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Bayesian model selection and isocurvature perturbations
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Present cosmological data are well explained assuming purely adiabatic perturbations, but an admixture
of isocurvature perturbations is also permitted. We use a Bayesian framework to compare the performance
of cosmological models including isocurvature modes with the purely adiabatic case; this framework
automatically and consistently penalizes models which use more parameters to fit the data. We compute
the Bayesian evidence for fits to a data set comprised of WMAP and other microwave anisotropy data, the
galaxy power spectrum from 2dFGRS and SDSS, and Type Ia supernovae luminosity distances. We find
that Bayesian model selection favors the purely adiabatic models, but so far only at low significance.
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1The difference in Bayesian Information Criterion can be used
as a crude approximation to ln�Bayes Factor�, but the existence
of parameter degeneracies in cosmological data fitting are likely
to violate the conditions for the validity of the approximation.
I. INTRODUCTION

Following recent developments in observational cos-
mology, particularly observations by the Wilkinson
Microwave Anisotropy Probe (WMAP) [1], there exist
compelling reasons to talk about a Standard
Cosmological Model based on the �CDM paradigm
seeded with purely adiabatic perturbations. In addition,
there have been many attempts to analyze more general
models featuring additional physics, either to constrain
such processes or in the hope of discovering some trace
effects in the data. A case of particular interest is the
possible addition of an admixture of isocurvature pertur-
bations to the adiabatic ones [2,3] which has been studied
in the post-WMAP era by many authors [4–11].

The bulk of the investigations so far have as a starting
point chosen a particular set of parameters to define the
cosmological model under discussion, and then attempted
to constrain those parameters using observations, a process
known as parameter fitting. Based on such analyses, many
parameters are determined to a high degree of accuracy.
Much less attention has been directed at the higher-level
inference problem of allowing the data to decide the set of
parameters to be used, known as model comparison or
model selection [12,13], although such techniques have
been widely deployed outside of astrophysics. Recently,
one of us applied two model selection statistics, known as
the Akaike and Bayesian Information Criteria, to some
simple cosmological models [14], and showed that the
simplest model considered was the one favored by the
data. These criteria have recently been applied to models
with isocurvature perturbations by Parkinson et al. [9],
who concluded that the purely adiabatic model was
favored.

Those statistics are not however full implementations of
Bayesian inference, which appears to be the most appro-
priate framework for interpreting cosmological data. The
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correct model selection tool to use in that context is the
Bayesian evidence [12,13], which is the probability of the
model in light of the data (i.e., the average likelihood over
the prior distribution). It has been deployed in cosmologi-
cal contexts by several authors [15], and the ratio of
evidences between two models is also known as the
Bayes Factor [16].1 The Bayesian evidence can be com-
bined with prior probabilities for different models if de-
sired, but even if the prior probabilities are assumed equal,
the evidence still automatically encodes a preference for
simpler models, implementing Occam’s razor in a quanti-
tative manner.

Whenever one aims to decide whether or not a particular
parameter p should be fixed (for example at p � 0), one
should use model selection techniques. If one carries out
only a parameter-fitting exercise and then examines the
likelihood level at which p � 0 is excluded, such a com-
parison fails to account for the model dimensionality being
reduced by one at the point p � 0, and hence draws con-
clusions inconsistent with Bayesian inference. This typi-
cally overestimates the significance at which the parameter
p is needed. An example is spectral index running, which
parameter fitting favors at a modest (albeit unconvincing)
confidence level [1], but which is disfavored by model
selection statistics [14].

In this paper we use the Bayesian evidence to compare
isocurvature and adiabatic models in light of current data.
We will closely follow the notation of Beltrán et al. [10],
who recently carried out a parameter-fitting analysis of
isocurvature models, and we use the same data sets. We
follow the notation of that paper and provide only a brief
summary in this article.
-1  2005 The American Physical Society
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II. BAYESIAN EVIDENCE

A. Theoretical basis

The Bayesian evidence is the average likelihood of a
model over its prior parameter space, namely

E �
Z

L���pr���d�; (1)

where � is the parameter vector defining the model, pr���
the normalized priors on those parameters (typically taken
to be top-hat distributions over some range), and L��� is
the likelihood. In essence, it asks the question: If I consider
the possible model parameters I was allowing before I
knew about this data, on average how well did they fit
the data? Generally speaking, models with fewer parame-
ters tend to be more predictive and, provided that for some
parameter choices they fit the data well, then the average
likelihood can be expected to be higher. On the other hand,
a simple model which cannot fit the data for any parameter
choices will not generate a good likelihood. The Bayesian
evidence therefore sets up the desired tension between
model simplicity and ability to explain the data.

