be written as

L1=2�1=2Slmc � �1=2Blmc�1=2Slmc (2.4a)

Ly
1=2�1=2Slmc � 1=2Blmc�1=2

Slmc (2.4b)

where

1=2B
2
lmc � �1=2�lmc: (2.5)

For the spin-1 case, the Teukolsky-Starobinski�� identities
may be written as

L0L1�1Slmc � 1Blmc�1Slmc (2.6a)

Ly
0L

y
1�1Slmc � 1Blmc�1Slmc (2.6b)

where

1B
2
lmc � �1�

2
lmc � 4mc� 4c2 (2.7)

Finally for the spin-2 case, the Teukolsky-Starobinski��
identities may be written as

L�1L0L1L2�2Slmc � 2Blmc�2Slmc (2.8a)

Ly
�1L

y
0L

y
1L

y
2�2Slmc � 2Blmc�2Slmc (2.8b)

where

2B
2
lmc � �2�

2
lmc��2�lmc � 2�2 � 8c2�2�lmc

��
1�

m
c

�

��5�2�lmc � 6� � 12
�
� 144c4

�
1�

m
c

�
2

(2.9)

The signs of 1=2Blmc, 1Blmc and 2Blmc are arbitrary, but we
will take them to be all positive. With this convention,
(2.4), (2.6), and (2.8) agree with the sign in the symmetry
(2.1a) of the angular function.
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III. THE UNIFORM ASYMPTOTIC SOLUTION

In the rest of this paper we follow the approach to
boundary layer theory as presented by Bender and
Orszag [18]. The asymptotic solution that is a valid ap-
proximation to the solution of the differential equation
from the boundary point �1 until x��1�O�c��, where
�1 � � < 0, is called the inner solution. The region within
which an inner solution is valid is a boundary layer. As we
shall see, for the large-frequency approximation of the
spin-weighted spheroidal equation, there are two boundary
layers within the region x 2 ��1; 1�, one close to x � �1
and one close to x � �1. Close to the boundary points the
SWSH oscillate rather quickly in x, and indeed it is there
where all the zeros of the function are located (with the
possible exception of one).

The asymptotic solution that is a valid approximation to
the solution of the differential equation in the range �1�
O�c�1� � x� �1�O�c�1�, is called the outer solution.
This range comprises not only the region in between the
two boundary layers but also a certain region of both
boundary layers. This region where both an inner solution
and the outer solution are valid is the overlap region, and it
is there that the outer and inner solutions are matched.

We shall see that in between the two boundary layers the
function behaves rather smoothly, like a coshx or a sinhx,
so that the SWSH may have at the most one zero, which
will turn out to lie close to x � 0. The behavior of the outer
solution is important despite its smoothness because when
matching it with the inner solutions it will allow us to find
an asymptotic solution which is uniformly valid through-
out the whole range of x. The outer solution is also neces-
sary in order to find out whether or not the uniform solution
has a zero close to x � 0 and, if it does, to calculate the
analytic location of the zero.

This is a key feature that singles out the scalar case from
the others: for the spin-0 case the differential Eq. (1.2) is
clearly symmetric under fx$ �xg and therefore, depend-
ing on its parity, it will have a zero at x � 0 or not. On the
other hand, for the case of spin nonzero, the differential
equation does not satisfy this symmetry but it does remain
unchanged under the transformation fx$ �x; h$ �hg
instead. There is therefore no apparent reason why it
should have a zero near the origin. The outer solution is
important for the case of spin nonzero and not for spin-0
since, as we shall see, the differential equation that the
outer solution satisfies is symmetric under fx$ �x; h$
�hg to leading order in c.

As noted above, the differential equation (1.2) has sin-
gular points at x � �1. By using the Frobenius method it
can be found that the solution that is regular at both
boundary points x � �1 and �1 is given by
hSlmc�x� � �1� x� ��1� x� �
hylmc�x� (3.1)
064025
where

 � �
jm� hj
2

;  � �
jm� hj
2

(3.2)

and

hylmc�x� �
X1
n�0

a�1;n�1� x�n for x! �1 (3.3)

The function hylmc�x� satisfies the differential equation

�
�1� x2�

d2

dx2
� 2� � �  � � � � �  � � 1�x�

d

dx

� hElmc � � � �  ��� � �  � � 1�

� c2x2 � 2hcx
�
hylmc�x� � 0 (3.4)
A. Inner solutions

BRW obtained an expression for the inner solution for
general spin in terms of an undetermined parameter q. In
this section we summarize and present their results in a
compact way.

By making the variable substitution u � 2c�1� x�,
Eq. (3.4) becomes

u
d2hylmc
du2

� �2 � � 1�
dhylmc
du

�
1

4

�
u� 2h

�
1

c
�c2 � � � �  ��� � �  � � 1� � hElmc�

�
hylmc

�
1

4c

�
u2
d2hylmc
du2

� 2� � �  � � 1�
dhylmc
du

�

�
1

4
u2 � hu

�
hylmc

�
� 0 (3.5)

It is clear from this equation that the leading order behavior
of hElmc for large, real c must be �c2. If its leading order
were not �c2, there would then be a leading order term
� 1
4 chylmc in the equation that it could not be matched with

any other term. Lower order terms for hElmc are given in
BRW and they are:

hElmc � �c2 � 2hqlmc�
1

2
�hq

2
lm �m2 � 2h2 � 1�

�
1

c
A1 �

1

64c2
�5hq

4
lm � �6m2 � 10�hq

2
lm �m4

� 2m2 � 4h2�hq2lm �m2 � 1� � 1�

�
1

c3
A3 �O�1=c4� (3.6)

where
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A1 � �
1

8
�hq

3
lm �m2hqlm �h qlm � h2�hqlm �m��

A3 �
1

512

�
1

64
��hqlm �m� 1� 2h��hqlm �m� 1� 2h��hqlm �m� 2h� 3��hqlm �m� 2h� 3��hqlm �m� 3�2

� �hqlm �m� 1�2 � �hqlm �m� 2h� 1��hqlm �m� 2h� 1��hqlm �m� 2h� 3��hqlm �m� 2h� 3�

� �hqlm �m� 1�2�hqlm �m� 3�2� � 2��hqlm �m� 2h� 1��hqlm �m� 2h� 1��hqlm � 1�2

� �hqlm �m� 1�2 � �hqlm �m� 1�2�hqlm � 1�2�hqlm �m� 2h� 1��hqlm �m� 2h� 1��

� 2A1��hqlm �m� 2h� 1��hqlm �m� 2h� 1��hqlm �m� 1�2 � �hqlm �m� 1�2�hqlm �m� 2h� 1�

� �hqlm �m� 2h� 1��
�
: (3.7)
It is crucial to know the value of the parameter hqlm, as it
determines how the angular function behaves asymptoti-
cally to leading order in c and also the eigenvalue to lower
orders. At this stage, hqlm is an undetermined real number;
we will determine its value later on. We will prove in
Section IV that hqlm must be an integer. Note that this
parameter must satisfy the same symmetry (2.2a) as the
eigenvalue, that is

hqlm � �hqlm (3.8)

For simplicity of notation we henceforth suppress the
subindices in hqlm and relabel it q.

