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relativity and in Einstein-Gauss-Bonnet gravity. We present a unified treatment, applicable to timelike
surface layers and spacelike transition layers, and including consideration of the more difficult lightlike
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I. INTRODUCTION

Thin walls and shells of matter have surfaced increas-
ingly in a variety of situations in astrophysics, cosmology
and quantum gravity. Highly compressed expanding shells
of material emerge from supernova explosions [1], as false-
vacuum bubble walls in inflationary phase transitions [2],
and in hypothetical scenarios of ‘‘new-universe’’ creation
[3]. In a sudden global phase transition, the transition
region can sometimes be idealized as an infinitesimally
thin spacelike surface layer [4]. Theoretical exploration of
basic issues of principle, such as the possible outcomes of a
classical or quantum gravitational collapse [5], are often
simplified, for purposes of a first reconnaissance, by ideal-
izing the collapsing matter as a thin shell, thus reducing the
complex differential field equations to simple algebraic
junction conditions.

With the advent of brane-world scenarios [6], the scope
of thin-shell dynamics has broadened to embrace higher
dimensions and string-inspired extensions of Einsteinian
gravity, in particular, Einstein-Gauss-Bonnet (EGB) theory
[7]. Recently, a class of Weyl-conformally invariant
p-brane theories, which includes lightlike branes, has
been proposed [8].

For purely Einsteinian shells the classical dynamics is
straightforward [9] (though the variational and Hamil-
tonian aspects can be subtle [10]). Appending Gauss-
Bonnet terms to the usual Einstein-Hilbert action, however,
is attended by a considerable step-up in complexity.
Initially, there were even doubts whether EGB shells admit
a distributional description at all: the EGB bulk field
equations develop ill-defined products of delta- and step-
functions in the thin-layer limit unless the terms are ar-
ranged with care [11]. The key is to express the field
equations in canonical form, with distance from the layer
in the role of ‘‘time’’; this segregates the most singular
terms into the canonical momentum. The canonical mo-
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mentum is the dynamical variable that ‘‘jumps’’ cleanly at
a thin layer.

The key role of canonical momentum suggets that the
EGB junction conditions are most easily derived from the
action. This derivation was carried through by Davis [12],
so that the basic equations of EGB shell dynamics are now
well established and widely employed [13]. Still to be
desired is a systematic, self-contained exposition which
draws together general-relativistic and EGB shell dynam-
ics within a unified Lagrangian framework, and includes
consideration of the lightlike limit [14]. We hope this paper
will go some way toward filling this gap.
II. TOY MODEL

To illustrate the essential ideas, we take a simple ex-
ample from one-dimensional particle mechanics. We
choose a ‘‘bulk’’ action functional of the path q � q�t�,

Sbulk�q� �
Z tf

ti
�L� Vext�dt; (2.1)

with an acceleration-dependent Lagrangian of the form

L � �b�q� �q� 1
2b

0�q� _q2 � V�q�; (2.2)

where the functions b; V are arbitrary and Vext�q; t� is an
arbitrary external potential.

We are considering q as an analogue of the metric, t as
an analogue of distance normal to a boundary surface or
layer, and _q as an analogue of extrinsic-curvature K �
@g=@n. The two terms of (2.1) simulate the geometrical
and matter actions; the external force F � �@Vext=@q
is the analogue of material stress-energy T��. The
particular, quasilinear functional form (2.2) is patterned
after the Einstein-Hilbert (EH) and Gauss-Bonnet (GB)
Lagrangians. (The EH Lagrangian is quasilinear in the
narrow sense that the coefficients of the second-derivative
terms are functions of the metric only, not its first deriva-
tives. But the corresponding coefficients do depend on first
derivatives in the case of the GB Lagrangian).
-1  2005 The American Physical Society
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Although L involves second derivatives, its quasilinear-
ity ensures that the Euler-Lagrange equation

@6 L
@6 q


 F � 0; (2.3)

for the classical path is no higher than second order. The
classical path is thus uniquely determined by fixing its two
endpoints qi, qf. But this path does not extremize the bulk
action (2.1), because the endpoint velocities _qi, _qf can still
be varied freely: we have