Models are ranked in order of their Bayesian evidence,
usually using its logarithm. The overall normalization is
irrelevant. As the evidence is the (unnormalized) probabil-
ity of the model, if two models are being compared, the
odds of the one with the lower evidence is 1=�1�
exp�
 lnE��. What constitutes a significant difference is
to some extent a matter of personal taste, but a useful guide
is given by Jeffreys [12] who rates 
 lnE< 1 as ‘‘not worth
more than a bare mention,’’ 1< 
 lnE< 2:5 as ‘‘substan-
tial,’’ 2:5< 
 lnE< 5 ‘‘strong‘‘ to ‘‘very strong’’ and 5<

 lnE as ‘‘decisive,’’ in each case the decision being
against the model with the smaller evidence. Note that a
difference 
 lnE of 2.5 corresponds to odds of 1 in about
13, and 
 lnE of 5 to odds of 1 in 150.

A significant, but unavoidable, disadvantage of the use
of the evidence is that it depends on the prior ranges chosen
for the parameters. For instance, if one doubles the range of
one parameter by allowing it to vary in a region where the
likelihood is negligibly small, then the evidence will half.
Indeed, one can make any model disfavored simply by
extending its prior range indefinitely in a direction where
there is no hope of fitting the data. From a Bayesian point
of view this is unsurprising; of course your belief in a
model should be influenced by what you thought of it
before the data came along, and the Bayesian analysis
has the virtue of forcing you to make your assumptions
explicit.

However, the prior width is not as crucial as one might
naively expect. The main reason is that the likelihood is
typically falling off exponentially away from the best fit,
while the parameter volume is growing only as a polyno-
mial function. For example, consider a one-dimensional
toy model for which the likelihood is given by
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L �x� � L0 exp
�
�

�x�
�2

2

�
; (2)

and consider two models: model A is x � 0 and model B is
x � 0 with a top-hat prior 0< x< a. In the case 
 � 1, a
conventional 1-� nondetection, the evidence would be
unable to strongly distinguish between the models
(j
 lnEj< 2:5) for up to a� 50. In the case 
 � 5, a
conventional 5-� detection, the evidence would prefer
model B for all a & 5� 104. In other words, for reason-
able prior ranges the evidence will robustly pick up the
correct model. Its main advantage is that it is a quantitative
measure with clear interpretation within Bayesian statis-
tics, and can be applied in cases where the usual frequentist
arguments do not provide us with definite answers.
Typically, Bayesian analysis contradicts the frequentist
results whenever the latter accepts a parameter in light of
a marginally better 
2 value. If this improvement is not
significant, the increase of the volume of the parameter
space will penalize the addition of the new parameter and
thus decrease the evidence of the extended model.

Generally the evidence is not reparametrization invari-
ant, in the sense that the choice of a flat prior in one
parametrization will probably not correspond to a flat prior
under another parametrization. The choice of parametriza-
tion is a matter of personal preference, though obviously
truly robust model selection results should be preserved
under reasonable changes in parametrization. In the case of
isocurvature perturbations there are different, equally plau-
sible, choices of parametrization, in particular, geared to
dealing with the problem of the cross-correlation angle
becoming unconstrained as the isocurvature mode ampli-
tude becomes small [10,11]. For illustration we will com-
pare the results obtained under two different
parametrization choices.

B. Numerical implementation

The evidence for a given model can be computed by a
Markov Chain Monte Carlo method. However it cannot be
directly calculated from chains used in parameter estima-
tion (for instance from the program COSMOMC [17]), be-
cause those chains are sampled from the posterior
distribution, which is peaked around the maximum like-
lihood, and do not carry the necessary information on the
likelihood far from the maximum. Equally, one cannot
simply sample from the prior distribution, because the
dominant contribution from the high-likelihood regions
will not be properly sampled. Consequently, a hybrid
technique is required, a useful method being thermody-
namic integration [18,19].