Using the asymptotic behavior (3.6) and letting c! 1,
the terms in (3.5) of order O�c�1� can be ignored with
respect to the other ones and, to leading order in c, the
function hylmc satisfies

u
d2hylmc
du2

��2 ��1�
dhylmc
du

�
1

4
�u�2h�2q�hylmc�0:

(3.9)

The solution of this differential equation that satisfies the
boundary condition of regularity at x � �1 is related to the
confluent hypergeometric function:

hy
inn;�1
lmc � hClmce

�u=2
1F1

� ��jm� hj � h� 1�=2� q=2; jm� hj � 1; u�

(3.10)

where hClmc is a constant of integration.
Similarly, if we instead make a change of variable u� �

2c�1� x� in Eq. (3.4), due to the fx$ �x; h$ �hg sym-
metry we obtain
064025
hy
inn;�1
lmc � hDlmce

�u�=2
1F1

���jm�hj�h�1�=2�q=2;jm�hj�1;u��

(3.11)

as the solution that is regular at x � �1.
We use the following obvious notation to refer to the

solutions of the spin-weighted spheroidal equation that
correspond to the inner solutions of (3.9):

hS
inn;�1
lmc � �1� x� ��1� x� �

hy
inn;�1
lmc

The inner solution hS
inn;�1
lmc is only a valid approximation in

the region from the boundary point �1 until a point x�
�1�O�c�� with �1 � � < 0. The reason is that in the
step from (3.5) to (3.9) we have ignored terms with uf�g=c
with respect to terms of order O�1�, and therefore the inner
solution has been found for �1� x� uf�g=c� O�1� and
so we must have � < 0. On the other hand, we are not
ignoring u with respect to the O�1� term 2�h� q� in
Eq. (3.9), so that it must be u�O�c��1� with �� 1 � 0.
From the fact that we are not ignoring 2�h� q� with
respect to u it does not follow that �� 1 � 0, since the
inner solution is valid at the boundary point x � �1, where
u � 0. That is, the term 2�h� q� cannot be ignored with
respect to u everywhere in the region from �1 up to a point
x��1�O�c�� even if �� 1 � 0. A similar reasoning
applies to u�.

We therefore have one boundary layer comprising the
region from �1 to x��1�O�c�� and another boundary
layer from x��1�O�c�� to �1.

To leading order in c the solution to the spin-weighted
spheroidal equation which is valid within the two boundary
layers is given by
hS
inn
lmc � �1� x� ��1� x� �

�
hClmce

�u=2
1F1��p�; 2 � � 1; u� x > 0

hDlmce
�u�=2

1F1��p�; 2 � � 1; u�� x < 0
(3.12)
where we have defined(
p� � ��jm� hj � h� 1� q�=2

p� � ��jm� hj � h� 1� q�=2
(3.13)
BRW then require that p�; p� 2 Z� in order that the
inner solution hS

inn
lmc is regular at x � 0, where u; u� ! 1.

Correspondingly, they replace the confluent hypergeomet-
ric functions 1F1�a; b; x� by the generalized Laguerre poly-
-5
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nomials L�b�1�
�a �x�. As we shall see, this is erroneous:

p�; p� 2 Z� is not a necessary condition for regularity
since in the cases for which this condition is not satisfied,
the coefficients hClmc and hDlmc diminish exponentially for
large c in such a way that hS

inn
lmc remains regular.

B. Outer solution

We now proceed to find the outer solution of the spin-
weighted spheroidal differential equation. We first make
the variable substitution
064025
y�x� � g�x� exp
Z  � �  � � � � �  � � 1�x

1� x2
dx

� g�x��1� x���2 ��1�=2�1� x���2 ��1�=2

(3.14)

which transforms Eq. (1.2) into

g00�x� � f�x; c�g�x� � 0 (3.15)

where
f�x; c� �
G�x; c�

1� x2
�

� � �  � � 1��1� x2� � 2x� � �  � � � � �  � � 1�x�

�1� x2�2
�

� � �  � � � � �  � � 1�x�2

�1� x2�2

(3.16)
and G�x; c� is the coefficient of hylmc in (3.4), i.e.,

G�x; c� � hElmc � � � �  ��� � �  � � 1�

� c2x2 � 2hcx (3.17)

We now perform a WKB-type expansion: g�x� � eG�x�.
This change of variable converts Eq. (3.15) into

G 00�x� � G0�x�2 � f�x; c� � 0 (3.18)

Performing an asymptotic expansion of f�x; c� in c we find

f�x; c� � f0�x�c
2 � f1�x�c�O�1�; (3.19)

with

f0�x� � �1; f1�x� �
2�q� hx�

1� x2
; (3.20)

where we have used the asymptotic expansion of hElmc in
c. It is clear that to leading order in c the outer solution is
symmetric under fx$ �xg. We are avoiding any possible
turning points by assuming that f�x; c� � 0 for x values of
interest. This condition is clearly satisfied if c is large
enough.

Next we perform an asymptotic expansion of G�x� in c.
We do not know a priori what the leading order is, and so
we will determine it with the method of dominant balance.
Let the expansion of G�x� for large c be G�x� �
h0�c�G0�x� � o�h0�c��. On substituting the asymptotic ex-
pansions for f�x; c� and G�x� into (3.18) we obtain

h0�c�G00
0 �x� � h0�c�2�G0

0�x��
2 � c2f0�x�

� o�h0�c�2� � o�c2� � 0 (3.21)

We could try and cancel out the c2f0�x� term with
h0�c�G

00
0 �x�; that would give h0 � c2, but then

h0�c�G
00
0 �x� would be subdominant to h20�G

0
0�
2. The other

option is to cancel the c2f0�x� term with h20�G
0
0�
2 instead.

This gives h0 � c, which works. We therefore have that

G �x� � cG0�x� � G1�x� �O�c�1� (3.22)
The resulting equation for the leading order term in G is

�G0
0�x��

2 � f0�x� � 0; (3.23)

the solution of which is G0 � ��x� x0�. The equation for
the next order in c is

G 00
0 �x� � 2G0

0�x�G
0
1�x� � f1�x� � 0; (3.24)

which gives

G 1 � �

�
q� h
2

log�1� x� �
q� h
2

log�1� x�
�
:

(3.25)

The physical optics approximation for the outer solution is
therefore given by

hS
out
lmc�x� � �1� x� ��1� x� �

hy
out
lmc�x�

hy
out
lmc�x� � �1� x���2 ��1�=2�1� x���2 ��1�=2

� � hAlmc�1� x���q�h�=2�1� x���q�h�=2e�cx

� hBlmc�1� x���q�h�=2�1� x���q�h�=2e�cx�

(3.26)

where the constant x0 has been absorbed within hAlmc and

hBlmc. This solution is valid in the region �1�O�c�1� �
x� �1�O�c�1�.