�Sbulk�q� �
Z tf

ti

�
@6 L
@6 q


 F
�
�q�t�dt
 �p�q� �B�q; _q��

tf
ti ;

(2.4)

where

p � b0�q� _q; B�q; _q� � b�q� _q: (2.5)

To have an action that is extremized by the classical
path, one must add a boundary term [15] to the bulk action
(2.1):

S�q� � Sbulk�q� 
 B�q; _q�j
tf
ti ; (2.6)

The extremal of the action (2.6) now depends solely on the
endpoints qi, qf of the classical path, in accordance with
the Hamilton-Jacobi equation

�Sextrem�qi; ti; qf; tf� � p�qj
tf
ti ; (2.7)

More fundamentally, the boundary term B is needed to
preserve the composition law

S�1 ! 2 ! 3� � S�1 ! 2� 
 S�2 ! 3�; (2.8)

for an arbitrary continuous path joining the points 1, 2, 3
with a sharp bend at 2 (as used, for example, in the ‘‘zig-
zag’’ definition of the path integral [16]).

The Euler-Lagrange Eq. (2.3) can be expressed as

dp
dt



@V
@q

� F�q; t�: (2.9)

This is the analogue of the gravitational field equations,
with the right-hand side representing the stress-energy of
matter. To simulate a thin surface layer, we consider an
impulsive force acting at time t0:

F�q; t� � ��q���t� t0�: (2.10)

This will produce a discontinuity in the momentum p.
Since all delta-function contributions to the left-hand side
are gathered into dp=dt, it is straightforward to integrate
the equation of motion (2.9) to obtain the jump across the
discontinuity:

�p� � ��q�; (2.11)

where �p� � lim !0fp�t0 
  � � p�t0 �  �g. This is the
analogue of the geometrical junction conditions at a sur-
face layer. The key to deriving it is just the identification of
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the canonical momentum p—most easily from the
Hamilton-Jacobi equation (2.7), or from a suitable adapta-
tion of Lagrange’s definition applied to an equivalent first-
order Lagrangian, see (2.16) below.

The jump condition (2.11) would follow as

@Simp�q0; _q
�
0 �

@q0
� 0; (2.12)

from an ‘‘impulsive action’’ Simp, as a function of position
q�t0� � q0 and pre- and post-shock velocities _q�t0 �  � �
_q�0 . This is given by

Simp � ��B�q; _q��t0
 
t0� �

Z t0
 

t0� 
Vext�q; t�dt; (2.13)

and it coincides with the bulk action (2.1) if we choose
tf � t0 
  , ti � t0 �  . Alternatively, (2.13) is obtainable
without integrating L through the shock, instead consider-
ing t0 �  and t0 
  as future and past endpoints, respec-
tively, each with its own boundary action B, so that the bulk
action (2.6) becomes

S�q� �

 Z t0� 

ti


Z tf

t0
 

!
Ldt�

Z tf

ti
Vextdt
 �B�t0� 

ti


 �B�
tf
t0
 ; (2.14)

when an impulse acts at t0.
It should be noted that the close relationship (2.13) and

(2.14) of the boundary action B to an impulsive action
hinges on the special form (2.2) of the action, and does
not extend to an arbitrary quasilinear Lagrangian. It does,
nevertheless carry over to the EH action, and also to the GB
action modulo removable K2@K=@n terms. The origins of
this peculiar circumstances will emerge in Sec. III.

The bulk 
 boundary action (2.6) is really a thinly dis-
guised first-order action:

S�q� �
Z tf

ti
�L1 � Vext�dt; L1 �

1

2
b0�q� _q2 � V�q�;

(2.15)

with the standard definition

p �
@L1

@ _q
: (2.16)

Therewith everything relating to this mechanical model
takes on a trivial appearance. Not so, however, for its
gravitational counterparts: there, only the original,
second-order Lagrangian is a geometrical object and a
scalar; the split into a first-order Lagrangian and a pure
divergence cannot be made in a coordinate invariant and
boundary-independent way. One is essentially forced to
retain the bulk 
 boundary formulation.