Thermodynamic integration alters the sampling of a
Markov chain by introducing a parameter �, thought of
as an inverse temperature, with the acceptance rate gov-
erned by the likelihood raised to the power �. As � is
varied from zero to one, this interpolates between sampling
-2
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from the prior and the posterior distributions. Defining

E��� �
Z

L���� pr���d�; (3)

it can be shown that

lnE � ln
E�1�
E�0�

�
Z 1

0

d lnE
d�

d� �
Z 1

0
hlnLi�d�; (4)

where

hlnLi� �

R
lnLL�pr���d�R
L�pr���d�

(5)

is the average of lnL over the distribution at temperature
1=�. That the priors in Eq. (1) must be normalized implies
that E�0� equals one, though the prior normalization any-
way cancels out in the integrand Eq. (5).

Previous work in cosmology has typically evaluated the
evidence during the burn-in phase of a chain to be used for
parameter estimation. In this process, the temperature is
slowly cooled from � � 0 to � � 1 to facilitate the relaxa-
tion of the chain into its stationary distribution and those
chain elements are used for evidence computation; they are
then discarded and the remaining elements, all sampled at
� � 1, are used for parameter estimation. This method is
ideal for complex inference problems with dimensionality
d � 1 and multimodal likelihood distributions, where a
slow burn-in phase is necessary to explore the posterior in
an unbiased manner and thus the evidence calculation
comes ‘‘for free.’’ However, in a typical cosmological
problem the likelihood surface is considerably simpler,
arguably unimodal, and the number of samples required
for a reliable burn-in is much smaller than the number of
samples needed for an accurate evidence estimation.
Therefore, we choose a different approach in which we
heat the chain, using the endpoint of a parameter estima-
tion run as the starting point. Since the volume of parame-
ter space is larger at higher temperatures it should be much
easier to ensure that the chain is stationary at each tem-
perature step during heating rather than cooling. We im-
plemented two different heating schedules:
(i) C
ontinuous temperature change.—We let the in-
verse sampling temperature change continuously
at each step as

��n� � �1� ��n; (6)

where n is the step number. The single sample taken
at that temperature can be viewed as an unbiased
(although noisy) estimate of hlnLi�. This continu-
ous approach obviates the problem of deciding the
number of steps per position, transferring it to the
step size. When the algorithm decides to stop, the
integral is closed to � � 0 in the last step. The
stopping criterion is that the closure of the integral
by the last step would change lnE by less than a
certain threshold, �stop, even for the most extreme
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likelihood encountered. The choices of � and �stop
determine the accuracy and speed of the evidence
calculator, and optimum values must be determined
empirically. After trying various possibilities we
settled for � � 5� 10�5 and �stop � 0:001. We
have tested that decreasing either � or �stop further
does not affect our results.
(ii) S
tepwise temperature change.—The integrand of
Eq. (4) is first estimated at � � 1 and 0, then at
intermediate temperatures given by

�n �
1

qn
; (7)

(q is typically 1.5–2 and n an increasing integer).
The thermodynamic integral is calculated by the
trapezoid rule after each additional point is added.
The points are added until the integral converges to
a user-specified stopping accuracy �stop. At each
temperature the integral is calculated by making a
short burn-in at that temperature (typically 400
samples, since the chain must already be roughly
burned in from the previous step) and then calculat-
ing hlnLi� from a further number (typically 1000)
of accepted samples. This approach has the disad-
vantage that extra samples are needed for burn-in at
each temperature and that there might be system-
atics associated with stepwise temperature change.
However, it is less sensitive to the quality of covari-
ance matrix as a poorer covariance matrix simply
results in more samples being taken to get enough
accepted samples (note that we cannot do the same
for the continuous scheme without biasing the re-
sult, unless one is willing to burn-in at each ‘‘con-
tinuous’’ temperature change step).
Additionally, we modify the proposal function so that its
width scales with ��1 (up to a certain width), which
ensures that at high temperatures the chain is sampling
randomly from the prior, rather than random walking with
the step size corresponding to the � � 1 posterior.

These two methods have been extensively tested to give
results that are consistent and accurate to within a unit of
lnE for a single run. The final numbers for all models were
calculated using the continuous temperature change
method. Additionally we have performed a comparison
with an analytic approximation to the posterior and got
results that are also consistent to better than one unit of
lnE.

