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Numerical examination of an evolving black string horizon
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We use the numerical solution describing the evolution of a perturbed black string presented by M.
Choptuik, L. Lehner, I. Olabarrieta, R. Petryk, F. Pretorius, and H. Villegas [Phys. Rev. D 68, 044001
(2003)] to elucidate the intrinsic behavior of the horizon. It is found that by the end of the simulation, the
affine parameter on the horizon has become very large and the expansion and shear of the horizon in turn
very small. This suggests the possibility that the horizon might pinch off in infinite affine parameter.
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I. INTRODUCTION

While in four-dimensional spacetimes black holes are
stable, it has been shown by Gregory and Laflamme [2] that
at least some of their higher dimensional analogs, in par-
ticular, black strings, are linearly unstable. As opposed to
the situation in four-dimensions, at the linear level pertur-
bations of these black strings grow exponentially above
some critical length of the string. Although this picture has
been well understood through a variety of analysis [2–7], it
is not yet known what an unstable black string evolves to.
In [2], using the linear instability of the string coupled to
entropy considerations, it was argued that an unstable
black string would ‘‘pinch off’’ and form a set of black
holes which would later merge. This scenario, at the clas-
sical level, must give rise to a violation of cosmic censor-
ship. However, this possibility was made doubtful by more
recent work of Horowitz and Maeda (HM) [8]. There, a
theorem is proved using the properties of expansion, shear
and affine parameter of the geodesic generators of the
black string horizon. This theorem asserts that a pinch
off in finite affine parameter could only occur if a singu-
larity formed on or outside the horizon. Under the assump-
tion that this, perhaps too drastic scenario, is unlikely, the
only other option left open for the event horizon pinching
off is that it does so in infinite affine parameter. This
possibility, although mathematically possible, was argued
against by HM. Their argument is based on one main
observation together with a plausibility argument. The
observation is that although their theorem does indeed
allow for a pinch off in infinite time, the rate, with respect
to affine parameter, at which circles at r � const can
decrease in size is extremely slow. HM then argue that if
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the system decays so slowly, its dynamics must go through
a series of essentially static nonuniform strings, and it then
might just stay at one of these solutions. Therefore, instead
of the pinch off scenario, HM conjectured that the black
string would evolve into a black string that is static but not
uniform in the z direction: a static wiggly black string.
Families of static wiggly black strings were found numeri-
cally by Wiseman [9], however, all the solutions of [9] had
too large a mass to be the endpoint of the evolution of the
unstable black string as conjectured in [10]. Note however
the recent work by Sorkin [5] (and related discussions in
[11]) where it is discussed how for large enough spherical
dimensions the static solutions found do indeed have lower
mass, and could in principle be those conjectured by [8].

In an attempt to resolve the issue of the fate of the
linearly unstable black string, in [1] a numerical discreti-
zation of the Einstein equations in five-dimensions was
presented. An SO(3) symmetry was assumed, effectively
making the problem 2� 1 dimensional, and hence one that
could be solved on contemporary computer systems. This
code was employed to study the evolution of slight pertur-
bations of a static, uniform black string. The simulation
tracked the behavior of the system well into the nonlinear
regime, though unfortunately it could not be extended far
enough to elucidate the final fate of the string.
Nevertheless, the numerical solution revealed significant
and rich dynamics, illustrating, in particular, that the string
evolves toward a shape resembling large spherical black
holes connected by thin strings. In terms of areal radius, the
ratio of the maximum to minimum radius was about 10 by
the end of the simulation.

In this paper, we re-examine the data of [1], paying
closer attention to the analysis of [8] and examine relevant
features of the solution. In particular, we numerically find
the expansion, shear and affine parameter of the black
string horizon and discuss their behavior in connection to
the conjecture of [8] where a scenario is ruled out as
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improbable, though as we argue here, it might very well be
possible. The methods used are presented in Sec. II, results
in Sec. III and conclusions in Sec. IV.
II. METHODS

Our starting point is to consider a spacetime described
by the metric provided by the numerical simulation of [1].
For simplicity we adopt the same gauge conditions used
there (to avoid performing a numerical coordinate trans-
formation, which in general would involve interpolating
functions in space and time). The metric used in [1] takes
the form

ds2 � ���2 � �AB
A
B�dt2 � 2�AB
AdxBdt

� �ABdx
AdxB � �	d	

2 (1)

where xA � �r; z� and d	2 is the unit two-sphere metric.
Our goal is to extract intrinsic properties of the event
horizon and its generators. The horizon can be described
by a surface r � R�t; z�. To extract the sought-after infor-
mation, the first step is to find the geodesic generators of
the horizon. To this end, we construct the vector ka normal
to the horizon defined as ka � �kt; kr; kz� � �� _R; 1;�R0�.
Here an overdot denotes differentiation with respect to t
and a prime denotes differentiation with respect to z. Since
ka is null, it is tangent to the generators of the horizon;
these are given by

dz
dt

� �2

�
�rz � �zzR0


r � _R

�
: (2)