Let us finally note that, because of the freedom to
redefine the bulk part of the total action by adding a total
derivative, the definitions of canonical momentum and
-2
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boundary action are (trivially) arbitrary to the extent

L1 ! L1 

d
dt

f�q�; B ! B� f�q�;

p ! p
 f0�q�:
(2.17)

This has no effect on the impulsive jump conditions (2.11),
because the arbitrary function f�q� is continuous at the
shock.
III. BRANE DYNAMICS: EINSTEIN-HILBERT
ACTION

We begin by focussing on general relativity and on
higher-dimensional gravitational theories governed by the
Einstein-Hilbert action. Our purpose is to derive the well-
known junction conditions [9,14] which determine the
motion of a surface layer in such theories from the action.
We shall present a unified treatment, applicable to timelike,
spacelike or lightlike layers.

In an �n
 1�-dimensional spacetime, the Einstein-
Hilbert bulk action is

Sbulk �
1

2!

Z
LEH�g;��dn
1x; (3.1)

where

L EH �
�������
�g

p
R �

�������
�g

p
g%&�@'�

'
%& � @&�

�
%�� �L1;

(3.2)

L 1 �
�������
�g

p
g%&���

%��
�
&� � ��

%&�
�
���: (3.3)

The second-order Lagrangian (3.2) is degenerate, and can
be reduced to first-order form by extracting a pure diver-
gence:

L EH � �@'�' 
L1; (3.4)

where

�'�g;�� �
�������
�g

p
�g'%��

%� � g%&�'
%&�; (3.5)

which is reducible to

�' �
1�������
�g

p @%��gg'%�: (3.6)

The first-order Lagrangian L1 dates back to Lorentz,
Hilbert, Einstein, Weyl and Felix Klein, and was employed
by Einstein [17] to define his pseudotensor for gravitational
energy and radiation.

The complete Einstein-Hilbert action SEH complements
the bulk action (3.1) with a term Sbdy coming from the
boundary, which soaks up the pure divergence in (3.4) [17].
Including also the matter contribution, the complete action
reads
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SEH � Sbulk 
 Sbdy 
 Smat �
1

2!

Z
L1dn
1x
 Smat:

(3.7)

Here

Sbdy�g;�� �
1

2!

Z
@'�

'dn
1x; (3.8)

is convertible to a surface integral over the boundary �,
and Smat yields the material stress-energy tensor

�Smat
�g%&

� �
1

2

�������
�g

p
T%&: (3.9)

Computing the variation of the bulk action (3.1) is
facilitated by the Palatini identity

�R%& � ��'
%&j' � ���

%�j&; (3.10)

where j stands for the covariant derivative associated with
the metric g%&. Recalling (3.5), and momentarily treating g
and � as independent, this gives

�LEH�g;�� � ��g 
 ���f
�������
�g

p
g%&R%&���g

� �g%&
�������
�g

p
G%& � @'����'�: (3.11)

From (3.7), (3.8), and (3.9) we thus obtain

�SEH �
1

2!

Z
�G%& � !T%&��g

%& �������
�g

p
dn
1x


 �gSbdy�g;��: (3.12)

The last term depends only on the metric variation �g�� at
the boundary, not ��. Thus, for metric variations which
vanish at the boundary, we find

�SEH
�g%&

� 0 ) G%& � !T%&; (3.13)

which are the bulk equations.
While the second-order Lagrangian (3.2) is a geometri-

cal invariant, its split (3.4) into a first-order part and a pure
divergence is coordinate-dependent. This split can, how-
ever, be endowed with geometrical significance by a spe-
cial choice of the bulk coordinates x% which anchors them
to the boundary �. In general, � will be characterized by
parametric equations

�: x% � x%�+a; z�; z�x%� � 0; (3.14)

where +a�a � 1; :::n� are arbitrary intrinsic coordinates.
Then (3.8) integrates to

Sbdy �
1

2!

Z
�
�'@'z dA; (3.15)

where dA is a (noninvariant) element of n-area. We now
impose the anchoring condition on x%:

�: x0 � z � 0; xa � +a: (3.16)
-3
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Then (3.15) becomes

Sbdy �
1

2!

