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Strong gravitational lensing by braneworld black holes
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In this paper, we use the strong field limit approach to investigate the gravitational lensing properties of
braneworld black holes. Applying this method to the supermassive black hole at the center of our galaxy,
the lensing observables for some candidate braneworld black hole metrics are compared with those for the
standard Schwarzschild case. It is found that braneworld black holes could have significantly different
observational signatures to the Schwarzschild black hole.
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I. INTRODUCTION

The braneworld paradigm provides an interesting frame-
work within which to explore the possibility that our
Universe lives in a fundamentally higher dimensional
spacetime. Unlike the Kaluza-Klein picture where the extra
dimensions must be compactified on a length scale R &

10�17 cm in order to evade our detection, confinement of
the standard model fields to a 3-brane, with only gravity
propagating in the bulk, allows large, and even infinite,
extra dimensions.

Recent work on braneworlds was instigated by the pro-
posals of Arkani-Hamed, Dimopoulos and Dvali (ADD)
[1] and Randall and Sundrum (RS) [2] (see [3] for early
work, and [4] for braneworld reviews). The ADD model
has n flat, compact extra dimensions of size R. Because of
the confinement of ordinary matter to a brane, R can be as
large as �0:1 mm (the scale down to which Newton’s law
has been experimentally tested), and the model provides a
possible resolution to the hierarchy problem if n � 2.
More interesting from the general relativity viewpoint are
the RS models proposed shortly afterwards. They allowed
the bulk geometry to be curved, and endowed the branes
with a tension. Their first model consisted of two branes of
equal but opposite tension bounding a slice of anti-de Sitter
(AdS) space. This model also gives a possible resolution to
the hierarchy problem, provided we live on the negative
tension brane. In their second model, RS considered a
single, positive tension brane in an infinite bulk. This
model, which is loosely motivated by string theory [5],
has been one of the most popular to explore, and is the one
we will be using.

Even though the extra dimension is infinite and gravity
is inherently five dimensional, RS showed that the
Newtonian potential of a particle on the brane was indeed
the 4D 1=r potential. This result was backed up by more
complete analyses which confirmed that the graviton
propagator did indeed have the correct tensor structure,
and that the effect of the extra dimension was to introduce a
1=r3 correction to the gravitational potential [6]:
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An elegant description of nonperturbative gravity on the
brane was provided by Shiromizu, Maeda and Sasaki [7].
Using a Gauss-Codazzi approach, they projected the 5D
Einstein equations onto the brane to obtain the effective 4D
field equations:

G
� � �4g
� � 8GNT
� � �2S
� � E
�: (2)

Here, �4 is a residual cosmological constant on the brane
and represents the mismatch between the brane tension and
the negative bulk cosmological constant. T
� is the usual
energy-momentum tensor of matter on the brane, and
S
��T

2� consists of squares of T
� and thus is a local,
high energy correction term. E
� consists of the projection
of the bulk Weyl tensor onto the brane, and is nonlocal
from the brane point of view. It is important to emphasize
that since E
� is not given in terms of data on the brane, the
system of equations (2) is not closed, in general.

The generalization of the Friedmann-Robertson-Walker
Universe that follows from Eq. (2) has been well explored
[8]. The S
� term contributes a high energy correction term
to the Friedmann equation, which is relevant only in the
very early Universe, and the Weyl term contributes a ‘‘dark
radiation’’ term. Hence, although all the implications may
not have been calculated, braneworld cosmology for the
pure RS scenario is pretty well understood. The situation
for braneworld black holes (BBHs) is somewhat more
complicated however, and there is no longer a simple
solution [9,10]. Black holes are fascinating objects, and
provide a potential testing ground for general relativity. It
is therefore important to investigate braneworld general-
izations of the Schwarzschild solution, and the possible
observational signatures that could result.

The theory of gravitational lensing has been mostly
developed in the weak field approximation, where it has
been successful in explaining all observations [11].
However, one of the most spectacular consequences of
the strong gravitational field surrounding a black hole is
the large bending of light that can result for a light ray
passing through this region. The study of strong gravita-
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tional lensing was resurrected recently by Virbhadra and
Ellis [12], who studied lensing by the galactic supermas-
sive black hole, in an asymptotically flat background.
Frittelli, Kling and Newman [13] found an exact lens
equation without reference to a background metric and
compared their results with those of Virbhadra and Ellis.
In [14] Bozza et al. first defined a strong field limit and
used it to investigate Schwarzschild black hole lensing
analytically. This technique has been applied to Reissner-
Nordström (RN) black holes [15] and the Gibbons-Maeda-
Garfinkle-Horowitz-Strominger [16] charged black hole of
heterotic string theory [17], and was generalized to an
arbitrary static, spherically symmetric metric by Bozza
[18]. In this paper we utilize this method to investigate
the gravitational lensing properties of a couple of candidate
BBH metrics.