Note, however, that these geodesics are not affinely pa-
rametrized. To obtain the affinely parametrized geodesics
one can exploit the fact that their tangent vectors la obey
the simple relation la � e��ka where � is defined by

d�
dt

�
�2h


r � _R
(3)

and h is given by

h �
1

2

@
@r

��rr � �zz�R0�2 � 2�rzR0 � ��2� _R� 
r�2�:

(4)

Thus, the affine parameter � of these geodesics is found by
integrating

d�
dt

�
�2e�


r � _R
: (5)

Next we turn our attention to obtaining the expansion and
shear of these affinely parametrized generators. Since the
spacetime is spherically symmetric, these quantities are
given by just two components of ralb: Let xa be a unit
vector in the two-sphere direction and let ya be a unit
vector orthogonal to ka and to the two-sphere directions.
Define the quantities A and B by
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A � 2xaxbralb (6)

B � �yaybralb; (7)

which measure the distortion along spherical and longitu-
dinal directions, respectively. Then, the expansion and
squared shear are given in terms of A and B by

� � A� B (8)

�ab�ab �
1

6
�A� 2B�2: (9)

The equations above determine the affinely parametrized
generators of the horizon and its expansion and shear. As
we will see later, due to the exponential behavior of these
quantities, it will turn out to be convenient to consider the
logarithm of the affine parameter s 
 ln� and rescaled
quantities defined as follows

�~�; ~�ab; ~A; ~B� 
 ���; �ab; A; B� (10)

It then follows that

~� � ~A� ~B (11)

~�ab ~�ab �
1

6
� ~A� 2 ~B�2 (12)

ds
dt

�
�2e���s�


r � _R
: (13)

The quantity ~A is found by

~A � e�s���kara�ln�	�: (14)

To find ~B we note that there is freedom to add a multiple of
ka to ya and use that freedom to make yt vanish. It then
follows that the components of ya are

yz � ��zz � 2�rzR0 � �rr�R0�2��1=2 (15)

and yr � yzR0, from which

~B � e�s�����yz�2R00 � kb�b
acyayc� (16)

Finally, we point out the following observation, which
will be crucial in the numerical evaluations to be carried
out later. As we have seen above, � and �ab (and their
scaled counterparts) can be calculated independently.
However, they are related by Raychaudhuri’s equation,
which for the five-dimensional vacuum null case is

d�
d�

�
1

3
�2 � �ab�ab � 0; (17)

while the corresponding equation for the rescaled quanti-
ties is

d~�
ds

� ~��
1

3
~�2 � ~�ab ~�ab � 0: (18)
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FIG. 1. s vs t for the horizon generator of minimum radius,
from three simulations of identical initial data though differing
resolution (the curves are labeled by NrxNz, where Nr(Nz) is the
number of grid points in the r(z) direction). We show results
from three different resolutions to demonstrate that we are in the
convergent regime. Recall that the affine parameter � � es, and
therefore � is growing very rapidly with simulation time t.

FIG. 2. The plot to the left depicts ~A as a function of s, while the
simulation, both for the horizon generator of minimum radius. Wha
magnitude; in particular, the difference ~A� ~B (which is just ~�)
magnitude of which can be estimated by using the data from the
resolution simulation is quite small initially, is near 5% near the m
simulation ( ~B has similar error).

NUMERICAL EXAMINATION OF AN EVOLVING BLACK. . . PHYSICAL REVIEW D 71, 064009 (2005)

064009
III. RESULTS

The simulations performed in [1] provide a (partial)
description of the spacetime describing a slightly perturbed
black string that evolves to a state where the black string is
quite deformed as judged by the apparent horizon. The
surface that we use here as the event horizon is the bound-
ary of the causal past of the region exterior to the apparent
horizon at the latest time in the simulation (calculated
using a generalization of the technique described in [1]),
and it turns out that this surface is very well approximated
by the apparent horizon for the entire length of the simu-
lation. We initialize the affine parameter to 1 (hence s � 0)
at the beginning of the simulation. Among all generators,
we are particularly interested in the one corresponding to
the minimum radius, since it is there where any pinch off
would occur. Because of the reflection symmetry of the
initial data, the set of points on the horizon that at each time
correspond to the minimal radius form a geodesic genera-
tor, and that generator stays at constant z.

