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Einstein-Yang-Mills equations in the presence of q-stars in scalar-tensor gravitational theories
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We study Einstein-Yang-Mills equations in the presence of a gravitating nontopological soliton field
configuration consisting of a Higgs doublet, in Brans-Dicke and general scalar-tensor gravitational
theories. The results of General Relativity are reproduced in the !BD; !0 ! 1 limit. The numerical
solutions correspond to a soliton star with a non-Abelian gauge field. We study the effects of the coupling
constant, the frequency of the Higgs field, and the Brans-Dicke field on the soliton parameters.
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I. INTRODUCTION

Einstein-Yang-Mills (EYM) equations have been inves-
tigated in several systems [1]. Bartnik and McKinnon
found particlelike non-Abelian solutions of the coupled
EYM theory [2,3]. The coupling of the EYM system
with a scalar field may lead to several theories. We mention
gravitating Skyrmions [4], black hole solutions in dilaton
[5,6], massive dilaton and axion gravity [7], and other field
configurations in the EYM-Higgs theory with a Higgs
doublet [8] or with a Higgs triplet [9–11].

Nontopological solitons and soliton stars have a long
presence in modern physics [12]. In the present work we
need the theory of q-balls and q-stars. Q-balls are non-
topological solitons in Lagrangians with a global U�1�
symmetry [13] or an SU�3� or SO�3� symmetry [14].
Their relativistic generalizations may consist of one or
two scalar fields [15] in a Lagrangian with a global U�1�
symmetry, or of a non-Abelian scalar field in the adjoint
representation of SU�3� [16] or of a scalar and a fermion
field [17] in asymptotically flat or anti de Sitter spacetime
[18]. Q-solitons with local symmetries have also been
investigated. There are charged q-balls [19], charged
q-stars [20], and q-type stars in the framework of EYM
theory [21].

Interesting alternative gravitational theories are the
scalar-tensor gravitational theories, which appeared in
the original paper of Brans and Dicke [22], where the
Newtonian constant G was replaced by a scalar
field �BD, and the total action contained kinetic terms
for the new field times an !BD quantity. !BD was regarded
as a constant in the original paper. The theory generalized
in a series of papers [23,24], mainly in the direction
of replacing the constant !BD with a function of the
Brans-Dicke (BD) scalar field. Within the BD gravitational
framework, Gunderson and Jensen investigated the
coupling of a scalar field with quartic self-interactions
with the metric and the BD scalar field, �BD [25].
The properties of boson stars within this framework have
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been extensively studied in a series of papers [26–28].
Their results generalized in scalar-tensor gravitational
theories [29,30]. The case of charged boson stars in a
scalar-tensor gravitational theory has been analyzed in
[31].

The purpose of the present work is to find numerical
solutions, resembling q-stars, of the EYM equations in the
presence of a Higgs doublet in the fundamental represen-
tation of SU�2� in BD theory or in a general scalar-tensor
gravitational theory and to compare the above results
with the solutions obtained in General Relativity. In the
absence of the gauge field, the equations of motion give
rise to a gravitating nontopological soliton, when using

a certain potential for which !E �
����������������
U=j	j2

p
min <m,

where m is the mass of the free particles, imposing a
harmonic time dependence on the scalar field and equaliz-
ing the frequency to !E. Our gravitating soliton is
nontopological in the sense that 	; U ! 0 for � ! 1
according to [12]. It is a q-type nontopological soliton
in the sense that in the absence of both gravitational
and gauge fields one can find by simple calculations that
this spherically symmetric Higgs field rotates within its
symmetry space with a frequency !E equal to the mini-

mum of the
����������������
U=j	j2

p
quantity, as in q-balls. The difference

between this soliton and the usual non-Abelian q-balls is
that the symmetry space in the case of non-Abelian q-balls
is the entire SU�3� space but in our case is an Abelian U�1�
subgroup of the SU�2� group, though both field configura-
tions are non-Abelian. Also, we investigate the fundamen-
tal and not the adjoint representation of SU�2�. In any case
we find an analytical solution for the scalar field within the
soliton, using the approximation known by the study of
q-stars.
II. EYM EQUATIONS IN BRANS-DICKE
GRAVITATIONAL THEORY

We consider a Brans-Dicke scalar field �BD, a matter
Higgs scalar doublet 	 in the fundamental representation
of SU�2�, and a gauge field A, coupled to the metric g��.
The total action is:
-1  2005 The American Physical Society



ATHANASIOS PRIKAS PHYSICAL REVIEW D 71, 064014 (2005)
S �
1

16�

Z
d4x

�������
�g

p
�
�BDR�!BDg��

@��BD@��BD
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Z
d4x

�������
�g

p
Lmatter; (1)

with !BD a constant in BD gravity and a certain function of
the �BD field in generalized scalar-tensor gravitational
theories and:

