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The time evolution of a wormhole in a Friedmann universe approaching the big rip is studied. The
wormhole is modeled by a thin spherical shell accreting the superquintessence fluid—two different
models are presented. Contrary to recent claims that the wormhole overtakes the expansion of the universe
and engulfs it before the big rip is reached, it is found that the wormhole becomes asymptotically
comoving with the cosmic fluid and the future evolution of the universe is fully causal.
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I. INTRODUCTION

The 1998 discovery that the expansion of the universe is
accelerated [1], confirmed by the analysis of the cosmic
microwave background power spectrum [2,3], has led to
postulate, as a possible explanation within the context of
general relativity, the existence of a form of dark energy or
quintessence with negative pressureP<��=3 (where � is
the dark energy density). The dark energy is dynamically
irrelevant in the earlier stages of the evolution of the
universe and starts dominating the cosmic dynamics only
at recent times. At present the observational data favor an
even more exotic dark energy with effective equation of
state P<�� violating the weak energy condition [4]. This
violation is rather disturbing because it allows, in principle,
for exotic solutions of general relativity such as wormholes
and warp drives and the possibility of time travel associ-
ated with them. Another concern is that a universe domi-
nated by dark energy with effective equation of state
parameter w � P=� <�1 may end its existence at a big
rip singularity at which the scale factor and the energy
density and pressure of quintessence diverge at a finite time
in the future [5]. Dark energy with w<�1 is called super-
quintessence or phantom energy.

Recently, the evolution of a wormhole embedded
in a Friedmann-Lemaitre-Robertson-Walker (hereafter
‘‘FLRW’’) universe approaching the big rip was studied
by Gonzalez-Diaz [6], with the conclusion that the worm-
hole accreting superquintessence expands faster than the
background FLRW universe and that the radius of the
wormhole throat diverges before the big rip is reached—
thus the wormhole engulfs the entire universe, which will
reappear from the other wormhole throat. The resulting
spacetime is not globally hyperbolic and is acausal with
closed timelike curves threading the wormhole throat.
Such bizarre scenarios are potentially of interest as con-
straints: if it can be established that phantom energy leads
in principle to unacceptable consequences, this may be
sufficient to rule out its existence.

The analysis of Ref. [6] is based on a qualitative estimate
of the accretion rate of phantom energy onto the wormhole
05=71(6)=064017(7)$23.00 064017
and the rate of variation of the throat radius, which borrows
from a recent study of a similar problem of accretion of
dark energy onto black holes [7]. The purpose of this work
is to present exact solution models of a wormhole im-
mersed in a spatially flat FLRW universe and to compare
the expansion of the wormhole throat with that of the
cosmic fluid as the big rip is approached. Two different
and rather general wormhole models are studied. In the first
model it turns out that, in the simplifying approximation of
stationary accretion advocated in Ref. [6], the wormhole is
asymptotically comoving with the FLRW background as
the big rip is approached—the size of the wormhole with
respect to a comoving ruler does not increase and the
universe cannot disappear within the wormhole. This con-
clusion holds also in the second wormhole model (pre-
sented in Sec. V), which is more general.

II. A THIN SHELL WORMHOLE EMBEDDED IN A
SPATIALLY FLAT FLRW UNIVERSE

We study an exact solution of the Einstein equations
describing a spherically symmetric thin shell wormhole
embedded in a spatially flat FLRW universe described by
the metric [8]

ds2 � �dt2 � a2�t��dr2 � r2�d�2 � sin2�d’2�� (2.1)

in comoving polar coordinates �t; r; �; ’�. The thin shell is
located on a surface � of constant comoving radius. Two
FLRW regions joining smoothly on the surface � consti-
tute the regions ‘‘above’’ and ‘‘below’’ �. The assumption
that the line element is given by Eq. (2.1) implies that the
wormhole shell does not perturb the surrounding universe
(see the discussion in Sec. IV). The equation of the shell �
is

r �
R�t�
a�t�

� e���t�; (2.2)

where R�t� is the comoving radius of the shell and the
function ��t� is introduced for later convenience. The
normal vector to the shell, obtained by differentiating
Eq. (2.2), is
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N� � ���te��; a�2; 0; 0� (2.3)

where a subscript t denotes differentiation with respect to
the comoving time t of the FLRW background. The norm
squared of N� is

g��N�N� � ��2
t e

�2� �
1

a2
�

�
�
a

�
2
; (2.4)

where

� �
�����������������������������
1� �2

t a2e�2�
q

�
��������������
1� v2

p
(2.5)

can be interpreted as the inverse of the Lorentz factor
constructed with the velocity of the shell relative to the
background

v � ��tR: (2.6)