Figure 1 shows plots of s as a function of the simulation
time coordinate t for the generator of minimum radius,
from simulations with three different resolutions (to give
some measure of the error in the results). Note that s has
reached 50 near the end of the simulation. This corre-
sponds to an affine parameter of about 1021. Thus, though
the simulation has only taken a moderate amount of simu-
lation time, it has gone for an enormous amount of affine
parameter.
plot to the right shows ~A and ~B vs s from the highest resolution
t the latter plot demonstrates is that ~A and ~B are very similar in
at late times is completely dominated by numerical error, the
three simulations. Specifically, the error in ~A from the highest
inimum of ~A, and has grown to around 40% by the end of the
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FIG. 3. ~�ab ~�ab vs s for the horizon generator of minimum
radius.
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Figure 2 shows plots of ~A and ~B vs s for the generator of
minimum radius. Note that due to the rescaling this means
that by the end of the simulation, the unrescaled expansion
� and shear �ab are of order 10�22. Note too, that though
the behavior of ~A and ~B as a function of s is quite dynamic
throughout the simulation, since d=d� � ��1d=ds it fol-
lows that viewed as functions of � even the rescaled
expansion and shear would be regarded as slowly varying.
FIG. 4. ~� vs s for the horizon generator of minimum radius, calc
figure, the initial value of ~� (which is at the largest s, as we integrate
was calculated using (11). We show curves calculated using two diffe
fairly insensitive to the initial value of ~�; hence, except near the end o
of ~�ab ~�ab shown in Fig. 3—specifically around 10% near the maxi
convergence.
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We now turn to the behavior of the rescaled quantities ~�
and ~�ab. We can calculate the shear by simply evaluating
(12) along the generator of minimum radius: Fig. 3 shows
the result of this as a function of s for the three simulations.
In principle we can also calculate ~� in a similar manner
using (11), which says ~� is the difference between ~A and ~B.
However, the problem with this is that ~A and ~B are very
close to one another in magnitude, as can be seen from
Fig. 2, and so the difference will be dominated by numeri-
cal error. In fact, from the plot of ~A in Fig. 2, and the
assumed second order convergence of the numerical
scheme, one can estimate that the error in ~A (and similarly
for ~B), is on the order of 5% at intermediate times (near the
minimum of ~A) and grows to as much as 40% at late times.
Therefore at late times the difference ~A� ~B will be com-
pletely swamped by numerical error.

In order to alleviate this problem, we use
Raychaudhuri’s equation to integrate ~�. However, in the
form of (18) there is in general no stable direction of
integration due to the linear and quadratic terms in ~�; in
other words, numerical errors in ~� could cause a blow up
integrating in either direction in s. Therefore, we eliminate
the ~�2 term using (11), and ~�ab ~�ab using (12), though we
keep the linear term in ~� to give

d~�
ds

� ~��
1

2
~A2 � ~B2 � 0: (19)

In this form there is a stable direction of integration from
large to small s, and the only ‘‘sources’’ in ~A and ~B are
quadratic and of the same sign, hence we are not as
ulated by integrating (19). For the integrations shown in the left
from large to small s) is 0, while in the right figure the initial ~�

rent sets of initial conditions to demonstrate that the integration is
f the simulation, the error in the integrated ~� is comparable to that
ma for the highest resolution simulation, assuming second order
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susceptible to numerical errors arising from the difference
of similar numbers. One potential difficulty is in specifying
initial conditions for the integration, which we need to do
at the end of the simulation where ~� obtained from (11) has
the largest error. Fortunately the integration seems to be
fairly insensitive to the initial condition in ~�, as illustrated
in Fig. 4, where we show the results of integration of (19)
starting from both ~� calculated using (11), and ~� � 0
(which is within the numerical margin of error at late
times).

IV. CONCLUSIONS

We have found the behavior of the horizon of a black
string in terms of the affine parameter, expansion and shear
of the generators. The most significant aspects of our
results are the extremely large values of the affine parame-
ter, and correspondingly the extremely small values of the
(unrescaled) expansion and shear. In hindsight, this result
is not too surprising as it is well known that for a
Schwarzschild black hole there is an exponential relation
between the Killing time coordinate and the affine parame-
ter of the horizon generators. Since the straight black string
is just the Schwarzschild spacetime crossed with a circle,
and since the spacetime treated here is initially just a small
perturbation of the straight string, it appears natural that
very large values of the affine parameter are reached. The
immediate conclusion is that in some sense the logarithm
of the affine parameter is a more natural ‘‘dynamical time’’
than the affine parameter.