Z
�
�0�g;��dn+; (3.17)

with

�0 � �'@'z � ��g��1=2@'���g�g'%@%z�: (3.18)

Its noncovariant appearance notwithstanding, (3.18) is
actually (twice) the mean extrinsic-curvature density of �,
up to a dynamically irrelevant term. Moreover, it is regular
even for a lightlike �, so that (3.18) may be considered a
valid extension of the notion of mean extrinsic-curvature
density to the lightlike case.

To verify these statements, suppose first that � is non-
lightlike, and thus has a unit normal n%, which is transverse
to �, say in the direction of increasing z, �n0 > 0�; n:n �  
with  � 
���1 whenever � is time(space)like. Then
(3.18) can be shown to reduce to

�0 � 2 K

�������
�g

p
 N�2@as

a; K � j�n�gj1=2K:

(3.19)

where K � n�
j� is the mean extrinsic-curvature, and N, sa

the lapse and shift which appear in the standard ADM form
of the bulk metric

ds2 � gab�d+
a 
 sadz��d+b 
 sbdz� 
  N2dz2; (3.20)

so that

g00 �  N�2; g0a � � N�2sa;

j�n�gj1=2 �
�������
�g

p
N�1:

(3.21)

In the anchored coordinates (3.16), n% has components

n% �  N@%z; Nn0 �  ; Nna � �sa: (3.22)

It is now straightforward to derive (3.19): from (3.18),
(3.21), and (3.22),

�0 � 2 K � ��g��1=2@%���g� N�1n%�

� 2 N�1@%�
�������
�g

p
n%�

� �
�������
�g

p
 N�2@%�Nn%� �

�������
�g

p
 N�2@asa:

(3.23)

This extra contribution (3.23) to the boundary action (3.17)
and (3.19) is ‘‘velocity-independent’’ (i.e., independent of
transverse derivatives @0g%&), and has the same role as
f�q� in (2.17). It could be reconverted to a volume integral
and included with L1 in the first-order bulk action in (3.7).
Its contribution to the momentum is trivial. Moreover, it
contributes nothing at all to the jump of momentum across
an extrinsic-curvature discontinuity, since its jump across
� is zero if x% and g%& are continuous. This will continue
to hold in the lightlike limit �N ! 1�.
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Recalling (3.5), we conclude that

 �K�g;��� � C%&
' �g���'

%&�;

C%&
' �g� �

�������
�g

p

2
�g��%�&�

' � g%&��
' �@�z;

(3.24)

represents precisely the jump of mean extrinsic-curvature
density at an arbitrary (lightlike or nonlightlike) extrinsic-
curvature discontinuity �. (For lightlike �,  is defined by
continuity with the timelike case.)

A surface layer can be characterized by supposing the
bulk divided into two subdomains z < 0 and z > 0 with
edges ���z � �0� and �
�z � 
0�, glued together to
form a common boundary �, loaded with a surface distri-
bution of stress-energy; �
 and �� are supposed intrinsi-
cally isometric, but @�g%& undergoes a jump at � in
smooth (e.g., skew-Gaussian) coordinates, i.e., � is an
extrinsic-curvature discontinuity. Dynamically, the surface
layer is accounted for by adding to the Einstein-Hilbert
action (3.7) a shell contribution equal to the sum of the
actions (3.17) for the boundaries �� and �
 of the sub-
domains, taking into account the opposite directions of
their outward normals:

SEH;shell �
1

2!

Z
�
2 �K�dn+
 Smat;shell: (3.25)

The second (matter) term Smat;shell generates the surface
stress-energy density S�� via

�Smat;shell
�g��

���������
�

1

2
S��; (3.26)

in analogy with (3.9).
Variation of the total action (3.7)
(3.25) then yields the

jump conditions

�4��� � 1
2S

��; (3.27)

in addition to the bulk field Eqs. (3.13).
The canonical field momentum density 4�� associated

with any boundary � is defined in anchored coordinates
(3.14) by

4�� �
1

2!
@L1

@g��;0

���������
: (3.28)

It is more conveniently extracted from the Hamilton-Jacobi
variational formula

�SEH �
Z
�
4���g��d

n+ � �gSbdy�g;��; (3.29)

modulo the bulk field Eqs. (3.13), and recalling (3.12). For
the shell (3.25), we obtain from (3.29), (3.17), and (3.19)
the jump