By normalizing N� one obtains the unit normal to the
surface �

n� �

�
��tR
�

;
1

a�
; 0; 0

�
(2.7)

and the three-metric on the surface � is given by

ds2j� � ��2dt2 � R2�t��d�2 � sin2�d’2�

� �d�2 � R2���d
2 (2.8)

in coordinates �t; �; ’� on �, where � is the proper time in
the shell’s frame (defined by d� � �dt) and d
2 is the line
element on the unit two-sphere. By using the tetrad

fe�
�t�; e

�
���; e

�
�’�g � f���t ; ��� ; �

�
’g (2.9)

(a; b � t; �; ’), one computes the extrinsic curvature of �

K�� � e�a�� e
�b�
� ranb � e�a�� e

�b�
� �@anb � �cabnc�: (2.10)

Its components are found to be

Ktt � �
1

�2 @t

�
�tR
�

�
; (2.11)

K�� � K’’ �
�
R
�
�tRt
�

(2.12)

and its trace is

K � Ktt � K�� � K’’ � �
1

�2 @t

�
�tR
�

�
�

2�
R

�
2�tRt
�

:

(2.13)

Since the shell has no interior and two FLRW regions
match on �, the jumps of Kab and of K at �, which appear
in the Einstein equations at the shell, are given by

�Kab� � 2Kab; �K� � 2K (2.14)

The Einstein equations at � are [9]

�Kab � K�ab� � �8�Sab; (2.15)
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where

Sab � � � P����u
���
a u���b � P���gabj� (2.16)

is the stress-energy tensor of the (exotic) matter living on
the shell and u�

��� is the four-velocity of the shell.  and
P��� are, respectively, the (surface) energy density and the
pressure on the shell. The time-time component of the
Einstein equations yields

 � �
1

2�

�
�
R
�
�tRt
�

�
; (2.17)

while the �� or the ’’ component yields

P��� �
1

4�

�
�

1

�2 @t

�
�tR
�

�
�
�
R
�
�tRt
�

�

� �
 
2
�
@t�u

�n��

4��2 ; (2.18)

where u� is the four-velocity field of the cosmic fluid. The
effective equation of state of the exotic matter on the shell
is given by

 � 2P��� � �
1

2��2 @t

�
�tR
�

�
� �

1

2��2 @t�u
�n��;

(2.19)

while the material energy residing on the shell is

M � 4�R2 � �2
�
�R�

�tRtR2

�

�
: (2.20)

The relative speed v � ��tae�� between the shell and the
background fluid, � �

��������������
1� v2

p
, and u�n� � �v=�, are

constant when the matter on the shell satisfies the equation
of state P��� � � =2.

The Einstein equation

~K abSab � �T��n�n��; (2.21)

where

~K ab �
K���
ab � K���

ab

2
� 0 (2.22)

is the mean of the extrinsic curvature on both sides of the
shell, provides the rather obvious matching condition for
the energy density and pressure of the FLRW cosmic fluid
on both sides of �:

���� � ����; P��� � P���: (2.23)

It is sometimes convenient to use the parameter $ de-
fined by

v � ��tR � � _��R � tanh$; (2.24)

or by cosh$ � ��1, where an overdot denotes differentia-
tion with respect to the comoving time of the shell � and
_f � ft=� for any differentiable function f.
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The four-velocity of the shell

u�
��� �

dx�

d�
�

1

�
dx�

dt
�

1

�
�1;��te

��; 0; 0� (2.25)

has the properties

u�
���n� � 0; (2.26)

u�
���u

���
� � �1: (2.27)

The conservation equation (eq. (5) of Ref. [9]) projected
along the four-velocity of the shell ua

��� yields

Sa;b
bua

��� � ��u�
���T

�
�n��: (2.28)