C. Matching the solutions

We have found three different solutions. One of the two
inner solutions is valid in the region �1 � x &

�1�O�c�� for any � such that �1 � � < 0, and the other
one for �1�O�c�� & x � �1. The outer solution is valid
for �1�O�c�1� � x� �1�O�c�1�. Clearly all three
solutions together span the whole physical region �1 �
x � �1. There are also two regions of overlap, one close to
�1 and one close to �1, where both the outer solution and
one of the inner solutions are valid. We can proceed to
match the solutions in these regions and we will do so only
to leading order in c as matching to lower orders would not
-6
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bring any more insight into the behavior of the SWSH.
When the matching is completed to leading order, the two
overlap regions are given one by the points x satisfying
O�c�1� � 1� x & O�c�� and the other one by the points
satisfying O�c�1� � 1� x & O�c��. For the overlap re-
gions to exist it is therefore required that we choose a �
satisfying �1< �< 0.

In order to obtain an expression for the inner solution in
the overlap region, we expand the inner solution for
u; u� ! �1. For that, we need to know how the confluent
064025
hypergeometric functions behave when the independent
variable is large. From [19] we have

1F1�b; c; z� !
��c�e�i�bz�b

��c� b�
�
��c�ezzb�c

��b�
;

�jzj ! �1�

(3.27)

when z � jzjei# with ��=2<# < 3�=2, which includes
the case we are considering: # � 0. This means that the
inner solution valid close to x � �1 behaves like
hy
inn;�1
lmc ! hClmc

8><>:
��jm�hj�1��2c�1�x����p��jm�hj�1�e�c�1�x�

���p��
; p�=2 Z� [ f0g

��jm�hj�1�e�i�p��2c�1�x��p�e�c�1�x�

��jm�hj�1�p��
; p�2 Z� [ f0g

9>=>;; �juj ! �1� (3.28)
The behavior of the inner solution valid close to x��1 is
similarly obtained by simultaneously replacing x with �x,
h with �h (which also implies replacing p� by p�) and

hClmc with hDlmc above.
On the other hand, in order to obtain an expression for
hy
out
lmc valid in the overlap region we perform a Taylor series

expansion around x��1 or �1 depending on where we
are doing the matching, and keep only the first order in the
series:
(1) Around x � �1.
To first order in �1� x�:

hy
out
lmc�x��hAlmc�1�x�

���q�h�1�=2� ��2���q�h�1�=2� ��e�cx

�hBlmc�1�x�
���q�h�1�=2� ��2���q�h�1�=2� ��e�cx �x!�1� (3.29)

By matching the inner and outer solution in the overlap region O�c�1� � 1� x & O�c��, i.e., by matching
Eqs. (3.28) and (3.29), we obtain the following relations depending on the value of p�:

(a) if p� =2 Z� [ f0g:8<: hAlmc � 0

hBlmc � 2���q�h�1�=2� ����jm�hj�1�
���p��

�2c���p��jm�hj�1�e�chClmc
(3.30)

(b) if p� 2 Z� [ f0g:

hAlmc � 2���q�h�1�=2� ��
��jm� hj � 1�

��jm� hj � 1� p��
e�i�p��2c�p�e�chClmc (3.31)

(2) Around x � �1 (similar to the x � �1 case).
To first order in �1� x�:

hy
out
lmc�x� � hAlmc�1� x����q�h�1�=2� ��2���q�h�1�=2� ��e�cx

� hBlmc�1� x����q�h�1�=2� ��2���q�h�1�=2� ��e�cx �x! �1� (3.32)

(a) if p�=2 Z� [ f0g:8<: hBlmc � 0

hAlmc � 2���q�h�1�=2� ����jm�hj�1�
���p��

�2c���p��jm�hj�1�e�chDlmc
(3.33)

(b) if p� 2 Z� [ f0g:

hBlmc � 2���q�h�1�=2� ��
��jm� hj � 1�

��jm� hj � 1� p��
e�i�p��2c�p�e�chDlmc (3.34)

From the above matching equations we can obtain a uniform asymptotic approximation to hSlmc valid throughout the
whole region x 2 ��1;�1� and also find out where the zeros of the function are. The uniform asymptotic approximation is
obtained by adding the outer and the two inner solutions, and then subtracting the asymptotic approximations in the two
-7
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overlap regions since these have been included twice.
Figure 1 depicts the region of validity of the various
asymptotic solutions for large c that we have obtained.

We can distinguish three cases:

1. p�;p� =2 Z� [ f0g

From Eqs. (3.30) and (3.33) it must be hAlmc � hBlmc �
0 � hClmc � hDlmc, so this case is the trivial solution and
we discard it.
− 1

− 1 +
O

(c
−

1 )

− 1 +
O

(c
ε )

− 1 +
O

(c
δ ) 0

S mat ch ,− 1

S inn,− 1

S o

FIG. 1 (color online). Regions of validity in the x axis of the vari
3 < � < 0. For clarity, the mode labels have been dropped. Smatch;�1

(thicker segment) close to x � �1. The uniform solution is constru

064025
2. p� 2 Z� [ f0g and p� =2 Z� [ f0g , or vice-versa

Either hAlmc or hBlmc is equal to zero (but not both),
so that the function hSlmc cannot have a zero close to
x � 0. All the zeros, if there are any, of hSlmc are
zeros of the inner solutions and thus they are located
inside the boundary layers, close to x � �1. In this case
we can already directly obtain the uniform asymptotic
approximation, up to an overall normalization constant

hClmc:
hS
unif
lmc � hClmc�1� x� ��1� x� �

�
e�c�1�x�1F1��p�; 2 � � 1; 2c�1� x�� �

��2 � � 1�

��2 � � 1� p��

���p��

��2 � � 1�

� e�i�p��2c�p��p��2 ��1e�2c2�q� �� ��e�c�1�x�1F1��p�; 2 � � 1; 2c�1� x��

� 2���q�h�1�=2� ��
��2 � � 1�

��2 � � 1� p��
e�i�p��2c�p�e�ce�cx��1� x���q�h�1�=2� ��1� x���q�h�1�=2� �

� 2���q�h�1�=2� ���1� x���q�h�1�=2� � � 2���q�h�1�=2� ���1� x���q�h�1�=2� ��

�
when p� 2 Z� [ f0g and p� =2 Z� [ f0g (3.35)
The uniform approximation when p� =2 Z� [ f0g and
p� 2 Z� [ f0g may be obtained by making the substitu-
tions x$ �x and h$ �h (which imply the substitutions
 � $  � and p� $ p�) in (3.35) .

The irregularity arising from e�c�1�x�1F1��p�; 2 � �
1; 2c�1� x�� � e2c (ignoring factors independent of x and
c) in the limit x! �1 and c! �1 prompted BRW to
discard the case p� =2 Z� [ f0g. It is clear from (3.35),
however, that this irregularity is nullified by the factor e�2c

in front of it, brought in by the coefficient hDlmc. Note that
despite the factor e�2c, close to x � �1 this term (which is
part of the inner solution valid in the boundary layer there)
is not dominated by the first term in (3.35) (which is the
inner solution valid in the boundary layer near x � �1).
The reason is that e�c�1�x�1F1��p�; 2 � � 1; 2c�1�
x�� � e�2c and e�c�1�x�1F1��p�; 2 � � 1; 2c�1� x�� �
e�2c where both limits are x! �1 and c! 1 and we
have ignored factors independent of x and c. In the bound-
ary layer around x � �1, the asymptotic approximation
valid in the overlap region close to x � �1 cancels out the
inner solution hS

inn;�1
lmc in expression (3.35). Similarly, in

the same boundary layer, the asymptotic approximation
valid in the overlap region close to x � �1 cancels out
the outer solution, so that only hS

inn;�1
lmc contributes to the

uniform approximation in that boundary layer. A similar
reasoning can be applied to the case p� =2 Z� [ f0g.