Similar studies have been performed for a BBH with the
induced geometry of the 5D Schwarzschild solution: gtt �
g�1
rr � 1� r2h=r

2. Both weak field lensing [19] and strong
field lensing [20] for this geometry have been studied.
However, this metric is only appropriate for black holes
with a horizon size smaller than the AdS length scale of the
extra dimension: rh < l & 0:1 mm. Hence, this metric is
not appropriate for investigating the phenomenology of
massive astrophysical black holes.
II. BRANEWORLD BLACK HOLES

The general static, spherically symmetric metric on the
brane can be written as

ds2 � g
�dx
dx� � A2�r�dt2 � B2�r�dr2 � C2�r�d�2
II:

(3)

Clearly, this is not in the simplest gauge, as we can still
choose our radial coordinate, r, quite arbitrarily. The vac-
uum brane field equations following from Eq. (2) (with �4

set equal to zero) are

G
� � E
�: (4)

The solution of these equations requires the input of E
�
from the full 5D solution. In the absence of such a solution,
an assumption about E
� or g
� must be made in order to
close the system of equations.

Several special solutions, making various assumptions
about g
�, have been presented in the literature. The first
attempt at a BBH solution was the so-called black string
solution of Chamblin et al. [9], which consists simply of
the 4D Schwarzschild solution ‘‘stacked’’ into the extra
dimension. Unfortunately, this solution has a singular AdS
horizon and is unstable to classical perturbations [21]. The
assumption A2 � 1=B2 leads to the tidal Reissner-
Nordström solution of Dadhich et al. [22]:
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Unlike the standard Reissner-Nordström solution, the ‘‘ti-
dal charge’’ parameter Q can take both positive and nega-
tive values. Indeed, negative Q is the more natural since
intuitively we would expect the tidal charge to strengthen
the gravitational field, as it arises from the source mass M
on the brane (see [22] for further discussion). This metric
has the correct 5D ( � 1=r2) short distance behavior and so
could be a good approximation in the strong field regime
for small black holes. Solutions have also been found
which assume a given form for the time or radial part of
the metric [23,24]. Visser and Wiltshire [25] presented a
more general method which generated an exact solution for
a given radial metric form.

In all the above cases the radial gauge C � rwas chosen
[although [25] did comment on how to use their method
when C�r� was not monotonic]. However, there are good
reasons to believe that the area A of the 2-spheres might
not be monotonic. The second derivative of the area radius
C (i.e. the radial function defined by

���������������
A=4

p
) is given by

C00

C
� �

B2

2
�Gtt �G

r
r� �

C0

C

�
B0

B
�
A0

A

�
: (6)

Hence for the area function to be guaranteed to be mono-
tonic we must have Gtt �Grr � 0, which is equivalent to
the dominant energy condition. While this is generally
satisfied in standard Einstein gravity, it need not be in the
case of extra dimensions, and so it is important for the
exploration of BBHs that we do not make the restrictive
ansatz C � r. (For a discussion of nonmonotonic radial
functions in the context of braneworld wormhole solutions,
see [26].)

An alternative to making guesses for the metric func-
tions g
� is instead to make an assumption about the Weyl
term E
�. Although E
� is a complete unknown from the
brane point of view, the symmetry of the problem allows it
to be decomposed as [27]

E 
� � U

�
u
u� �

1

3
h
�

�
��

�
r
r� �

1

3
h
�

�
; (7)

where u
 is a unit time vector and r
 is a unit radial vector.
Recently, we proposed a pragmatic approach to BBHs, in
which an equation of state for the Weyl term is assumed
[28] (see also [29]):

� �
�� 1

2
U: (8)

Of course, a priori there is no reason to suppose that the
Weyl term should obey an equation of state. However, it is
quite possible that it might have certain asymptotic equa-
tions of state which may be useful as near-horizon or long-
range approximations to the (as yet unknown) exact solu-
-2
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FIG. 1. Gravitational lensing diagram.
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tion. Using a dynamical systems approach, the system of
equations (4) was solved, and the behavior of the solutions
classified according to the equation of state parameter �. It
was found that asymptotically flat solutions require an
equation of state � < 0, and for j�j> 3 the BBH solutions
have a singular horizon, and are allowed both with and
without turning points in the area function.