The left-hand side Sa
b
;bu

a
��� � �Sa

bua
����;b � Sbau

a
���;b of

Eq. (2.28) reduces to �� ub
����;b � P���ub���;b, where

� ub
����;b �

_M=A, A � 4�R2�t� is the (proper) surface
area of the shell, and M �  A is the material energy
located on the shell. Similarly, it is found that ub

���;b �
_A=A. The stress-energy tensor of the cosmic perfect

fluid in the FLRW background is

T�� � �P� ��u�u� � Pg��; (2.29)

where u� is the four-velocity of the FLRW comoving
observers. Then

u���� T��n
� � �P� ���u�

���u���u
�n�� � Pu�

���n�: (2.30)

By using the relations u�
���u� � ���1, u�n� � _�R, and

u�
���n� � 0 one obtains

u���� T��n� � �
�P� ��
�

_�R: (2.31)

Since the unit normal n� to � has opposite sign above and
below �, the jump in this quantity is

�u���� T��n
�� � �

2

�
�P� �� _�R (2.32)

and the conservation Eq. (2.28) yields, using _�R � �v=�,

_M� P���
_A �

2

�2 �P� ��Av: (2.33)

This equation describes the rate of accretion of the cosmic
fluid by the wormhole and can be interpreted as follows.
The quantity �P� ��v on the right-hand side is the flux
density of the cosmic fluid crossing the shell � radially, the
factor two arises because the outflow is from both faces of
the shell, one factor ��1 comes from the relativistic mass
dilation, while another factor ��1 comes from Lorentz
contraction in the radial direction due to the relative motion
of the shell and the FLRW background. Note that in a de
Sitter background enjoying the equation of state P � ��
there is no accretion on the shell and static solutions with
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both _M and _R vanishing (such as those considered in
Ref. [10] or their generalizations) become possible.

If the strong energy condition is satisfied by the cosmic
fluid and P� � > 0 then a wormhole shell expanding
relative to the cosmic substratum (v > 0) accretes positive
cosmic fluid energy while a shell contracting (v < 0)
relative to the cosmic substratum experiences an energy
outflow through �.
III. v � CONSTANT SOLUTIONS

In the special case in which the relative radial velocity of
the cosmic fluid and the wormhole shell is constant,

v � ��tR � tanh$ � v0; (3.1)

the equation of state of the exotic matter on the shell is
P��� � � =2 and one can eliminate R�t� between
Eqs. (3.1) and (3.2) obtaining

�a�t�@t�e
���t�� � v0 � 0: (3.2)

We are interested in a FLRW universe approaching the big
rip and therefore, as done in Ref. [6], we assume for
simplicity that the equation of state of the cosmic fluid is
constant, P � w� with w<�1. This guarantees the oc-
currence of a big rip described by the form of the scale
factor

a�t� � a0�trip � t�2=3�w�1�; (3.3)

which diverges together with the energy density � �

�0a3�w�1� and the pressure P � w� as t! trip. Under
this assumption the constant v solution of Eq. (3.2) for
the motion of the wormhole shell is given by

e���t� � Cv0�trip � t��3w�1�=3�w�1� � e��0 ; (3.4)

where C and �0 are constants. The comoving radius of the
shell is

R�t� � a�t�e���t� ’ a�t�e��0 : (3.5)

it scales asymptotically like the scale factor a�t� and hence
the wormhole does not overtake the expansion of the
universe, contrary to what is suggested in Ref. [6].

The fact that the shell cannot expand faster than the
universe indefinitely can also be seen by differentiating
Eq. (2.2) with respect to t, which yields

Rt
R

� H �
v
R
; (3.6)

where H � at=a is the Hubble parameter of the FLRW
universe. When v is constant and the radius of the shell
expands to infinity the term v=R in Eq. (3.6) becomes
negligible and the expansion rate of the shell (with respect
to comoving time) coincides with the expansion rate of the
background universe, even if the shell starts out expanding
at a faster rate than the background. The final state is
indistinguishable from one with v � 0 and it is the same
-3
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irrespective of the initial conditions. (Strictly speaking, this
argument does not assume that the big rip is approached,
but only that the universe expands forever and v � const:,
which in turn implies that the wormhole shell expands to
infinity, R�t� ! �1).