3. p�;p� 2 Z� [ f0g

In this case, apart from the overall normalization con-
stant there is another unknown constant. We are going to
determine this extra unknown by imposing the appropriate
parity under fx$ �x; h$ �hg. Using the Teukolsky-
Starobinski�� identities (2.4), (2.6), and (2.8) together with
the symmetry (2.1a) in the inner solution (3.12) we obtain
+ 1 −
O

(c
)

+ 1 −
O

(c
)

+ 1 −
O

(c
−

1 ) + 1

S mat ch,+ 1

S inn,+ 1

ut

δ ε

ous approximations to the SWSH for large c. It must be �1<
refers to the asymptotic approximation valid in the overlap region
cted as Sunif � Sout � Sinn;�1 � Sinn;�1 � Smatch;�1 � Smatch;�1.
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�1=2Dlmc

�1=2Clmc
�

�1=2Clmc

�1=2Dlmc
���1��l�m�

�1=2Clmc

�1=2Clmc

���1��l�m�

8>>><>>>:
�

��
2

p ��������
q�m

p

m�1=2
���
c

p
when m��1

2

�
m�1=2��
2

p ��������
q�m

p
1��
c

p when m��1
2

(3.36)

for spin- 12 ,
064025
�1Dlmc
�1Clmc

��1Clmc
�1Dlmc

���1��l�m� �1
Clmc

�1Clmc

���1��l�m�

8>>>>>>>><>>>>>>>>:

2
������������������������������
�q�m�1��q�m�1�

p

m�m�1� c when m��1

�

�������
q�1

p�������
q�1

p when m�0

m�m�1�

2
������������������������������
�q�m�1��q�m�1�

p 1
c when m��1

(3.37)

for spin-1 and
�2Dlmc
�2Clmc

� �2Clmc
�2Dlmc

� ��1��l�m� �2
Clmc

�2Clmc
� ��1��l�m�

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

4
�����������������������������������������������������������
�q�m�1��q�m�1��q�m�3��q�m�3�

p

�m�2��m�1�m�m�1� c2 when m � �2

�

���������������������
q�q�2��q�4�

p

3
�������
q�2

p c when m � �1�������������������
�q�3��q�1�

p�������������������
�q�3��q�1�

p when m � 0

�
3

�������
q�2

p���������������������
q�q�2��q�4�

p 1
c when m � �1

�m�1�m�m�1��m�2�

4
�����������������������������������������������������������
�q�m�1��q�m�1��q�m�3��q�m�3�

p 1
c2

when m � �2

(3.38)
for spin-2. Equations (3.36), (3.37), and (3.38) have been
obtained without imposing any restrictions on the values of
p� or p� and might therefore seem to contradict the result
from (3.31) and (3.33) [or (3.30) and (3.34)] giving an
exponential behavior with c for the ratio hDlmc= hClmc
for the case p� 2 Z� [ f0g and p� =2 Z� [ f0g [or vice-
versa]. We shall see in the next section, however, that
Eqs. (3.36), (3.37), and (3.38) can only actually be applied
to the case p�; p� 2 Z� [ f0g so that there is no such
contradiction. Note that these equations can also be ob-
tained by applying the Teukolsky-Starobinski�� identities to
the outer solution (3.26), rather than the inner solution.
Indeed, we have checked Eqs. (3.36), (3.37), and (3.38) by
using this alternative approach.

We can already determine in what cases the outer solu-
tion has a zero. Clearly, from Eqs. (3.31), (3.34), (3.36),
(3.37), and (3.38), the ratio between the coefficients hAlmc
and hBlmc is proportional to a power of c, where the
constant of proportionality does not depend on c. It then
follows from the form (3.26) of the outer solution that one
exponential term will dominate for positive x and the other
exponential term will dominate for negative x, when c!
1. Therefore the outer solution does not possess a zero far
from x � 0 for large c. The outer solution has a zero if

hAlmc and hBlmc have different sign and it does not have a
zero otherwise. From equations (3.13), (3.31), (3.34),
(3.36), (3.37), and (3.38) we have:

sign
�
hAlmc
hBlmc

�
� ��1��p��p�� � sign

�
hClmc
hDlmc

�
� ��1��l�m�

(3.39)

Furthermore, we can calculate what the location of the
zero of the outer solution is to leading order in c: by setting
the outer solution (3.26) equal to zero and using (3.31) and
(3.34) (since we have already seen that if p� and/or p� =2
Z� [ f0g the outer solution does not have a zero) we obtain
that for large frequency the zero is located at the following
value of x:
x0 �
1

2c
log

�
� hBlmc

hAlmc

�
�
1

2c
log

�
�2��h� �� ��

��jm� hj � 1���jm� hj � 1� p��

��jm� hj � 1���jm� hj � 1� p��
e�i��p��p���2c��p��p�� h

Dlmc
hClmc

�
(3.40)

Clearly, there is one zero in the region between the two boundary layers tending to the location x � 0 as c becomes large if

hAlmc and hBlmc have different sign and there is not a zero if they have the same sign.
-9
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Finally, the uniform asymptotic approximation for this case is:
hS
unif
lmc � hClmc�1� x� ��1� x� �

�
e�c�1�x�1F1��p�;2 � � 1;2c�1� x��� hDlmc

hClmc
e�c�1�x�1F1��p�;2 � � 1;2c�1� x��

� 2��q�h�1�=2� ��
��2 � � 1�

��2 � � 1�p��
e�i�p��2c�p�e�ce�cx��1� x���q�h�1�=2� ��1� x���q�h�1�=2� �

� 2���q�h�1�=2� ���1� x���q�h�1�=2� ��� hDlmc
hClmc

2��q�h�1�=2� ��
��2 � � 1�

��2 � � 1�p��

� e�i�p��2c�p�e�ce�cx��1� x���q�h�1�=2� ��1� x���q�h�1�=2� � � 2���q�h�1�=2� ���1� x���q�h�1�=2� ��

�
when p�; p� 2 Z� [ f0g (3.41)
where the ratio between hDlmc and hClmc is given by (3.36),
(3.37), and (3.38).