Using holography considerations, it was argued that we
might expect equations of state with large � to be relevant
near the horizon. Taking this reasoning to its extreme, we
proposed as a ‘‘working’’ metric for the near-horizon
geometry the U � 0 (i.e. � � 
1) solution:

ds2�
�r�rh�

2

�r�rt�2
dt2�

�r�rt�
4

r4
dr2�

�r�rt�
4

r2
d�2

II; (9)

which has a turning point in the area function at r � rt, and
the horizon at r � rh is singular (except for the special case
rh � rt, which is just the standard Schwarzschild solution
in isotropic coordinates). This metric has appeared in the
area gauge as [23]

ds2 �
�
�1� !�

��������������������
1�

2GM
R

s
� !

�
2
dt2

�

�
1�

2GM
R

�
�1
dR2 � R2d�2

II; (10)

where R � �r� rt�2=r, GM � 2rt and GM! � rh � rt.
For ! > 0 this gauge is valid in the whole horizon exterior,
however for ! < 0 the turning point rt is outside the
horizon rh and so the area gauge is inappropriate.

Although the choice of metric (9) is somewhat arbitrary,
we believe that the horizon is likely to be singular and that
a turning point in the area function is also likely, and this
metric exhibits both these features. It has the added advan-
tage of being analytic, and so seems a good choice for
exploring these radical differences to the standard
Schwarzschild geometry. In this paper we investigate the
gravitational lensing properties of the metrics (5)1 and (9),
to see how braneworld effects might manifest themselves
in observations of black holes.

It is important to emphasize that we envisage these only
as possible near-horizon asymptotes of a more general
metric, which has yet to be found. Neither metric satisfies
the long distance 1=r3 correction to the gravitational po-
tential, and both would be constrained in the weak field by
the parametrized post-Newtonian observations.
III. GRAVITATIONAL LENSING

The lensing setup is shown in Fig. 1. Light emitted by
the source S is deflected by the lens L and reaches the
observerO at an angle $ to the optic axisOL, instead of %.
The spacetime, described by the metric (3) centered on L,
1In the context of the equation of state, (5) has � � �3.

064004
is asymptotically flat, and both observer and source are
located in the flat region. By simple trigonometry, the lens
equation can be written down:

tan% � tan$�
Dls
Dos

�tan$� tan�(� $�: (11)

From the null geodesic equations it is straightforward to
show that the angular deflection of light as a function of
radial distance from the lens is

d)
dr

�
B

C
�����������������
C2

u2A2
� 1

q : (12)

By conservation of angular momentum, the impact pa-
rameter u is given by

u �
C0

A0
; (13)

where the subscript 0 indicates that the function is eval-
uated at the closest approach distance r0. Hence, the de-
flection angle is given by

(�r0� � I�r0� �  �
Z 1

r0

2B
C

�
C2

C2
0

A20
A2

� 1
�
�1=2

dr� :

(14)

Equations (11) and (14) are the basic equations of gravi-
tational lensing. In principle, the deflection angle ( for a
given metric can be calculated from Eq. (14). This can then
be plugged into the lens equation (11), and the image
position $ for a given source position % can be found.
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The theory of gravitational lensing has been developed
mostly in the weak field limit, where several simplifying
assumptions can be made. The angles in Eq. (11) are taken
to be small, so that tanx can be replaced by x for x � %, $,
(, and the integrand in Eq. (14) is expanded to first order in
the gravitational potential. For the Schwarzschild geome-
try, and setting % � 0, this leads to the well-known result:

$E �

����������������������������
4GM

c2
Dls
DosDol

s
; (15)

where $E is the Einstein radius. In this formulation, general
relativity has been successful in explaining all observations
(see [11] for detailed reviews). However, it is important
that gravitational lensing is not conceived of as a purely
weak field phenomenon. Indeed, gravitational lensing in
strong fields is one of the most promising tools for testing
general relativity in its full, nonlinear form.