L matter �
1

4Kg2
TrF��F�� 
 �D�	�y�D�	� �U: (2)

In the above Lagrangian we define:

D�	 � @�	� {A�	;

F�� � @�A� � @�A� � {�A�; A�
:
(3)

One may use the F�� � @�A� � @�A� � ig�A�; A�
 form
and reproduce Eq. (3) rescaling: A� ! A�=g with g the
gauge coupling, or field strength. The oneform gauge field
A is: A � A�dx� � TaAa�dx�, with Ta �

1
2 �a and �a the

Pauli matrices. The factor K appearing in the action is
defined by the relation Tr�TaTb� � K�ab, reading K �
1=2.

In the presence of the Brans-Dicke scalar, the Einstein
equations take the form:

G�� �
8�
�BD

T�� 

1

�BD
��BD;�;� � g���BD;!

;!� 

!BD
�2BD

�

�
@��BD@��BD �

1

2
g��@!�BD@

!�BD

�
; (4)

and the equation of motion for the BD field is:

2!BD
�BD

�BD;!
;! �!BD

@!�BD@!�BD
�2BD


 R � 0: (5)

G�� is the Einstein tensor, R is the scalar curvature, and
T�� the energy momentum tensor for the matter fields
(gauge and Higgs) given by the equation:

T�� �
2

g2
Tr
�
g"#F�"F�# �

1

4
g��F"#F"#

�

 �D�	�y�D�	� 
 �D�	�T�D�	��

� g���g"#�D"	�y�D#	�
 � g��U: (6)

Tracing Einstein equations and substituting the result in the
Lagrange equation for the BD field we take:

�BD;!
;! �

8�
2!BD 
 3

T: (7)

We will choose a general, spherically symmetric field
configuration, defining: na �
�sin# cos’; sin# sin’; cos#� and T� � naTa, T# �

@#T�, and T’ � �1= sin#�@’T�. The gauge field and the
Higgs doublet are:
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A � aT� 
 {�1� Re!��T�; dT�
 
 Im!T�

� aT� 
 �Im!T# 
 �Re!� 1�T’
d#


 �Im!T’ 
 �1� Re!�T#
 sin#d’; (8)

	 � ' exp�i(T��jbi; (9)

with ' � '��; t�, ( � (��; t�, jbi a constant unit vector of
the internal SU�2� space of the scalar (Higgs) field and a �

a0dt
 a�d�. In order to form a field configuration corre-
sponding to a charged q-type soliton we choose: a0 �
a0���, '��; t� � '���, and ( � !Et, when we choose
a� � 0 for simplicity. The ansatz '��; t� � '�r� and ( �

!Et is the obvious generalization to the ���; t� �
'���e{�t ansatz, known from q-solitons. So, the role of
the eigenfrequency � is now played by !E. The choice
a� � 0 implies that our field configuration is not very
general, but our purpose is not to find the more general
solution, but a proper one, with the above features and
resulting to stable solitons. The BD scalar field is supposed
to be static and to posses a spherical symmetry, as the
matter field configuration. With the above assumptions, we
can write a static, spherically symmetric metric:

ds2 � �
1

B
dt2 


1

A
d�2 
 �2d#2 
 �2sin2#d’2: (10)

The matter action takes now the form:

Smatter�
Z �2 sin#�������

AB
p

�

�
�
1

2g2

�
a020 AB
2

j!j2a20
�2



�j!j2�1�2

�4

�

'02A�

1

4
�!E�a0�

2'2B

'2

2�2

���Re!�cos�!Et��
2
�Im!�sin�!Et��

2
�U
�
:

(11)

In order for the action to be time-independent we may
choose Re! � cos�!Et� and Im! � sin�!Et�, but this
choice is not a solution to the equation of motion for !,
or ! � 0 which is a solution of the equation of motion, so
our solution is embedded Abelian.

If m is the mass of the free particles, we make the
following rescalings:

~� � 2m�; ~!E �
!E

2m
; ~a0 �

a0
2m

;

~' �
'
m=2

; ~r � .~�; ~g � g.�1;

	BD �
2!BD 
 4

2!BD 
 3
G�BD;

(12)

with:
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. �
����������������
8�Gm2

p
: (13)

We define:

W �

�
d	
dt

�
y
�
d	
dt

�
; V �

�
d	
d�

�
y
�
d	
d�

�
: (14)