What do our results say about the final fate of the
unstable black string? They certainly do not yet resolve
the issue. The same three possible alternatives are still
there: the string can (i) evolve to a static wiggly string,
(ii) ‘‘terminate’’ in a naked singularity in finite affine
parameter or (iii) pinch off in infinite affine parameter. It
is clear both from [1] and from our work that the simulation
has not gone far enough to read off the asymptotic behavior
of the string. For that, a more robust simulation is needed.
However, our results would seem to push the evidence
more in favor of alternative (iii). Recall that in [8] it was
correctly pointed out that alternative (iii) requires very
small (unrescaled) expansion and shear and very slow
dependence on affine parameter. Our results here show
that precisely this is the sort of behavior that occurs, at
least in some regime of the evolution of the black string. In
fact, one might argue that alternative (iii) is the most
plausible for lower spherical dimensions of the spacetime
if the only nonuniform static solutions are those found in
[9]. This fact would make alternative (i) unlikely as these
solutions are too massive for spacetimes with dimension
lower than 13. Option (ii) requires a singularity forming on
or outside the horizon, and no hints of such behavior
developing were seen in the simulations of [1]. Such a
singularity would also invalidate the picture of a black
string bifurcating into a sequence of black holes (as sug-
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gested by entropy arguments [2])—in fact it is unclear
what the nature of such a singularity would be, or how the
spacetime could be extended beyond it. In contrast, even
though option (iii) may result in a naked singularity, the
singularity will occur at the moment the string reaches zero
radius, and thus one can plausibly argue that the horizon
will then bifurcate into a sequence of spherical black holes
(of course, a theory of quantum gravity would be needed to
resolve this bifurcation singularity).

Under alternative (iii) one might still have different
scenarios for evolution of the string at late times. One
possibility is that pinch off is reached through a cascading
sequence of instabilities on ever smaller scales. This would
happen if first, the relationship between affine time � and
the local dynamical time s continues to be logarithmic (s /
ln�), as then the evolution will take an infinite amount of
‘‘time’’ relative to local physical processes; and second, if
the stringlike portion of the solution (near the minimum
radius) at late times can be described as a perturbed uni-
form string. For then an instability will develop around this
portion of the horizon, as the local ratio of length to radius
is above the critical value for a stable string, and this part of
the spacetime will then also evolve toward a solution
resembling (smaller) spherical black holes connected by
thin black strings, and so on. Note that in this scenario the
pinch off would probably occur in finite asymptotic time t,
as the time-scale for the growth of the instability, measured
in units of t, is proportional to the local radius of the string,
which is tending to zero.

Still considering option (iii), if the conditions for a
cascading sequence of instabilities are not met (namely
that either the stringlike portion of the solution has a
geometry sufficiently different from a uniform black string
that it does not suffer from a Gregory-Laflamme instability,
or that there is insufficient time for a second instability to
grow), then the pinch off may simply occur as a continu-
ation of the trend observed at the late stages of the simu-
lation of [1]. Here, the pinch off could also occur in finite
simulation time though infinite affine time, if the affine
parameter grows exponentially with simulation time with
the factor in the exponential inversely proportional to the
radius (as is does for the uniform black string solution).
Thus if the radius goes to zero rapidly enough, this sort of
behavior could lead to infinite affine parameter in finite
simulation time. Indeed, from Fig. 1 it is clear that the
slope of log affine parameter vs simulation time is increas-
ing in the regime where the minimal radius is decreasing.

In a more quantitative vein, we can consider the possible
asymptotic behavior of the (rescaled) expansion and shear.
Let p and c be positive constants. Then it is consistent with
Eq. (18) for both ~� and ~�ab ~�ab to asymptotically approach
c2s�2p. This would result from both ~A and ~B approaching
�cs�p asymptotically, but their difference approaching
c2s�2p. That this sort of behavior is possible was recog-
nized in [8] but there it was thought that such behavior was
-5
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somehow unnaturally slow and indicative of an approxi-
mately static solution. If p � 1 then this behavior results in
pinch off in infinite affine parameter. If in addition, p >
1=2 then this pinch off occurs with finite

R
�d� as assumed

in [8].
If such a power law is the asymptotic behavior of the

unstable black string, then the simulations have not yet run
for long enough to be sufficiently far into the asymptotic
regime to try to calculate the exponents. Nonetheless, in
Figs. 3 and 4 the quantities ~�ab ~�ab and ~� peak and then
decrease. This decrease may be the beginning of a power
law tail to be found in an improved black string simulation.
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