!�4��� �
@� K�g;���

@g��
; (3.30)

with g, � treated as independent, in analogy with the bulk
-4
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identity

�������
�g

p
G�� �

�

�g��
Z �������

�g
p

Rdn
1x

�
@

@g��
�
�������
�g

p
g%&R%&����: (3.31)

Explicit evaluation of (3.30) with the help of (3.24)
yields

�4�0� � 0; (3.32)

!�4ab� � 1
4

�������
�g

p
�gcd;0�fg00�gabgcd � gacgbd�


 2g0�agb��cgd�0 � ga0gb0gcd � gabgc0gd0g:

(3.33)

This is equivalent to a result (Eq. (17) of Barrabès-Israel
[14]) previously derived by integration of the field equa-
tions through the layer.

Like the Bianchi identity G��
j� � 0 for the bulk field

Eqs. (3.13), the transversality condition (3.32),

�4����@�z� � 0; (3.34)

may be regarded as a consequence of the coordinate-
invariance of the action. The boundary action (3.17) is
invariant under the infinitesimal anchored coordinate trans-
formation

x% ! �x% � x% 
 1
2z

26%�x�: (3.35)

This gives

�Lg�� � g��� �x�� �g��� �x� � 26��@��z
O�z�; �z! 0�:

(3.36)

Hence from (3.29),

�LSEH �
Z
�
4��26�@�zdn+; (3.37)

which is required to vanish by coordinate invariance of the
total action, leading to (3.33).

For a nonlightlike layer (g00j� � 0), (3.33) simplifies to

!�4ab� � 1
4

�������
�g

p
�gcd;0�g

00��ab�cd ��ac�bd� (3.38)

where �ab projects onto � and coincides with the inverse
intrinsic metric in anchored coordinates

�ab � gab �
ga0gb0

g00
� gab �  nanb � �n�gab: (3.39)

The jump conditions (3.27) can then be reduced to their
standard nonlightlike form [9]

�
 
2
j�n�gj1=2�Kab ��n� gabK� � !�4ab� �

!
2
j�n�gj1=2Sab;

(3.40)

in terms of the jump of extrinsic-curvature
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�Kab� �
1

2
�
@gab
@n

� �
1

2
jg00j1=2�j@0gabj�; (3.41)

and of the surface stress-energy tensor Sab of the shell

Sab � j�n�gj�1=2Sab: (3.42)
IV. GAUSS-BONNET ACTION

When the Einstein-Hilbert action (3.1) is augmented
with term quadratic in the curvature the simple form
(3.40) of the junction conditions is no longer valid. In
fact, a distributional brane dynamics is no longer even
possible in general, because the bulk field equations now
involve inadmissible products of distributions in the thin-
layer limit. The exception is the case when the quadratic
terms have the Gauss-Bonnet form. In this case the bulk
field equations are quasilinear, and a distributional descrip-
tion of thin layers remains viable. In this section, we shall
examine how the junction conditions (3.40) are modified.

The Gauss-Bonnet action is (see the Appendix for fur-
ther details)

Sbulk �
�
2!

Z
LGB�g;��dn
1x; (4.1)

where � is the Gauss-Bonnet coupling constant, and

L GB�g;�� �
�������
�g

p
R

�
�������
�g

p 1

4
�343040

121020g
25g2

050R1
534R

10

503040 : (4.2)

Because of the plethora of indices in such expressions,
we have found it convenient in many instances to let
numerical indices 1; 2; . . . , 10; 20; . . . : do duty for literal
indices �1; �2; . . . , �0

1; �
0
2; . . . . They are understood to

run from 0 to n, and repeated indices are to be summed.
In contrast, we reserve the index 0 to stand just for its
numerical self, and, as in (3.16), x0 � z � 0 will represent
the boundary �.

There is no holonomic split, analogous to (3.4), of LGB
into a first-order piece and a pure divergence. We must
therefore proceed more indirectly to find the supplemen-
tary boundary action which effectively removes second
derivatives from the GB bulk action (4.1).