Similar cancellations to the ones for the case p� 2
Z� [ f0g and p� =2 Z� [ f0g occur in the present case
for the uniform solution (3.41). The only difference is
that now, in the boundary layer around x � �1, the asymp-
totic approximation valid in the overlap region around x �
�1 only cancels out part of the outer solution. The other
part of the outer solution, however, is exponentially negli-
gible with respect to the inner solution hS

inn;�1
lmc .
IV. CALCULATION OF q

In order to finally determine the value of q we only need
to impose that our asymptotic solution must have the
correct number of zeros. BRW give the number of zeros
of the SWSH for non-negative m and h. Straightforwardly
generalizing their result for all possible values of m and h
using the symmetries of the differential equation, we have
that the number of zeros of hSlmc is independent of c and
for x 2 ��1; 1� is equal to(

l� jmj for jmj � jhj

l� jhj for jmj< jhj
(4.1)

The number of zeros of the confluent hypergeometric
function is also needed, and that is given by Buchholz [20]:

The number of positive, real zeros of 1F1��a; b; z� when
b > 0 is
064025
(
���a� for �1> a � 0

0 for 0 � a >�1
(4.2)

where �n� means the largest integer � n.
Since the confluent hypergeometric functions are part of

the inner solutions and the region of validity of these
solutions becomes tighter to the boundary points as c
increases, the zeros of 1F1��p�; 2 � � 1; u� are grouped
together close to x � �1, and likewise for

1F1��p�; 2 � � 1; u�� close to x � �1. Apart from these
zeros, for large c the function hSlmc may only have other
zeros at x � �1 and/or at x � x0. The possible one at x �
x0 is not due to the confluent hypergeometric functions but
to the outer solution. We define the variable z0 so that it has
value �1 if hSlmc has a zero at x � x0 and value 0 if it does
not.

From Eq. (3.13) we see that p� � p� � �jm� hj �
2h� jm� hj�=2, and therefore if either p� or p� is
integer then the other one must be integer as well. But,
as we saw in Section III C, at least one of p� and p� (if not
both) must be a positive integer or zero. Therefore both p�

and p� must be integers and at least one of them is positive
or zero. It also follows from (3.13) that

2q � 2�p� � p�� � 2� jm� hj � jm� hj (4.3)

where it is now clear that q 2 Z.
Requiring that the number of zeros of the asymptotic

solution coincides with the number of zeros of the SWSH
results in the condition
(

��jm� hj � h� 1�=2� q=2 for q � jm� hj � h� 1

0 for q < jm� hj � h� 1

)

�

(
��jm� hj � h� 1�=2� q=2 for q � jm� hj � h� 1

0 for q < jm� hj � h� 1

)
� z0 �

(
l� jmj for jmj � jhj

l� jhj for jmj< jhj

)
(4.4)
From (4.4) and the fact that z0 � 0when either p� or p� =2 Z� [ f0g as seen in Section III C, we obtain the value of q in
all different cases:
-10
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q �

� l� jmj for jmj � jhj

l� jhj for jmj< jhj

�
�

�jm� hj � jm� hj�
2

� 1� z0 if l � l1; l2�i:e:; p�; p� 2 Z� [ f0g� (4.5a)

q � 2
� l� jmj for jmj � jhj

l� jhj for jmj< jhj

�
� jm� hj � h� 1 if l < l2�i:e:; p� 2; p� =2 Z� [ f0g� (4.5b)

q � 2
� l� jmj for jmj � jhj

l� jhj for jmj< jhj

�
� jm� hj � h� 1 if l < l1�i:e:; p� =2; p� 2 Z� [ f0g� (4.5c)
where

l1�
�
jmj for jmj� jhj
jhj for jmj< jhj

�
��jm�hj�jm�hj�=2�h

l2�
�
jmj for jmj� jhj
jhj for jmj< jhj

�
��jm�hj�jm�hj�=2�h

By requiring in (4.5a) that q must also satisfy (3.13) and
bearing in mind that z0 can only have the values 0 or 1, it
must be

z0 �
�
0 for l� l1 even
1 for l� l1 odd

(4.6)

where l2 instead of l1 could have been used, since one is
equal to the other one plus an even number.

It can be trivially seen that if l1 has an allowed value, i.e.,

l1 �
�
jmj for jmj � jhj
jhj for jmj< jhj

�
; (4.7)

then l2 does not, and vice-versa, so that cases (4.5b) and
(4.5c) are mutually exclusive.

Clearly, when l < l1 or l < l2, for fixed h and m, as l is
increased by 1 the corresponding value of q is also in-
creased by 1, so that two different values of l correspond to
two different values of q. However, once the threshold l �
max�l1; l2� is reached, every increase of 2 in l will involve
the subtraction of an extra 1 in (4.5a) via z0, so that its
corresponding value of q will be the same as for the
previous l. Therefore, in the region l � max�l1; l2�, every
value of q will correspond to two consecutive, different l’s:
the two corresponding SWSH’s will have the same number
of zeros and behavior close to the boundary points, but one
will have a zero at x � x0 and the other one will not.

Another feature that can be seen is that, for h � � 1
2 , the

case l <max�l1; l2� (i.e., p� and/or p� =2 Z� [ f0g) im-
plies q�m � 0 or l < jmj when m � 1

2 and m � � 1
2

TABLE I. Some physically

h � 0 h � �1
m �2 �1 0 �1 �2 �3 �2 �1 0 �1 �2
l

0 1
1 2 1 2 2 1 0
2 3 2 3 2 3 3 2 3 2 1
3 3 4 3 4 3 4 3 4 3 4 3
4 5 4 5 4 5 4 5 4 5 4 5
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respectively, so that (3.36) is not applicable to these cases,
as already mentioned in the previous section. In the case
m � 1

2 , q�m � 0 means that we have not gone far
enough in the asymptotic expansion (3.36).

Similarly, for h � �1, the case l <max�l1; l2� implies
q�m � �1 or q � �1 when m � 1 and m � 0 respec-
tively, so that the leading order behavior given by (3.37)
vanishes for these cases. When m � �1 it follows from
(4.5b) and (4.5c) that l < l1�� l2� requires l < jmj, which
is not allowed.

For h � �2, l <max�l1; l2� implies8>>>>>>>><>>>>>>>>:

m� q � �1;�3 when m � 2

q � 0; 2; 4 when m � 1

q � 1; 3 when m � 0

q � 2 when m � �1

l < jmj when m � �2

so that the leading order behavior given by (3.38) does then
not apply.

Note that the scalar case is obtained from our formulas
as a particular case. Setting h � 0 in the equations above
we have l1 � l2 � jmj and therefore l will always be
greater or equal than both l1 and l2 so that (4.5a) will
apply, and it gives q � l� 1� z0 with

z0 �
�
0 for l� jmj even
1 for l� jmj odd

:

We also have p� � p� 2 Z� [ f0g and 2 � � 2 � �
jmj and then the confluent hypergeometric functions are
just the generalized Laguerre polynomials:

1F1��p�; jmj � 1; z� / L�jmj�
p�

�z�. Finally, because of the
existence of the x$ �x symmetry in the scalar case, we
have that 0Blmc � �0Almc in (3.26) and therefore the zero
relevant values of hqlm!

h � �2
�3 �4 �3 �2 �1 0 �1 �2 �3 �4

3 2 1 0 �1
2 4 3 4 3 2 1 0
4 5 4 5 4 5 4 3 2 1

-11



TABLE II. Some physically relevant values of
�1=2qlm!

h � �1=2
m �5=2 �3=2 �1=2 �1=2 �3=2 �5=2
l

1=2 3=2 1=2
3=2 5=2 3=2 5=2 3=2
5=2 7=2 5=2 7=2 5=2 7=2 5=2
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of the outer solution, if it exists, will be located exactly at
x � 0. All these results for the scalar case coincide with
[13–15].