A. Strong field limit

As the impact parameter u of a light ray decreases, the
deflection angle ( increases as shown in Fig. 2. At some
point, the deflection angle exceeds 2 and the photon
performs a complete loop around the black hole before
emerging. The images thus formed are termed ‘‘relativistic
images’’ and a theoretically infinite number of such images
are formed on either side of the lens, corresponding to
successive winding numbers around the black hole. The
photon sphere is the radius rp at which a photon can
unstably orbit the black hole, and is defined as the largest
solution to the equation

A0�r�
A�r�

�
C0�r�
C�r�

: (16)

As r0 approaches rp, with corresponding impact parameter
r h r p
r 0

2 Π

4 Π

α

FIG. 2. General behavior of the deflection angle as a function
of r0. As r0 decreases, ( increases, and each time it reaches a
multiple of 2 the photon completes a loop around the black
hole.
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up �
Cp
Ap
; (17)

the deflection angle diverges and for r0 < rp the photon is
captured by the black hole.

Bozza [18] has shown that this divergence is logarithmic
for all spherically symmetric black hole metrics of the
form (3). Hence the deflection angle can be expanded close
to the divergence in the form

(�r0� � �a ln
�
r0
rp

� 1
�
� b�O�r0 � rp�; (18)

or in terms of the angular position of the image, $ �
u=Dol,

(�$� � � �a ln
�
$Dol
up

� 1
�
� �b�O�u� up�; (19)

where the strong field limit (SFL) coefficients �a and �b
depend on the metric functions evaluated at rp. This for-
mula allows a simple, analytic description of the relativis-
tic images and their properties, rather than having to use
the exact deflection angle calculated numerically from
Eq. (14).

Equation (19) can be derived from Eq. (14) by splitting
the integral into a divergent and nondivergent piece, and
performing some expansions. Defining the new variable

z �
A2 � A20
1� A20

; (20)

the integral in Eq. (14) becomes

I�r0� �
Z 1

0
R�z; r0�f�z; r0�dz; (21)

where

R�z; r0� �
BC0

C2A0
�1� A20�; (22)

f�z; r0� �
�
A20 � ��1� A20�z� A

2
0
C2
0

C2

�
�1=2

: (23)

The function R�z; r0� is regular for all values of z and r0,
but f�z; r0� diverges for z! 0. Expanding the argument of
the square root in f�z; r0� to second order in z:

f�z; r0� � f0�z; r0� � �m�r0�z� n�r0�z2��1=2; (24)

m�r0� �
A0�1� A20�

A00

�
C0
0

C0
�
A00
A0

�
; (25)

n�r0� �
�1� A20�

2

4A0A
0
0C0

�
3C0

0

�
1�

A0C
0
0

A00C0

�
�
A0
A00

�
C00
0 �

C0
0A

00
0

A00

��
;

(26)

it is clear why the deflection angle diverges logarithmically
for r0 � rp: with rp given by Eq. (16), m�rp� vanishes.
-4
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FIG. 3. SFL coefficients for the U � 0 metric (31), as func-
tions of rh. The standard Schwarzschild case is given by rh �
1=4.
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Hence for r0 � rp, f0 / 1=z and the integral (21) diverges
logarithmically.

Proceeding to split the integral (21) into a divergent and
a regular piece, and performing further expansions (see
[18] for the detailed derivation2), the SFL coefficients are
obtained:

�a �
R�0; rp�

2
������npp ; (27)

�b � �a ln
2np
A2p

� bR � ; (28)

where

np � n�rp� �
�1� A2p�

2

4CpA03p
�C00
pA

0
p � C

0
pA

00
p� (29)

and

bR �
Z 1

0
�R�z; rp�f�z; rp� � R�0; rp�f0�z; rp�dz; (30)

is the integral I�rp� with the divergence subtracted.

IV. BRANEWORLD BLACK HOLE LENSING

In this section we apply the method outlined in the
previous section to calculate the deflection angle in the
strong field limit for the candidate BBH metrics (5) and (9)
discussed in Sec. II.

A. U � 0 metric

TheU � 0 metric (9) has a number of key differences to
the standard Schwarzschild geometry; the horizon is sin-
gular, and the area function can have a turning point that
lies either inside or outside the horizon. Another differ-
ence, due to the fact that gtt � g�1

rr , is that the Arnowitt-
Deser-Misner (ADM) mass and gravitational mass (de-
fined by gtt) are no longer the same.