Varying the affine connection � in (4.2), and noting the
Palatini and Bianchi identities, �R1

534 � �2��1
53j4 and

�:43040
:::: R10

503040j4 � 0, we see that the �-variation of Sbulk
involves a pure divergence, convertible to a surface inte-
gral:

2!
�

��Sbulk �
Z �������

�g
p

�'
j'd

n
1x �
Z
�

�������
�g

p
�'@'zd

nx;

(4.3)

where

�' � ��3'3040
121020g

25R1020

3040��
1
53: (4.4)
-5
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This is in complete analogy with (3.11) in the Einstein-
Hilbert case, and it means that the bulk field equations

1

2!

@L�g;��
@g%&



1

2

�Smat
�g%&

� 0; (4.5)

with L � LEH 
 �LGB, are obtainable by simply differ-
entiating the bulk Lagrangians (4.2) and (3.2) partially with
respect to g.

When the bulk field Eqs. (4.5) are satisfied, the boundary
term (4.3) gives the total variation of the bulk action. This
involves ��, from which the variations �g��;0 of trans-
verse derivatives—i.e., of extrinsic-curvature in the non-
lightlike case—must be removed by compensating
variation of a suitable boundary action.

To isolate these extrinsic-curvature variations, we as-
sume for simplicity that � is nonlightlike and introduce
Gaussian coordinates based on � as in (3.20). Then

�n
1��c
ab �

�n��c
ab

�n
1��0
ab �  Kab;

�n
1��a
0b

� Ka
b;

(4.6)

where the extrinsic-curvature Kab �
1
2@0gab, and Latin

indices run from 1 to n. We note also the Gauss-Codazzi
relations

�n
1�Rabcd �
�n�Rabcd � 2 Ka�cKd�b; (4.7)

�n
1�R%bcdn
% � 2Kb�c;d�; (4.8)

where ; represents the covariant derivative associated with
the n-dimensional metric gab. Retaining only the variations
�Kab in (4.4)—i.e., assuming �g��j� � 0—we find

�0 � ��303040

101020R
1020

30402 �K
1
3; (4.9)

so that (4.3) becomes

2!
�

�KSbulk � �2 �033040

011020

Z
�
��n�R1020

3040

� 2 K10

30K
20

40 ��K
1
3

�������
�g

p
dnx; (4.10)

where we have made use of (4.7).
The boundary action Sbdy must be chosen so that its

K-variation cancels (4.10):

�K�Sbulk 
 Sbdy� � 0; (4.11)

Since the intrinsic Riemann tensor �n�R is independent of
Kab, the choice

2!
�

Sbdy � 2 �033040

011020

Z
�
��n�R1020

3040

�
2 
3
K10

30K
20

40 �K
1
3

�������
�g

p
dnx; (4.12)

meets this requirement, a result originally due to Myers
[18].
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We are now ready to derive the Gauss-Bonnet field
momentum 4ab associated with � from the Hamilton-
Jacobi equation

��Sbulk 
 Sbdy� �
Z
�
4ab�gabd�; (4.13)

modulo the field Eqs. (4.5).
Evaluation of the left-hand side of (4.13) is simplified by

noting that there is no K-contribution because of (4.11),
and none from the metric factors in (4.2) because of (4.5).
So �Sbulk � ��Sbulk is again given by (4.3) and (4.4), with
�� now effectively determined solely by the metric varia-
tion �gab, with Kab fixed. We re-express (4.4) as

�0 � �2�303040

12100 g
25R100

3040��
1
53

� 4 �03034
011020K

1
3;40g

2050��10

5030 ; (4.14)

where we have interchanged primed and unprimed indices
in the second line and made use of the Gauss-Codazzi
relation (4.8).

Turning now to �Sbdy in (4.13), one piece of this arises
from variation of the intrinsic curvature �n�R in (4.12):

2!
�

�Sbdy ! 2 �033040

011020

Z
�
g2

050��n�R10

503040K
1
3j
�n�gj1=2dnx:

(4.15)

Applying the intrinsic Palatini identity ��n�R10

503040 �

�2��10

50�30;40�, one sees that the integrands (4.15) and
(4.14) add up to an intrinsic divergence, which may be
discarded.