In Tables I and II we show the values of q for physically
relevant values of �h; l; m�, obtained from expressions
(4.5).
V. NUMERICAL METHOD

Several numerical methods have been developed so far
for solving the spin-weighted spheroidal equation in the
various regimes of its parameters, mostly for h � 0.
Oguchi [21] offers an exhaustive numerical work on ob-
taining the eigenvalues and their branch points of the
spheroidal differential equation for complex frequency. A
review of the numerical methods, together with new, ac-
curate algorithms, for solving this equation for real and
complex frequency has been given by Li et al. [22].
Further, recent work is presented by Barrowes et al. [23]
who provide an accurate method for obtaining the sphe-
roidal harmonics and their eigenvalues in the limit of large,
complex frequency. On the other hand, Leaver [24] found a
recurrence relation that enables to obtain the SWSH once
the eigenvalues are known and also found two continued
fraction equations that, when solved simultaneously, yield
the quasinormal frequencies and corresponding eigenval-
ues of the spin-weighted spheroidal equation.

We used two different methods to obtain the numerical
data. One method is the one used by Sasaki and Nakamura
[25], consisting in approximating the differential equa-
tion (3.4) by a finite difference equation, and then finding
the eigenvalue as the value of hElmc that makes zero the
determinant of the resulting (tridiagonal) matricial equa-
tion. We have used this method to find the eigenvalues for
several large values of c. However, we used the shooting
method described in [26] to calculate the spin-weighted
spheroidal function.

The shooting method is applied in [26] to the spheroidal
differential equation (i.e., h � 0), and we adapted it to the
spin-weighted spheroidal differential equation as follows.
In general, for an initial, arbitrary value hÊlmc for the
eigenvalue, which is different from the actual eigenvalue

hElmc, the numerically integrated solution is a combination
of both the regular and the irregular solutions, i.e.,

hy
num
lmc � A�hÊlmc�hylmc � B�hÊlmc�hy

irreg
lmc (5.1)
064025
where hy
irreg
lmc is the irregular solution at x � �1, hy

num
lmc is

the numerically obtained solution and hylmc is the analytic,
regular solution. A and B are unknown functions of hÊlmc.
We need to modify the value of hÊlmc so that only the
regular term Ahylmc is retained. In the scalar case, the
boundary condition at x2 � �1� dx may be imposed by
requiring that h�0Êlmc is a zero of the function
g�h�0Êlmc� � h�0y

0num
lmc �x2� � h�0y

0
lmc�x2�, where the ana-

lytic value hy
0
lmc�x2� is known for the scalar case because

h�0y
0
lmc�x� / h�0y

0
lmc��x�. The function g�h�0Êlmc� should

tend to zero as h�0Êlmc approaches the correct eigenvalue
and should tend to infinity when it is far from it because of
the behavior of the irregular solution. However, in general
we have hy

0
lmc�x� / �hy

0
lmc��x�, relating solutions of equa-

tions with different helicity when h � 0, and therefore we
do not know the analytic value hy

0
lmc�x2� for a particular

value h � 0 of the helicity. We therefore decided to apply
the shooting method by finding a zero of the function

g�hÊlmc� � hy
0num
lmc �x2� � hy

0approx
lmc �x2� (5.2)

instead, where hy
0approx
lmc �x2� is not the actual analytic value,

which we do not know, but an approximation to it:

hy
0approx
lmc �x2� ’

hy
num
lmc �x2�

hylmc�x2�
hy

0
lmc�x2� (5.3)

Note that we do not know hy
0
lmc�x2� or, equivalently, the

coefficient a�1;0 in (3.3). However, the fraction

hy
0
lmc�x2�=hylmc�x2� can be calculated analytically since it

does not depend on a�1;0 and a recurrence relation for the
coefficients a�1;n is easily obtainable.

Sasaki and Nakamura’s method, which they only de-
velop explicitly for the case h � �2 and m � 0 solves the
angular differential equation (3.4) rewritten with deriva-
tives with respect to � rather than x:

�
d2

d�2
�

1

sin�
�2� � �  �� � 2� � �  �� cos�� cos��

d

d�

� hElmc � � � �  ��� � �  � � 1�

� c2cos2�� 2hc cos�
�
hylmc��� � 0 (5.4)

This equation is approximated by a finite-difference equa-
tion. Apart from at the boundaries, the derivatives are
replaced with central differences. At the boundary points,
the regularity condition (3.1) requires that
dhylmc=d�jx��1 � 0 and the first order derivative (which
has a factor 1= sin� in front) is approximated by a forward/
backward difference at x � �1=� 1 respectively. The
result is that Eq. (5.4) is approximated by
-12
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hy
i�1
lmc � 2hy

i
lmc � hy

i�1
lmc

����2
�

1

sin�i
�2� � �  �� � 2� � �  �� cos�i � cos�i�

hy
i�1
lmc � hy

i�1
lmc

2��

� �hElmc � � � �  ��� � �  � � 1� � c2cos2�i � 2hc cos�i�hy
i
lmc � 0; for i � 2; . . . ; 2N

2�1� 2 ��
2hy

i�1
lmc � 2hy

i
lmc

����2
� �hElmc � � � �  ��� � �  � � 1� � c2 � 2hc�hy

i
lmc � 0; for i � 1�� � 0�

� 4 �

2hy
i�1
lmc � 2hy

i
lmc

����2
� �hElmc � � � �  ��� � �  � � 1� � c2 � 2hc�hy

i
lmc � 0; for i � 2N � 1�� � �� (5.5)
where �i � ��i� 1�=�2N� � ���i� 1� and i � 1; 2; . . . ;
2N � 1. Equation (5.5) can be represented as the product
of a square, tridiagonal matrix A of dimension �2N � 1� �
�2N � 1� and the vector of elements hy

i
lmc equal to zero. In

order to find the eigenvalue, Sasaki and Nakamura’s
method imposes that the determinant of matrix A is zero.

We found that, already with N � 100, for most modes
the values of hElmc obtained to quadruple precision ac-
tually provided values of the determinant so large that were
even greater than the machine’s largest number. We there-
fore decided to use this method only to find eigenvalues
and use the shooting method when we wish to find both
eigenvalues and spherical functions. In fact, Sasaki and
Nakamura’s method without finding the spherical function
is so much faster than the shooting method that the former
is the preferable method to use if we wish to find eigen-
values far from any known eigenvalue (as we analytically
do for c � 0 for example). This is why we used Sasaki and
Nakamura’s method to find the eigenvalues for large fre-
quency and then used the resulting eigenvalue to find the
corresponding spherical function with the shooting
method.