Gravity becomes important when R� 8�GM, with
<�BD> � 1=G. With our rescalings and because the en-
ergy density within the soliton is �m4, we find that ~r� 1
and if ' varies very slowly within the soliton, from a '�0�
value at ~r � 0 to a zero value at the outer edge of the
soliton surface, then V � .2m4. For m� GeV the O�.�
quantities are negligible. We choose a simple rescaled
potential, admitting q-ball type solutions in the absence
of gravity and gauge fields, namely:

U � m2	y	
�
1�

4

m2
	y	


16

3m4
�	y	�2

�
; (15)

which with our rescalings and after some algebra takes the
form:

eU �
~'2

4

�
1� ~'2 


~'4

3

�
; (16)

where we set m � 1. From now on we drop the tildes and
the O�.� quantities. From the equation of motion for the
Higgs field we find:

'2 � 1
 30B
1=2; U �

1

12
�1
 330B

3=2�;

W � 320B�1
 30B
1=2�; T � 2W � 4U;

(17)

with:

30 � !E � a0: (18)

The equation of motion for the Higgs field within the
surface gives a boundary condition for the gauge field 30,
which reduces to an eigenvalue equation for the frequency
in the case of global SU�2� symmetry (i.e. when a0 � 0).
The surface width is of O�m�1�. The Higgs field ' varies
rapidly from a'0 value at the inner edge of the surface, to a
zero value at the outer one. Dropping form the Lagrange
equation the O�.� terms and integrating the resulting equa-
tion, we find that within the surface:

V 
W �U � 0: (19)

In order to match the interior with the surface solution we
set '0 � 0 at the inner edge of the surface. Then, using
Eqs. (17) and (19) we find:

30sur �
A1=2sur
2

�
B�1=2
sur

2
; (20)

where 30sur is the value of 30 within the thin surface. In the
absence of gauge fields we take: !E � A1=2sur =2which in the
absence of gravity gives !E � 1=2, which is the correct
eigenvalue equation for the q-soliton frequency.
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With the above definitions, the independent Einstein
equations take the following form:

A� 1

r2


1

r
dA
dr

�
2!BD 
 3

�2!BD 
 4�	BD

�

�
�W �U�

2W � 4U
2!BD 
 3

�
�
!BDA

2	2
BD

�
d	BD

dr

�
2
�

A
2	BDB

dB
dr

d	BD

dr
;

(21)

A� 1

r2
�
A
B
1

r
dB
dr

�
2!BD 
 3

�2!BD 
 4�	BD

�

�
W �U�

2W � 4U
2!BD 
 3

�


!BDA

2	2
BD

�
d	BD

dr

�
2



A
	BD

�

�
d2	BD

dr2


1

2A
dA
dr

d	BD

dr

�
; (22)

the Euler-Lagrange equation for the BD scalar is:

A
�
d2	BD

dr2



�
2

r


1

2A
dA
dr

�
1

2B
dB
dr

�
d	BD

dr

�
�
2W�4U
2!BD
4

;

(23)

and the equation of motion for the new gauge field 30:

3000 

�
2

r



A0

2A



B0

2B

�
300 �

g230�1
 30B1=2�
2A

� 0; (24)

with boundary conditions:

A�0��1; 30�0��0; 3�R��3sur; 	0
BD�1; (25)

and for r ! 1:

A�r��1=B�r��1; 	BD�1; 3�r��!E: (26)

The first condition of Eq. (24) reflects our freedom to
redefine A�r�, the second and fourth result from the spheri-
cal symmetry of the configuration and the third is the
eigenvalue equation for the new gauge field 30, with R
the soliton radius. The first condition of Eq. (25) is a
straightforward consequence of the Einstein equations for
localized matter configurations, the second is the boundary
condition for the BD field with the proper rescalings, and
the third denotes the absence of gauge fields at infinity. We
numerically solve the coupled system of Eqs. (21)–(24).
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FIG. 1. The value of the Higgs field ' at the center of the
soliton as a function of the coupling constant g2. The numbers
within the Figs. 1–5 denote the eigenvalue 30sur, which for g2 �
0 reduces to !E. Dashed lines correspond to !BD � 5 and solid
lines to !BD � 500. The results of General Relativity almost
coincide with the BD theory for !BD � 500.
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FIG. 3. The asymptotically anti de Sitter mass M as a function
of g2.
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The Noether currents corresponding to the generators of
the SU�2� algebra are given by the relation:

j0" �

�
@L

@�@0	�
@L

@�@0	��

�
iT" 0
0 �iT"

� �
	
	�

� �
: (27)

We can find that:

j01 �
1

2
'230 sin# cos’; j02�

1
2'

230 sin# sin’;

j03 �
1

2
'230 cos#;

(28)

and

j0 �
�������������������������������
j201 
 j202 
 j203

q
�
1

2
'230: (29)