All that remains to account for is the metric variations
arising from

�������
�g

p
, the raised indices (20 on �n�R::

::, 10201 on
the K-factors) in (4.12), and from ��1

03 � �g1bKb3 in the
variation of the bulk action (4.3) and (4.4). The result of a
straightforward calculation is

2!
�

4ab � j�n�gj1=2f6Ka�mKm
n Kn

b� 
 6Kb�mKm
n Kn

a�

� 4gabK
l
�lK

m
mK

n
n� 
 4 Kcd��n�R�

acbdg: (4.16)

where ��n�R�
ac

bd—see the Eq. (A7) of the Appendix for its
definition—is the left and right dual of the intrinsic curva-
ture tensor of �. This is equivalent to results previously
obtained by Davis and others [12].

Following the argument leading to (3.27), we conclude
that the dynamics of a nonlightlike shell in Einstein-Gauss-
Bonnet theory, with bulk action

Sbulk �
1

2!

Z �������
�g

p
�R
 �R�dn
1x
 Smat; (4.17)

is governed by the junction conditions

�4ab� �
j�n�gj1=2

2
Sab; 4ab � 4ab

EH 
 4ab
GB; (4.18)

where Sab is the surface stress-energy tensor of the shell,
-6
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and is defined by (3.26) and (3.42). The momenta 4ab
EH and

4ab
GB are given by the first of (3.40) and (4.16) respectively,

and jump together with the extrinsic-curvature across the
shell. The action due to the shell augments (4.17) with a
surface term—cf. (3.25) and (4.12)—and is equal to

Sshell �
1

2!

Z
�
��BEH�
 ��BGB��d�
 Smat;shell; (4.19)

where

BEH � 2 K (4.20)

BGB � 2 �cdf
abe�

�n�Rab
cd �

2 
3
Ka

cKb
d�K

e
f: (4.21)

These results hold for non-lightlike shells, for which
extrinsic-curvature is well defined. We now add some re-
marks on the lightlike case. Since this is a special limit of
the timelike case, one might at first sight expect the result-
ing junction conditions to be simpler. Actually, however,
this is far from being the case. Lightlike discontinuities
propagate along characteristics of the field equations. It is a
nontrivial matter to disentangle the lightlike discontinuities
due to the shell from the accompanying gravitational shock
waves. For pure Einstein theory this is still quite manage-
able, and we have presented the results in Sec. III. But we
have not yet succeeded in reducing the lightlike junction
conditions for Einstein-Gauss-Bonnet theory to a form that
we consider worth publishing. The nature of the character-
istics themselves is made more complicated by the fact that
the field equations are now quasiliniear only in the broad
sense (linear in second derivatives but with coefficients
depending on first derivatives).

It is, however, straightforward to obtain the Gauss-
Bonnet boundary and shell actions in the lightlike case.
Under an arbitrary metric variation, the total variation of
the bulk action, is still given (modulo the bulk field equa-
tions) by (4.3) and (4.4), which we can express in the form

�0 � �4�R�3012��1;23; (4.22)

where we have introduced the left and right dual of the
curvature tensor, defined by (A3) and (A6) and in the
appendix. In (4.22) we must separate out (and neutralize
with a boundary action) the contribution of variations
�g��;0 of transverse derivatives:

���1;2�3 � �@�1�g2�3 ! ��@�1z��g2�3;0: (4.23)

Hence the boundary action must have the compensating
variation

2!
�

�Sbdy � 4
Z

�R�0203�g23;0
�������
�g

p
dnx: (4.24)

Now, when the surfaces, x0 � const: are lightlike, the
components �R�0203 do not contain second transverse de-
rivatives g��;00 and they are linear in first derivatives, i.e.,
064008
�R�0a0b � Kab
�0� 
 Kabcd

�1� gcd;0; Kabcd
�1� � Kcdab

�1� ;

(4.25)

where K�0�, K�1� are independent of gab;0 (K�1� has a fairly
complicated linear dependence, not reproduced here, on
the ‘‘nominal extrinsic-curvature’’ Kab � ��0

ab, which
depends only on the intrinsic geometry for a lightlike �
). From (4.24) and (4.25) we infer