In all cases we find that the number of samples required
to accurately estimate the evidence and avoid systematics
associated with covariance matrices, proposal widths and
similar is unexpectedly large; an order of magnitude larger
than what is required for a simple parameter estimation.
This makes the computation a challenging task as it is
limited by the speed of the likelihood evaluations which
require generation of the model power spectra. This also
suggests that the uncertainties on evidence values already
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found in the literature may be underestimated, though we
note that the high quality of the WMAP data makes this
task considerably more difficult than it was in the pre-
WMAP era. Further investigation into evidence estimation
methods is clearly warranted and will be a focus of a
forthcoming paper.
III. EVIDENCE FOR ISOCURVATURE MODELS

Our principal aim is to compare the evidence of isocur-
vature models with purely adiabatic ones. We will follow
the notation of Beltrán et al. [10]. In general there are four
types of isocurvature modes [3] — cold dark matter iso-
curvature (CDI), baryon isocurvature (BI), neutrino iso-
curvature density (NID), and neutrino isocurvature
velocity (NIV)—but the first two are observationally in-
distinguishable [5] so we ignore the baryon isocurvature
case. These modes can exist in any combination, and with
correlations both amongst themselves and with the adia-
batic modes. We will only allow a single type of isocurva-
ture mode in any model, though we will allow a general
spectral index both for the isocurvature modes and for their
correlation with the adiabatic ones.

The flat prior ranges for all parameters are given in
Table I. We consider two adiabatic models. AD-HZ is the
simplest model giving a good fit to the data, with a
Harrison-Zel’dovich spectrum and five variable parame-
ters. We also computed the evidence for an extended
adiabatic model AD-ns in which we let ns vary.

For each isocurvature model there are four extra parame-
ters. As in Ref. [10] we parametrize the contribution to the
temperature and polarization angular power spectra from
the adiabatic, isocurvature and correlation amplitudes at
the pivot scale (k0 � 0:05 Mpc�1) by � and � so that

Cl � �1� ��Cad
l � �Ciso

l � 2�
��������������������
��1� ��

p
Ccor
l : (8)

The parameter �cor is related to the spectral tilt of the
TABLE I. The parameters used in the models. The sound
horizon � was used in place of the Hubble parameter. For the
AD-HZ model ns was fixed to 1 and niso, �cor, � and � were
fixed to 0. In the AD-ns model, ns also varies. Every isocurvature
model holds the same priors for the whole set of parameters.

Parameter Prior range Model

!b (0.018,0.032) AD-HZ,AD-ns,ISO
!dm (0.04,0.16) AD-HZ,AD-ns,ISO
� (0.98,1.10) AD-HZ,AD-ns,ISO
� (0,0.5) AD-HZ,AD-ns,ISO
ln
1010Rrad� (2.6,4.2) AD-HZ,AD-ns,ISO
ns (0.8,1.2) AD-ns,ISO
niso (0,3) ISO
�cor ��0:14; 0:4� ISO����
�

p
��1; 1� ISO

� ��1; 1� ISO
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correlation mode, ncor, and its boundaries are fixed by the
pivot scale and the kmin � 4� 10�5 Mpc�1 and kmax �
0:5 Mpc�1 scales used for the analysis. It is defined as

�cor � ncor= lnj�j�1: (9)

Thus the priors on the first seven parameters are theoreti-
cally motivated, whereas the priors on the last three are
automatically set by the model. Throughout the analysis
the equation of state parameter of the dark energy was set
to �1.

We have used the following data sets: cosmic microwave
anisotropy data from the WMAP satellite including
temperature-polarization cross-correlation [1], VSA [20],
CBI [21] and ACBAR [22], matter power spectrum data
from the two-degree field galaxy redshift survey (2dFGRS)
power spectrum [23] and from the Sloan Digital Sky
Survey [24], and the supernovae apparent magnitude-
redshift relation [25].

We ran 32 independent computations of the evidence for
each model. In all of them the stopping criterion was
satisfied after about 2:5� 105 steps, so the total number
of likelihood evaluations was approximately 107 per
model. The results, given as the logarithm of the evidence,
are described in Table II. We have expressed all the calcu-
lated evidence values relative to the AD-HZ model, as the
absolute value is just a particular of the likelihood code.
We see from the table that the evidences are calculated to
sufficient accuracy to draw conclusions, but that the com-
parison is rather inconclusive. First, the two adiabatic
models happen to produce the same evidence; as a further
consistency check, we also looked at an adiabatic model
with the prior range on ns doubled, and found that lnE fell
by 0.4, to be compared with the expected drop of ln2 that
would appear if the likelihood were insignificant through-
out the extended range. Second, by coincidence all three
isocurvature models have the same evidence, with 
 lnE
being 1.0 relative to AD-HZ in each case. According to the
Jeffreys’ scale this is just at the edge of being worthy of
attention.