Normalizing the distances to 4rt [which corresponds to a
distance 2GM where M is the ADM mass—see Eq. (10)],
the metric functions are

A2�r� �
�r� rh�

2

�r� 1=4�2
; B2�r� �

�r� 1=4�4

r4
;

C2�r� �
�r� 1=4�4

r2
:

(31)

The radius of the photon sphere is given by

rp �
1

4
�1� 4rh �

��������������������������������
1� 4rh � 16r2h

q
�: (32)

The SFL coefficients �a, �b and up, calculated from
2Note: The expressions in [18] look slightly different to ours
since we define the metric as g
� � diag�A2;�B2;�C2� as
opposed to g
� � diag�A;�B;�C� in [18].

064004
Eqs. (27), (28), and (17), are shown in Fig. 3. It can be
seen that the biggest deviation from standard
Schwarzschild lensing is for the minimum impact parame-
ter up. This is because as the horizon is shifted inwards/
outwards relative to the Schwarzschild case, the photon
sphere is pulled/pushed along with it.

We can check the accuracy of the SFL approximation by
comparing the exact deflection angle (exact calculated from
Eq. (14) with the SFL (SFL from Eq. (19). The outermost
relativistic image appears where ( ’ 2, which occurs for
an impact parameter u1 � up � x, where x� 0:003 de-
pends on rh. The discrepancy between (exact�u1� and
(SFL�u1� is less than 0.13% for all values of rh we consider.
Hence, the SFL of the deflection angle is very accurate and
can be reliably used to obtain accurate results for the
properties of the relativistic images.

B. Tidal Reissner-Nordström metric

The tidal RN metric (5) has the same properties as the
standard RN geometry for q > 0: there are two horizons,
both of which lie within the Schwarzschild horizon, and the
singularity at r � 0 is timelike. However, we can now have
q < 0 in which case there is just one horizon, lying outside
Schwarzschild, and the central singularity is spacelike, as
in the Schwarzschild case. Normalizing the distances to
2GM, with q � Q=�2GM�2, the metric (5) becomes

A2�r� � 1�
1

r
�
q

r2
; B2�r� �

�
1�

1

r
�
q

r2

�
�1
;

C2�r� � r2:

(33)

The radius of the photon sphere is given by

rp �
1

4
�3�

�����������������
9� 32q

p
�: (34)

The SFL coefficients are shown in Fig. 4. These results
reproduce those of Eiroa et al. [15] for q > 0 (see also
[18]), but we have extended the results to negative q. We
-5
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FIG. 4. SFL coefficients for the tidal Reissner-Nordström met-
ric (33), as functions of q. The standard Schwarzschild case
given by q � 0.
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emphasize that there is no electric charge present for the
tidal RN solution—q is a tidal charge parameter arising
from the bulk Weyl tensor.

Again, comparing (exact with (SFL for an impact pa-
rameter corresponding to the outermost image, it is found
that the discrepancy is less than 0.5% for the values of q
considered here.
V. OBSERVABLES

In Sec. III A it was shown how to calculate the deflection
angle in the strong field limit and in Sec. IV this method
was applied to the candidate BBH metrics. In this section
we put the SFL of the deflection angle into the lens
equation to obtain analytic formulas for the properties of
the relativistic images in terms of the SFL coefficients �a, �b
and up.

As expected, the relativistic images formed by light rays
winding around the black hole are greatly demagnified
compared to the standard weak field images, and are
most prominent when the source, lens and observer are
highly aligned [12]. Hence, we restrict our attention to the
case where % and $ are small (see [30] for the general case
where this assumption is relaxed). Although we cannot
assume ( is small, if a light ray is going to reach the
observer after winding around the black hole, ( must be
very close to a multiple of 2. Writing ( � 2n�
�(n; n 2 Z; the lens equation (11) becomes

% � $�
Dls
Dos

�(n: (35)

First, we have to find the values $0n such that (�$0n� �
2n. With ( given by Eq. (19) we find

$0n �
up
Dol

�1� en�; (36)

where
064004
en � e
� �b�2n�= �a: (37)

Thus the position of the nth relativistic image can be
approximated by [18]

$n � $0n �
upen�%� $0n�Dos

�aDlsDol
; (38)

where the correction to $0n is much smaller than $0n.
Approximating the position of the images by $0n, the mag-
nification of the nth relativistic image is given by


n �
1

�%=$�@%=@$









$0n’
u2pen�1� en�Dos

�a%D2
olDls

: (39)

Equations (38) and (39) relate the position and magnifica-
tion of the relativistic images to the SFL coefficients. We
now focus on the simplest situation, where only the outer-
most image $1 is resolved as a single image, with the
remaining images packed together at $1 � up=Dol.
Therefore we define the observables

s � $1 � $1; (40)

f �

1P

1
n�2
n

; (41)

which are, respectively, the separation between the outer-
most image and the others, and the flux ratio between the
outermost image and all the others. It is found that these
simplify to [18]

s � $1e
� �b�2�= �a; (42)

f � e2= �a: (43)

These equations are easily inverted to give �a, �b and so if an
observation were able to measure s, f and $1 the SFL
coefficients could be determined and the nature of the
lensing black hole identified.