The particle number is:
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FIG. 2. The radius of the soliton as a function of g2.
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N � 2�
Z
'230

����
A
B

s
r2dr: (30)

The total energy of the field configuration results from the
relation:

A��� � 1�
2GM
�



Gg2N2

4��2
; � ! 1; (31)

which gives with our rescalings:

M � 4�r
�
1� A�r� 


g2N2

32�2r2

�
; r ! 1: (32)

For !BD ! 1 the Einstein equations take the simple
form:

A� 1

r2


A0

r
� �U�W �

3020
2g2

AB; (33)

A� 1

r2
�
A
B
B0

r
� W �U�

3020
2g2

AB; (34)

when the other relations remain the same and the results of
General Relativity are reproduced.
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FIG. 4. The particle number N of the soliton as a function of
g2.
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FIG. 5. The value of the gauge field a0 at the center of the
soliton as a function of g2.
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III. EYM EQUATIONS IN GENERAL
SCALAR-TENSOR THEORY

In the original BD gravitational theory !BD is a con-
stant. In a more general theory it may be regarded as a
function, usually of the BD field. We will use one of the
forms investigated in a cosmological framework [32,33],
namely:

2!BD 
 3 � !0�n
BD; (35)

with !0 and n constants. The Lagrange equation for the
BD field is:

�;!BD;! �
1

!0�
n
BD

�
8�T �

d!BD
d�BD

�;�
BD�BD;�

�
: (36)

We rescale:

~! 0 �

�
2!BD 
 3

2!BD 
 4

�
n
Gn!0; (37)
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FIG. 6. The value of the field ' at the center of the soliton as a
function of !0. The numbers within the Figs. 6–10 denote the g2

value. We use 30sur � 0:4. In Figs. 6–10 solid lines are the
numerical results produced in the framework of scalar-tensor
gravitational theory, when dashed lines are the results from
General Relativity.
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and the other quantities as in (12) and drop the tildes and
the O�.� quantities. We will use n � 1. For other values of
n the behavior of the soliton parameters is very similar. The
Einstein equations take the following form:

A� 1

r2


1

r
dA
dr

�
!0

!0	BD 
 1

�
�W �U�

1

!0	BD

�

�
2W � 4U�
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BD

2

!0	BD 
 1

	BD

��
�
!0	BD � 3

2
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BD

2	2
BD

�
AB0	0

BD

2	BDB
; (38)
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2	BD
:

(39)

The equation of motion for the BD field is:
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FIG. 8. The asymptotically anti de Sitter mass M of the soliton
as a function of !0.
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FIG. 10. The value of the gauge field at the center of the soliton
as a function of !0.
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FIG. 9. The particle number of the soliton as a function of !0.
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A
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 1
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(40)

The equations of motion for the gauge and Higgs field
remain unchanged. We solve numerically the coupled sys-
tem of Eqs. (37)–(40) and (24), when the relations (30) and
(32) for the soliton mass and particle number hold true.

IV. CONCLUSIONS

We studied EYM equations in the presence of a Higgs
doublet in Brans-Dicke and a simple scalar-tensor gravita-
tional theory and compared our results with the solutions of
General Relativity. The Higgs doublet is characterized by a
potential admitting q-star type and q-ball type solutions in
the absence of gauge fields and gravity and gauge fields,
respectively. It is a matter of simple algebra to verify this
claim. So, the EYM-Higgs equations reduce to a system of
equations corresponding to (charged) soliton stars. These
objects are stars and not black holes, having no horizon or
other anomalies.

There are two crucial parameters, resulting from the
soliton star itself, the field strength g and the eigenvalue
064014
30sur which in the absence of gauge fields reduces to the
usual soliton eigenfrequency. The above eigenvalue is
straightforward connected to gravity strength on the sur-
face, through Eq. (20). So, a soliton with small 30sur shows
a stronger gravitational force on its surface, which corre-
sponds to a more massive, or denser soliton, and this can be
verified by our figures. Also, larger value for the field
strength increases the energy and radius of the field con-
figuration due to the electrostatic repulsion between the
different parts of the soliton, when the value of the scalar
field within the soliton decreases for the same reason.
These results hold true in General Relativity as well as in
scalar-tensor theories.

In Figs. 1–5 the results of General Relativity are not
depicted because they almost coincide with the!BD � 500
(solid lines) case. !BD ’ 500 is the lower experimental
limit. The results of general relativity are exactly repro-
duced when !BD! 1. In Figs. 6–10 we study the be-
havior of the soliton parameters for 5 � !0 � 1000. The
results of General Relativity are practically reproduced for
!0 � 1000 as one can see from the dashed lines in Figs. 6–
10, which correspond to the results of General Relativity.
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