As mentioned in Sec. II, these results are not reparamet-
rization invariant, since changing the basis of parameters
typically leads to a different choice of priors. Various
parametrizations have been used in the literature. For in-
stance, a change of pivot scale leads to an �ns �
TABLE II. Evidences for the four different models studied,
normalized to the AD-HZ evidence. The absolute value for that
model was lnE � �854:1.

Model ln (evidence)

AD-HZ 0:0� 0:1
AD-ns 0:0� 0:1
CDI �1:0� 0:2
NID �1:0� 0:2
NIV �1:0� 0:3
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TABLE III. Evidences for the four models using the second
parametrization, again normalized to the AD-HZ evidence.

Model ln (evidence)

AD-HZ 0:0� 0:1
CDI �1:0� 0:2
NID �2:0� 0:2
NIV �2:3� 0:2
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niso�-dependent rescaling of �, and to an ncor-dependent
rescaling of �. Even if the pivot scale is fixed, various
definitions of the amplitude parameters can be introduced.
The normalization of the isocurvature mode can be pa-
rametrized by the ratio of isocurvature to adiabatic primor-
dial fluctuations fiso 2 
0;1� [4] instead of the fraction of
isocurvature contribution to the total primordial spectrum
� 2 
0; 1� [7]. In this work, as in Ref. [10], we chose to
vary

����
�

p
2 
�1; 1� in order to avoid dealing with boundary

effects and to have a posterior distribution falling down to
zero on the two ends of the prior range. We could never-
theless instead have chosen a flat prior for �. Similarly, the
cross-correlation amplitude can be parametrized either by
the correlation angle � 2 
�1; 1�, as in Refs. [4,10], or by
the amplitude of the cross-correlation power spectrum
2�

��������������������
��1� ��

p
[6]. The advantage of the latter is that the

total power spectrum depends linearly on it, and so it is
well constrained by the data, while starting from a flat prior
on � we can get a flat posterior distribution if the preferred
model is purely adiabatic, so that the value of � does not
matter (this point is discussed in detail in Ref. [11] where a
third choice is also introduced). Finally, we defined the
parameter �cor in order to deal with a simple top-hat prior,
but we could decide to use instead to impose a flat
�-dependent prior directly on ncor.

To get a hint of the effect of reparametrization, we
recomputed the evidences using a second parameter basis:
instead of (

����
�

p
, �) we vary [�, 2�

��������������������
��1� ��

p
] with a flat

prior inside the two-dimensional ellipse in which these
parameters are defined, and instead of �cor we vary ncor
within the range 
�0:14 ln�j�j�1�; 0:4 ln�j�j�1��. Since the
prior on ncor is too loose when � is close to zero, we
imposed the additional prior over ncor 2 
�1; 1�.

The results are quoted in Table III, and show differences
from the ones that use the original parametrization. Even
though the difference is still not big enough to exclude any
isocurvature model, we conclude that, as mentioned in
063532
Sec. II, parametrization does matter for the evidence
calculation.
IV. CONCLUSIONS

We have carefully calculated the evidence for two adia-
batic models and three physically distinguishable isocur-
vature models using recent cosmic microwave background,
supernovae and large-scale structure data. We find very
similar evidences for all the models. For the first parame-
trization used, the odds of the isocurvature models com-
pared to the adiabatic ones are 1 in about 4. Using a second
parametrization of the isocurvature parameters we find the
odds for the neutrino cases drop to 1 in 10. Therefore, we
conclude that present data are unable to offer a clear
verdict for or against the inclusion of isocurvature degrees
of freedom. This conclusion is similar to that found by
Parkinson et al. [9] using the information criteria.
Although the extra parameters introduce extra complexity,
these models are still able to satisfactorily fit the present
data for a wide range of their parameters and thus the
evidence quantifies the common sense that one should
allow these models to be considered. We also showed the
relevance of the parametrization for evidence computation.

While the present comparison is inconclusive, a key
question for future data will be to select between the
adiabatic and isocurvature paradigms. Parameter estima-
tion analyses cannot do this, as even if the adiabatic model
is correct they can only impose limits on the isocurvature
parameters. The Bayesian model selection approach we
have described is the ideal tool to carry out such a
selection.
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