Perhaps a more physical way of looking at this aspect is
the following: if the shell were to expand faster than the
cosmological background in the approach to the big rip,
and given thatH ! �1 near the big rip, the relative speed
v between the shell and the cosmic fluid would increase its
magnitude without bound. This would contradict the fact
that jvj must be bound by unity, or else the wormhole shell
becomes tachyonic. Hence the asymptote jvj ’ 1 must be
approached before the big rip is reached, with @tv! 0. A
comparison of these results with those of Ref. [6] is given
in Sec. VI.
IV. GRAVITATING MASS OF THE WORMHOLE

We briefly discuss our assumption that the wormhole
considered here does not perturb the FLRW surroundings.
This assumption must correspond to a zero gravitational
mass for the wormhole. In the static limit a � 1 the mass-
energy on the shell is the only mass-energy in the entire
spacetime. Because the latter is asymptotically flat, the
total gravitational mass is given by the Tolman mass
[11]; for a shell with surface stress–energy tensor Sab in
an asymptotically flat spacetime the Tolman mass is given
by the expression [12]

MT �
Z
�
d�

�����������
�g00

p
��S00 � S22 � S33�

�
Z 2�

0
d’

Z �

0
d�R2� sin�� � 2P����

� �
2R2

�
@t

�
�tR
�

�
: (4.1)

If �tR is constant, corresponding to constant v and �, the
Tolman mass MT vanishes identically and the wormhole
does not affect the Minkowski background both above and
below �. Note that not only the material mass 4�R2 , but
also the pressure P��� contributes to the Tolman mass, and
that the pressure is adjusted to compensate the contribution
of the material mass in such a way that the Minkowski
background is not altered.

For a wormhole embedded in a FLRW space the Tolman
mass is replaced by the Hawking quasilocal mass [13,14]:
since the metric (2.1) outside the wormhole shell is exactly
a FLRW one, the quasilocal mass reduces to that of a
FLRW space, E � 4�r3�=3, with no contribution from
the shell. One concludes that the gravitational mass of the
wormhole is zero. If instead a spherical black hole is
embedded in a FLRW background, as described, e.g., by
the McVittie solution [15], the quasilocal mass coincides
with the black hole mass times the scale factor a�t� [16]. As
an astrophysical object, a zero-mass wormhole construct
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located in a galaxy would not perturb the orbits of stars that
do not fall directly into its throat, and it would not cause
gravitational lensing (lensing by negative mass wormholes
is studied in Refs. [17]).
V. MORE GENERAL WORMHOLES

The wormhole model considered in Secs. III and IV
suffers from the intrinsic limitation that the wormhole shell
is adjusted so that it does not perturb the surrounding
cosmological background. It is interesting to ask whether
removing this assumption has an effect on the results of
Sec. III about the relative motion of the shell and the
background fluid as the big rip singularity is approached.
To this purpose, consider the McVittie metric [15]

ds2 � �

�
B�t; r�
A�t; r�

�
2
dt2 � a2�t�A4�t; r��dr2 � r2d
2�

(5.1)

in isotropic coordinates �t; r; �; ’�, where

A�t; r� � 1�
m�t�
2r

; B�t; r� � 1�
m�t�
2r

: (5.2)

The modification of the FLRW metric introduced by a
nonvanishing function m�t� is caused by a spherical worm-
hole shell � located at the radius

r � r��t� �
R�t�

a�t�A2�t; r��
: (5.3)

The three-dimensional metric on � is given by

ds2j� � �

�
B
A
sech$

�
2
dt2 � R2�t�d
2 (5.4)

in coordinates �t; �; ’� on � and with the function $
defined by

tanh$�t� � a�t�
A3�t; r��
B�t; r��

dr�
dt
: (5.5)

The unit normal to � is

n� � 0
�
�
dr�
dt
; 1; 0; 0

�
; 0 � aA2 cosh$; (5.6)

the four-velocity of the shell is

u�
��� �

A
B
cosh$

�
1;
dr�
dt
; 0; 0

�
; (5.7)

and the four-velocity of the cosmic fluid is

u� �

�
A
B
; 0; 0; 0

�
: (5.8)