A. An example: The galactic supermassive black hole

It is believed that the center of our galaxy harbors a
black hole of massM � 2:8� 106M� [31]. Taking Dol �
8:5 kpc, Virbhadra and Ellis [12] studied the lensing of a
background source by this black hole and found that the
relativistic images are formed at about 17 
arc sec from
the optic axis.

In Table I we estimate the observables $1, s, f defined in
the previous section for the U � 0 and tidal RN BBH
metrics, as well as the standard Schwarzschild metric. It
is clear that the easiest observable to resolve is $1, since a
microarcsecond resolution is in principle attainable by
VLBI projects such as MAXIM [32] and ARISE [33].
However, the disturbances inherent in such observations
would make the identification of the faint relativistic im-
ages very difficult, as discussed in [12].
-6



TABLE I. Estimates for the lensing observables for the central black hole of our galaxy. $1 and s are defined in Sec. V, and fm �
2:5 logf is f converted to magnitudes.

U � 0 Tidal RN
Schwarzschild rh � 0:1 rh � 0:2 rh � 0:3 rh � 0:4 q � �0:2 q � �0:1 q � 0:1 q � 0:2

$1 (
arc sec) 16.87 13.24 15.65 18.11 20.62 18.85 17.92 15.64 14.07
s (
arc sec) 0.0211 0.0303 0.0235 0.0192 0.0164 0.0150 0.0173 0.0286 0.0502
fm (mags.) 6.82 6.13 6.61 7.01 7.32 7.26 7.08 6.44 5.70
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If a measurement of $1 was made, it would be imme-
diately capable of distinguishing between Schwarzschild
and other types of geometry. However, to determine all the
SFL coefficients and thus unambiguously identify the na-
ture of the lensing black hole, it is necessary to also
measure s and f. This would require the resolution of
two extremely faint images separated by �0:02 
arc sec.
Such an observation in a realistic astrophysical environ-
ment is certainly not feasible in the near future, although if
such an observation were ever possible, it would provide an
excellent test of gravity in a strong field.

VI. CONCLUSIONS

Gravitational lensing in strong fields provides a poten-
tially powerful tool for testing general relativity, and the
strong field limit provides a useful framework for compar-
ing lensing by different black hole metrics. Of the possible
alternatives to standard general relativity, braneworld grav-
ity is a very interesting model to explore given the current
interest in theories with extra dimensions.

In this paper we have investigated strong field lensing by
potential near-horizon BBH metrics. Although the correct
BBH metric is unknown and much theoretical work re-
mains to be done, this study is a useful first step to explore
the possible effects that braneworlds could have on the
spacetime surrounding a black hole.

Table I clearly shows that BBHs could have significantly
different observational signatures than the standard
Schwarzschild black hole. Although the resolutions re-
quired for these observations are beyond reach of current
064004
observational facilities, this encourages the investigation of
more realistically observable situations. An interesting
possibility in this direction is the study of the accretion
disks surrounding black holes.

The observed disk emission depends on several factors
that could get modified by braneworld effects. A key factor
is the radius of the innermost stable circular orbit, since
emitting material at this radius sets the maximum tempera-
ture for the disk emission [34]. Just as the radius of the
photon sphere is shifted inwards or outwards relative to the
Schwarzschild case for a BBH, so too is the radius of the
innermost stable orbit for matter [28]. In addition, the
observed disk emission, and, in particular, the iron fluores-
cence line profile, is affected by relativistic effects [35]
(doppler shift, gravitational redshift), which would be
modified if the metric in the emitting region was not that
of standard general relativity, but was a modified brane-
world metric. Also, the light rays are gravitationally lensed
by the central black hole as they escape the disk, and we
have shown here that such lensing can be different from the
Schwarzschild case for BBHs. In light of the results found
here, it is not unreasonable to anticipate that these effects
could result in distinctive observational signatures for ac-
cretion disks. This work is in progress.
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