We wrote a program that implements Sasaki and
Nakamura’s method to find eigenvalues, particularly
adapted to the case of large frequency. It calculates h�lmc
rather than hElmc since h�lmc �O�c� for large c whereas

hElmc �O�c2�. It starts with the known value of h�l;m;c�0
(1.3) and finds the eigenvalue h�lmc for increasing fre-
quency by looking for a zero of the determinant of the
matrix A. This procedure is smooth no matter how large the
frequency is if l < l1 or l < l2. However, if l � max�l1; l2�,
for some large value of the frequency, the eigenvalues for
two consecutive values of l are so close (since they corre-
spond to the same q and therefore their leading order term
for large-frequency is the same) that the initial bracketing
of the eigenvalue includes both eigenvalues and therefore
detA calculated with the values of h�lmc at the two ends of
the bracket has the same sign. From this value of the
frequency on, instead of looking for a zero of the determi-
nant the program just looks for the value h�lmc that is an
extreme of the determinant. The reason is that this provides
a point which is in between the two actual eigenvalues and
it is therefore useful both as an approximation and as a
bracket point for either of them. Instead of using minimi-
zation/maximization routines, which are very costly in
terms of accuracy and time, in order to find an extreme
064025
of detA, the program looks for a zero of the derivative of
detA, which can be calculated to be

d�detA�
dh�lmc

� trace ��detA�A�1� (5.6)

and is very easy to evaluate. The program we have just
described provided the graphs of h�lmc as a function of !
for large-frequency and there is therefore no need for it to
distinguish with accuracy between the two consecutive
eigenvalues.

The extreme point of the determinant found by this
program is used by another program which uses the shoot-
ing method and Runge-Kutta integration to bracket and
determine the two close eigenvalues and their correspond-
ing angular functions. It initially looks for a zero of the
function g�hÊlmc� inside a bracket of the eigenvalue. If it
finds a zero inside the bracket, it then directly implements
the shooting method as described in [26]. Instead, if it does
not find a zero inside the bracket it then assumes that it is
because the frequency is large enough so that there are two
eigenvalues inside the bracket corresponding to two differ-
ent, consecutive l’s. It then looks for a minimum of
g�hÊlmc� (with a possible change of sign if there is a
maximum instead) and uses that minimum to find a zero
to its right or to its left depending on which one corre-
sponds to the lwe are interested in, according to (4.5). This
second program also finds the zero of the function hSlmc
close to x � 0 for large! if it has one as indicated by (4.6),
uses a smaller stepsize in x close to x � �1 to cater for the
rapid oscillations of the angular function there for large !
and makes use of Eqs. (4.5) and (3.6) to help bracket the
eigenvalue. This program provided the graphs of hSlmc���
for large frequency.

Both programs were written in Fortran90 and contain
parallel algorithms that use the Message-Passing Interface
as the message-passing library.
VI. NUMERICAL RESULTS

All the numerical results and graphs in this section have
been obtained for a � 0:95 (in units where M � 1). While
this value is large for astrophysical bodies it serves to
emphasize the intricacies of the problem. The choice of
values of fh; l;mg in our numerical calculations has been
made in order to illustrate the various asymptotic behaviors
of the solution of the spin-weighted spheroidal harmonic
-13
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FIG. 3 (color online). �1Sl;1;c for l � 3&4, ! � 5! 25 in
steps of�! � 2. The continuous curves correspond to l � 4 and
the dotted ones to l � 3. As ! increases from 5 to 25, the
functions become increasingly flattened out in the region close to
the origin and squeezed out towards the edges. In the interval
x 2 ��1;�1�, the function for l � 4 has three zeros and the one
for l � 3 has two, in agreement with (4.1). The inner solution
provides the two zeros of l � 3 and the corresponding two of
l � 4. These zeros approach the boundary point x � �1 as c
increases. The additional zero for l � 4 comes from the outer
solution and becomes closer to x � 0 with increasing c.
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FIG. 2 (color online). �1�l;1;c (top graph) and �2�l;1;c (bottom
graph) as functions of ! for several l and q. The crosses are the
exact data. The darker lines correspond to BRW’s expansion for

h�lmc and the light lines to Press and Teukolsky’s. All figures
have been plotted for a � 0:95 and so c � 0:95!. All eigenval-
ues start off at c � 0 with the value given by (1.3), as expected,
and when l � max�l1; l2� the pairs of curves that share the same
value of q become (exponentially) closer to each other as the
frequency increases.
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equation. We have thus preferred slightly higher values of
l, which correspond to SWSH with a higher number of
zeros, to lower values of l, which might be more physically
significant. Understanding the zeros of the SWSH is not
only crucial to being able to perform a correct asymptotic
analysis, but also a high number of zeros illustrates the
oscillatory behavior of the inner solution in the boundary
layers. The code used for these calculations is available at
http://www.ucd.ie/math-phy/s_casals.html for readers
wishing to explore other values of a, h, l or m.1

A. Eigenvalues

BRW found the analytical value for q for spin-0 using
the parity invariance of the solution. For nonzero spin,
1Useful Mathematica packages that calculate spheroidal har-
monics can be found at the webpage http://internal.physics.u-
wa.edu.au/~falloon/spheroidal/spheroidal.html

064025
however, they attempted to numerically match their
large-frequency asymptotic expansion of the eigenvalue
with the expansion for small frequency as given by Press
and Teukolsky ([9,27]). As can be seen in Fig. 2, such an
intermediate matching is good for some cases, especially
for small l, but is certainly not for others. We calculated the
eigenvalues for the modes plotted in Fig. 2 up to ! � 100.
We verified that their values coincided to very high accu-
racy (percentage relative error of only a few decimals at
! � 100) with those given by the asymptotic equa-
tion (3.6), with the analytical value of q given by Eq. (4.5).

B. Eigenfunctions for p�; p� 2 Z� [ f0g

In the plots of these eigenfunctions, the lines labeled as
‘‘inner’’ have been obtained with (3.12), the ones labeled
‘‘outer’’ with (3.26), the ones labeled ‘‘uniform’’ with
(3.41) and the ones labeled ‘‘exact’’ with the programs
described in Section V.

There is an obvious numerical problem when p�; p� 2
Z� [ f0g. In this case, as mentioned in Section IV, the
eigenvalues for two different values of l (but the same
h;m) become exponentially close as c increases ([16]).
For example, in the case below for h � �1 and m � 1,
when ! � 25 the eigenvalues for l � 3 and l � 4 only
differ in their 14th digit.

We calculated and plotted the SWSH for pairs of modes
that correspond to the same value of q, given by (4.5a).
Since the value of q is the same for both modes in the pair,
-14
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FIG. 5 (color online). �2S5;1;c (top graph) and �2S6;1;c (bottom
graph) for ! � 35. Lighter curves corresponds to uniform
solution (3.41) and darker curves to the exact solution.
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FIG. 4 (color online). Details of �1Sl;1;c for l � 3&4 and ! �
25 with different curves as labeled. The continuous lines corre-
spond to the curves for l � 4 and the dotted ones to l � 3. These
figures show that the outer (normalized to agree with the exact
data at x � 0), inner (normalized to agree with the exact data at
x � �0:96) and uniform (also normalized to agree with the
exact data at x � 0) solutions approximate the exact data for
! � 25 in the boundary layers and in the neighborhood of x �
0. The outer solution is valid up to the boundary point x � �1
but not close to x � �1 since the function has two zeros close to
x � �1 and the outer solution cannot cater for them. The
uniform solution is a valid approximation for all x. The inner
solutions, as expected, prove to be a good approximation in the
boundary layers but not close to x � 0.
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the inner solution (valid near the endpoints) is the same for
both of them, with the only exception of the relative sign
between the inner solution for positive and negative x
(3.37). On the other hand, the outer solution (valid near
the origin) for one of the modes contains a zero but it does
not for the other mode.