The projection of the shell four–velocity on the cosmic
fluid four–velocity is

u�
���u� � � cosh$ � �

1��������������
1� v2

p ; (5.9)
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where the three-dimensional velocity of the shell relative to
the cosmic fluid is defined as

v � tanh$�t�: (5.10)

By differentiating �R=a� and using the expressions (5.2) of
A�t; r� and B�t; r� one obtains an equation regulating the
dynamics of the wormhole shell:

dr�
dt

�
1

AB

�
d
dt

�
R
a

�
� A

dm
dt

�
: (5.11)

The extrinsic curvature of the shell � given by Eq. (2.10)
has the only nonzero components

Ktt � 0
�
A2

B2

�
d2r�
dt2

�
1

ABr�

dr�
dt

dm
dt

�
�

m

a2A5Br2�

�
;

(5.12)

K�� � K’’ � 0
�

B

a2A5r�
�
A2

B2

dr�
dt

�
H �

1

Ar�

dm
dt

��

(5.13)

where, again, H � at=a. The Einstein equations (2.15) at
� then yield the surface density  and the pressure P��� of
the shell material

 � �
K��
2�

� �
1

2�

�
B

aA3r�
cosh$�

A
B

�
H�

1

Ar�

dm
dt

�
sinh$

�
;

(5.14)

 � 2P��� �
Ktt
2�

�
0
2�

�
A2

B2

�
d2r�
dt2

�
1

ABr�

dr�
dt

dm
dt

�

�
m

a2r2�A
5B

�
(5.15)

and the mass of exotic matter on the wormhole shell can be
written, using Eq. (5.3),

M � 4�R2�t� 

� �2R
�
B
A
cosh$�

AR
B

�
H �

1

Ar�

dm
dt

�
sinh$

�
:

(5.16)

The cosmic imperfect fluid is described by the stress-
energy tensor

T�� � �P� ��u�u� � Pg�� � q�u� � q�u�; (5.17)
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where the purely spatial vector q� (with q�u� � 0) is the
radial energy flux density. The covariant conservation
equation of mass-energy for the shell, Eq. (2.28), yields

1

A

�
dM
d��

� P���
dA
d��

�
� 20 cosh$

	
�P� ��

A
B
dr�
dt

� qr
�
A2

B2

�
dr�
dt

�
2
a2A4 � 1

�

;

(5.18)

where A � 4�R2�t� and �� is the proper time of the shell
defined by the three-metric (5.4) as

d�� �
B
A
sech$dt: (5.19)

The Einstein equation G1
0 � 8�T1

0 � 8�qrut determines
the radial flux density qr as

2m

ABr2S

�
H �

1

m
dm
dt

�
� 8�qrut; (5.20)

where rS�t; r� � a�t�A2�t; r�r. Further use of Eqs. (5.6) and
(5.11) yields

dM
dt

�P���
dA
dt

�
2

�

�
B
A
�P���Av�

A
B
�1�v2�
�

d�ma�
dt

�
;

(5.21)

or

dM
d��

� P���
dA
d��

�
2

�

�
�P� ��A

v
�
�
A
B
�1� v2�

d�ma�
d��

�
;

(5.22)

in terms of ��, where � �
��������������
1� v2

p
again. Equation (5.22)

reduces to Eq. (2.33) when m�t� � 0. The second term on
the right-hand side of Eq. (5.21) is present even when v �
0 and describes a contribution to accretion onto the shell
due to the radial energy flux of cosmic fluid—this term
vanishes if

1

m

dm
dt

� �H; (5.23)

equivalent to m�t� � const:=a�t�, or qr � 0 and G1
0 � 0.

The quantity m�t�a�t� appearing in the second term on the
right-hand side of Eq. (5.21) coincides with the Hawking
quasilocal mass [18]. The ‘‘Schwarzschild mass function’’
mS�t; r� instead is defined by
-5
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1�
2mS�t; r�
rS�t; r�

� g���r�rS��r�rS�: (5.24)

The definitions of A;B, and rS and the time-time compo-
nent of the Einstein equations

3
�
A
B

�
2
�
H �

1

rA
dm
dt

�
2
� 8�� (5.25)

yield

mS�t; r� � m�t�a�t� �
4�
3
r3S�; (5.26)

which reduces to the usual Schwarzschild mass in the
absence of cosmic fluid.