2!
�

Sbdy � 4
Z �

Kab
�0� 


1

2
Kabcd

�1� gcd;0

�
gab;0

�������
�g

p
dnx;

(4.26)

as the form of the Gauss-Bonnet boundary action.
V. CONCLUDING REMARKS

We have given an elementary, self-contained derivation
of the action (useful for calculation of quantum tunneling
amplitudes) and dynamical equations (i.e., junction con-
ditions) for thin shells and branes in Einstein-Gauss-
Bonnet theory. Our exposition has attempted to integrate
as far as possible the treatment of timelike, spacelike and
lightlike layers. For lightlike shells, the dynamics is com-
plicated (especially in the Gauss-Bonnet case) by the fact
that gravitational shock waves will in general accompany
the shell. However, this problem should be ameliorated in
situations of high symmetry, and this is currently under
investigation.
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APPENDIX A: NOTATIONS FOR GB

In 1932, Lanczos [19] noted that the Lagrangian

R � 1
4�

343040

121020R
12

34R
1020

3040 ; (A1)

leads, like the Einstein-Hilbert Lagrangian

R � 1
2�

34
12R

12
34; (A2)

to field equations which involve no higher than second
derivatives of the matric. R and R are the first two mem-
bers of a family of Lagrangians having the same property
found by Lovelock [20]. The nth member involves a prod-
uct of n curvature factors formed by an obvious general-
ization of (A1) and (A2). It has the ‘‘Gauss-Bonnet’’
property of being a pure divergence in a space of
dimension 2n, and it vanishes identically in spaces of
lower dimension. Properties of the Lovelock family are
reviewed by Meissner and Olechowski [7] and Deruelle
and Madore [7].
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By defining the left and right dual of the curvature tensor

�R�
12

34 � 1
4�

343040

121020R
1020

3040 ; (A3)

and using the identity

�343040

121020 � 4!��3
1 �

4
2�

30

10�
40�
20

� �34
12�

3040

1020 
 �3040
12 �34

1020 � 2�3�30

12 �j4j40�
1020 � 2�4�40

12 �j3j30�
1020 ;

(A4)

where �34
12 � �3

1�
4
2 � �4

1�
3
2, (A1) and (A3) can be recast as

R � R12 �
34 ; R�

12
34 � �R1234�

2 � 4�R12�
2 
 R2;

(A5)

(which was the form originally given by Lanczos). The
tensor �R�

12
34 generalizes to spacetime with dimension

higher than four the left and right dual of the curvature
tensor of general relativity. It is equal to

�R�
12

34 � R12
34 � 4��3

�1R
4�
2� 


1
2�

34
12R

� R12
34 � 4��3

�1G
4�
2� �

1
2�

34
12R: (A6)

A similar quantity ��n�R�
ab

cd can be defined for the intrinsic
curvature tensor

��n�R�
ab

cd �
1

4
�cdc0d0
aba0b0

�n�Ra0b0
c0d0

� �n�Rab
cd � 4��c

�a
�n�Rd�

b� 

1

2
�cd
ab

�n�R; (A7)

where the latin indices run from 1 to n.
Because, as noted in Sec. IV, the �-variations of R and

R are pure divergences, the bulk field equations
064008
G%& 
 �G%& � !T%&; (A8)

can be obtained from the bulk action

Sbulk �
1

2!

Z �������
�g

p
�R
 �R� 
 Smat; (A9)

simply by partially differentiating the Lagrangian, holding
R1

234��� fixed:

G %& �
1�������
�g

p
@

@g%&
�
�������
�g

p
R� � 2R%& �

1

2
g%&R;

(A10)

where

R � g%&R%&; R%& � 1
2g

���R�%�& 
R�&�%�;

(A11)

R ��%& � 1
4�

102034
1�30�R

1
%34R

30

&1020 : (A12)

(A10) confirms that the field equations follow the action in
containing no higher than second derivatives of the metric.
Noether’s theorem and coordinate invariance of R and R
imply the contracted Bianchi identities

G��
j� � G��

j� � 0; (A13)

which ensure compatibility of (A8) with the conservation
law T��

j� � 0. All the above considerations extend
straightforwardly to higher members of the Lovelock
family.
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