The SWSH for the modes h � �1,m � 1 and l � 3&4,
are plotted in Figs. 3 and 4. The value of q is the same for
both modes: q � 4. For this h andm, we have l1 � �1 and
l2 � 3. Figures 5 and 6 correspond to modes with h � �2,
m � 1, ! � 35 and l � 5 or l � 6. The modes for both
values of l yield q � 6; for this h and m it is l1 � 5 and
l2 � �1.

We also calculated the ratio hDl;m;c=hCl;m;c from the
numerical data normalized to match the inner solution
(3.12) at the points x � �0:998, and found very good
agreement with the analytic value (3.37). For the modes
above, we found this ratio to have a percentage relative
error of only a few digits with respect to the analytic value
at!� 30. Note that the analytic value (3.37) has only been
-15
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continuous curves correspond to l � 6 and the dotted ones to l �
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Fig. 4.
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FIG. 7 (color online). �1S2;1;c (top graph) and ln��1S2;1;c�
(bottom graph, where the points with negative values of

�1S2;1;c have not been included) for ! � 100. The continuous
curve corresponds to the uniform solution (3.35) and the dotted
one to the exact data. The uniform expansion has been normal-
ized to coincide with the exact value at x � 0. The uniform
expansion agrees with the exact solution for all values of x.
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calculated to leading order in c and therefore one expects a
discrepancy between the analytic and the exact values of
O�1� when m � 1.

C. Eigenfunctions for p� 2 Z� [ f0g, p� =2 Z� [ f0g

As an example of a case where p� 2 Z� [ f0g and
p� =2 Z� [ f0g, we have plotted the SWSH for h � �1,
l � 2, m � 1 and ! � 100. The corresponding value of q,
calculated with (4.5b), is 2. As we have seen, in this case
the function has an exponential behavior far from the
boundary layers, so that a plot of the log of the function
allows us to see the behavior over the whole range of x.

The exact solution together with the inner solution
(3.12), outer solution (3.26) and uniform expansion (calcu-
lated in this case with (3.35)) is plotted over the whole
range x 2 ��1; 1� in Figs. 7 and 8.
-16
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FIG. 8 (color online). �1S2;1;c for ! � 100. The exact
(circles), inner (light crosses) and uniform (continuous) solutions
overlap close to x � �1. The exact, outer (dark crosses) and
uniform solutions overlap close to x � 0. The exact, inner and
uniform solutions overlap close to x � �1. Both the uniform
expansion and the outer solution have been normalized so that
they coincide with the numerical value at x � 0, and the inner
solution has been normalized once at x � 10�8 and once at x �
�10�8. The outer solution agrees with the exact solution every-
where except very close to x � �1, where it veers off. The inner
solutions are valid all the way from their respective boundary
layers until, and past, x � 0, which is due to the exponential
nature of the function in the region between the boundary layers.
The inner solutions show a jump at x � 0 due to the different
orders in c of hClmc and hDlmc.
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VII. CONCLUSIONS

In this paper we have investigated the asymptotic be-
havior for large, real a! and fixed l and m of the solution
and eigenvalues of the spin-weighted spheroidal equation.
We have treated this as a boundary layer problem. We
analytically calculated the inner solutions, valid close to
the boundary points, and the outer solution, valid in the
region away from the boundary points, to this problem.
The latter solution has been previously overlooked in the
literature. We constructed the asymptotic solution uni-
formly valid in the independent variable x from these three
functions. The outer solution behaves rather smoothly and
contains at the most one zero, whereas the other zeros of
the uniform solution are accounted for by the two inner
solutions. We have established for which modes the outer
solution possesses a zero and determined its location.

Both the uniform solution and the eigenvalue in the limit
for large a! depend on a parameter, q, that has not been
determined in the past. We have determined this parameter
by equating the number of zeros of the uniform solution to
the number of zeros of the SWSH. We have found that for
values of the parameter l larger than a certain threshold, the
value of q is the same for pairs of consecutive values of l.
The form of two uniform solutions corresponding to two
consecutive values of l and the same q is very similar ex-
cept for two main differences. One, the outer solution for
one mode does possess a zero and the outer solution for the
other mode does not. Secondly, the relative sign near the
two boundary points of the asymptotic solution is different
for the two modes. For values of l below the mentioned
threshold the outer solution does not possess a zero. For
these modes, the magnitude of the inner solution close to
one boundary point is exponentially larger in a! than that
of the inner solution close to the other boundary point.

We have also numerically solved the spin-weighted
spheroidal equation and plotted its solutions and eigenval-
ues in the limit of large a!. The numerical results obtained
corroborate our analytic study. Our results for the scalar
case agree with the corresponding results in the literature.

This paper has given a detailed analytic and numerical
account of the asymptotic behavior for large, real a! and
fixed m of the spin-weighted spheroidal equation, which is
a problem that had remained unresolved for a long time. In
a future paper we intend to perform a similar analysis for
large a! which is uniform in, rather than for fixed, m. We
also hope to be able to apply some of the analytic and
numerical methods used in this paper to the search of
quasinormal modes in the Kerr space-time, which have
associated frequencies that are complex and are therefore
not catered for in the present paper.
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und Sphäroidfunktionen mit Anwendungen auf
Physikalische und Technische Probleme (Springer-
Verlag, Berlin, 1954).
064025
[16] R. Breuer, M. Ryan Jr., and S. Waller, Proc. R. Soc.
London A 358, 71 (1977).

[17] S. Chandrasekhar, The Mathematical Theory of Black
Holes (Oxford University Press, Oxford, UK, 1992), 2nd
ed.

[18] C. M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers (McGraw-Hill, New
York, 1978).

[19] M. Abramowitz and I. A. Stegun, Handbook of
Mathematical Functions (Dover Publications, Inc., New
York, 1965), 9th ed.

[20] H. Buchholz, The Confluent Hypergeometric Function,
Springer Tracts in Natural Philosophy (Springer, New
York, 1969).

[21] T. Oguchi, Radio Sci. 5, 1207 (1970).
[22] L.-W. Li, M.-S. Leong, T.-S. Yeo, P.-S. Kooi, and K.-Y.

Tan, Phys. Rev. E 58, 6792 (1998).
[23] B. E. Barrowes, K. O’Neill, T. M. Grzegorczyk, and J. A.

Kong, Stud. Appl. Math. 113, 271 (2004).
[24] E. W. Leaver, Proc. R. Soc. London A 402, 285 (1985).
[25] M. Sasaki and T. Nakamura, Prog. Theor. Phys. 67, 1788

(1982).
[26] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery, Numerical Recipes in Fortran (Cambridge
University Press, Cambridge, England, 1992), 2nd ed.

[27] S. A. Teukolsky and W. H. Press, Astrophys. J. 193, 443
(1974).
-18