We are left with the problem of solving for the dynamics
of the wormhole shell, which is determined by Eq. (5.11).
The latter can be written as

d
dt

�
R
a

�
� A

dm
dt

�
v
a

�
B
A

�
2
: (5.27)

During the approach to a big rip singularity in which the
scale factor a�t� has the form (3.3), the metric component
g00 � ��B=A�2 stays finite even if m�t� diverges. It seems
reasonable to require that both A and B be finite and that
the divergence be contained in a�t�, keeping in mind that
the mass of the wormhole shell (which is allowed to
diverge) is not m�t�, but is obtained by integrating
Eq. (5.21). On the other hand, if v is finite (v � 1)
Eq. (5.27) reduces to the asymptotic equation

d
dt

�
R
a

�
� A

dm
dt

� 0 (5.28)

By using the implicit definition (5.3) of r� one obtains
B�t; r��dr�=dt � 0, which has the constant solution r� �
C, or R�t� � a�t�fC�m�t� � �m2�t��=4Cg. Again, ap-
proaching the big rip, the wormhole shell becomes comov-
ing with the cosmic substratum.

V. FARAONI AND W. ISRAEL
VI. DISCUSSION AND CONCLUSIONS

We are now ready to discuss the difference between our
results and those of Gonzalez-Diaz [6]. Gonzalez-Diaz
begins by considering a static wormhole solution appear-
ing in the appendix of Ref. [19] (Eqs. (A.28) of [19]) and
consisting of a spherical thin shell of exotic matter with
throat radius b0 and mass � related by [20]

� � �
�b0
2
: (6.1)

Gonzalez-Diaz extrapolates Eq. (6.1) to a time-dependent
wormhole embedded in a FLRW universe and proceeds to
estimate the accretion rate on such a wormhole by adopting
the formula derived for stationary accretion onto a black
064017
hole embedded in a FLRW universe [7]

_� � 4�D�2�P� ��; (6.2)

where D is a constant. By combining Eqs. (6.1) and (6.2),
Gonzalez-Diaz obtains an equation for the rate of change
of the wormhole throat _b0 and proceeds to solve it in a
FLRW universe approaching the big rip, concluding that
the wormhole shell of radius b0�t� expands faster than the
universe and ends up engulfing it and destroying global
hyperbolicity. Although treating the wormhole as a black
hole with negative mass seems reasonable, unfortunately
Eq. (6.1) does not hold for a time-dependent wormhole
embedded in a FLRW universe—cf. Equation (2.17) or
Eq. (2.20) for the first wormhole model, or Eq. (5.16) for
the second wormhole model presented. The time evolution
of the wormhole shell cannot be guessed a priori but needs
to be derived from detailed models like the ones presented
here.

The first wormhole model studied in this paper is appro-
priate for elucidating the physical situation considered in
Ref. [6]. In fact, by comparing Eq. (2) of Ref. [6] and our
Eq. (2.33), one sees that the regime of stationary accretion
onto the wormhole considered in Ref. [6] corresponds to
the situation v � constant in our formalism, for which the
dynamics of the shell has been explicitly solved (the static
limit of such a solution would correspond to a � 1 and
_M � �8�P���R _R). In this case the wormhole shell ends

up expanding at the same rate as the universe in which it is
embedded. However, this wormhole model has one limi-
tation, namely, the assumption that the wormhole does not
perturb the surrounding FLRW universe. More general
exact solutions describing a wormhole embedded in, and
modifying, the surrounding cosmological background are
presented in Sec. V. This more general class of exact
solutions contains three free functions a�t�, m�t�, and
R�t�. By imposing the form (3.3) of the scale factor a�t�
appropriate to the description of a big rip and by noting that
the metric component g00 � ��B=A�2 is bounded even if
m�t� diverges, one deduces again that the wormhole shell
becomes comoving with the cosmological background as
the big rip is approached.
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Note added in proof.—After this work was completed
we learned about Ref. [22] which contains a spherically
symmetric wormhole solution joining two FLRW uni-
verses approaching the big rip. Although less general
than the solutions presented here, also this wormhole is
comoving with the background and constitutes another
counterexample to the acausal evolution suggested in
Ref. [6].
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