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Coupling quintessence to inflation in supergravity
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The evolution of the quintessence field during a phase of chaotic inflation is studied. The inflaton � and
the quintesssence field Q are described in a supergravity framework where the coupling between the
inflaton and quintessence is induced by nonrenormalizable operators suppressed by the Planck mass. We
show that the resulting quintessence potential during inflation possesses a time-dependent minimum
playing the role of an attractor. The presence of this attractor forces the quintessence field to be small
during inflation. These initial conditions are such that the quintessence field is on track now.
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I. INTRODUCTION

A host of recent cosmological observations, the anisot-
ropy of the cosmic microwave background (CMB) [1,2],
the large scale structures of the Universe [3], and type Ia
supernovae [4], indicate that the Universe has experienced
two stages of cosmic acceleration. The first one is the
inflationary era which occurred in the early Universe [5].
It is responsible for the almost flatness of the Universe and
primordial density fluctuations [6] (see also Ref. [7]). The
second one, which started in the recent past, leads to the
present acceleration of the expansion of the Universe.
Various explanations for this last phenomenon have been
proposed in the literature: a pure cosmological constant
[8], quintessence [9–15], k essence [16], modified gravity
theories [17], the Chaplygin gas [18], bulk viscosity [19],
or quantum cosmological effects [20]. In this paper, we
focus on the quintessence hypothesis. In this case, the two
phenomena described above are modeled as resulting from
the presence of two scalar fields whose energy densities
drive the acceleration of the expansion. The quintessence
hypothesis has been further investigated in Ref. [21]. In
particular, finding a natural candidate for the quintessence
field in the realm of high energy physics has been a major
goal for a lot of authors [12,13,15,22] as well as studying
some aspects of its interaction with the ‘‘rest of the world’’
[23]. Since, contrary to a cosmological constant, the quin-
tessence field can develop some inhomogeneities, the the-
ory of cosmological perturbations has also been studied in
detail [14,24] and has been used in order to constrain
various models observationally [25]. Of course, the pros-
pect of utilizing the fact that the quintessence equation of
state is no longer time (or redshift) independent as a tool
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for discriminating among the various possibilities has been
widely discussed in the recent literature [26].

As a low energy description of string theory [27], su-
pergravity captures prominent features of physics beyond
the standard models of particle physics and cosmology.
Supergravity is the best framework within which both
quintessence and inflation can be described. Indeed infla-
tion (in its most common models like chaotic inflation)
involves high energies as the inflaton rolls down its poten-
tial with values exceeding the Planck mass. Similarly, in
quintessence models with a rolling scalar, the quintessence
field reaches values of the order of the Planck mass now,
hence the necessity for a treatment where nonrenormaliz-
able interaction terms suppressed by the Planck mass are
under control. In supergravity, such nonrenormalizable
corrections to supersymmetric models are taken into ac-
count and play an important role. This justifies the use of
supergravity models both in inflation and quintessence
model building. In the following we will concentrate on
both quintessence and inflation as described in
supergravity.

One of the commonly used models of quintessence, first
devised by Ratra and Peebles [9], requires an inverse
power-law behavior V�Q� � M4��Q�� with an attractor
mechanism at large time. It was soon realized that this type
of potential can be generated in supersymmetric theories
when a strongly interacting sector is present [11]. In par-
ticular, the value of the quintessence field becomes of the
order of the Planck scale which prompts the necessity of a
supergravity treatment. A simple embedding of the pre-
vious model in supergravity fails as the potential is highly
modified by supergravity corrections and can become
negative [12,13]. Hence a more phenomenological ap-
proach may be required where one postulates the form of
the Kähler potential and the superpotential which leads to
quintessence in supergravity. This was done in
Refs. [12,13] and subsequent work.
-1  2005 The American Physical Society
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Similarly, as a high energy phenomenon occurring in the
early universe, inflation must be described within super-
gravity. Recently, there has been an upsurge of inflation
models in supergravity motivated by string theory [28–30].
It seems natural to study the influence of quintessence on
inflation and vice versa.

Quintessence must be almost decoupled from ordinary
matter; otherwise the quintessence field would lead to
observable fifth-force signals [23]. On the contrary the
inflaton field must couple quite strongly to ordinary matter
in order to have a reheating period at the end of inflation
where the oscillations of the inflaton result in a radiation
bath. Hence the coupling of quintessence and the inflaton
cannot be large. A natural way of realizing this criterion is
to consider that the inflaton and the quintessence field are
decoupled in the Kähler potential and the superpotential of
supergravity. This implies that the only possible interac-
tions between both fields spring from nonrenormalizable
interactions suppressed by the Planck mass. Here we pro-
vide such a supergravity description of the coupling be-
tween inflation and quintessence. Finally, we will comment
on the compatibility of quintessence with fifth-force con-
straints and tests of the equivalence principle in the general
context considered here, namely, supergravity extensions
of the standard model of particle physics.

The paper is arranged as follows. In a first part (Sec. II),
we analyze the supergravity coupling between a particular
quintessence model, the so-called SUGRA model
[12,13,15], and a generic inflationary model. We then
(Sec. III) apply this analysis to the specific example of
chaotic inflation where we show that the quintessence field
develops a potential with a rolling minimum during infla-
tion. The rolling minimum is an attractor such that the
values of the quintessence field remain small throughout
the inflationary era. In particular, these values are much
smaller than the values of a free quintessence field during
inflation. The smallness of the quintessence field during
inflation implies that it is on track now, i.e. it reaches its
long time attractor. Finally, in Sec. IV, we discuss the
limitations of our approach, try to indicate what possible
improvements could be made, and present our conclusions.
II. QUINTESSENCE AND INFLATION
IN SUPERGRAVITY

A. Quintessence in supergravity

Let us now briefly review a simple model of quintes-
sence in supergravity often dubbed the SUGRA model in
the literature. We assume that the Kähler potential and the
superpotential are given by [12,13]

Kquint�X; Y;Q� � XXy �QQy � �pYYy�QQy�p; (1)

Wquint�X; Y;Q� � �X2Y; (2)

with � � 8�=m2
Pl. Here X and Y are two charged fields
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under an (anomalous) U�1� symmetry with charges 1 and
�2, while Q is the neutral quintessence field. Notice the
direct coupling between Q and Y. The constant � is a
dimensionless coupling constant and p is a free coefficient.
It is worth mentioning that one can derive the SUGRA
model from more general Kähler potentials but we will not
need them in this article; see Ref. [15]. At this stage, we
assume that

hXi � �; hYi � 0: (3)

As a specific example, � can be realized as a Fayet-
Iloupoulous term arising from the Green-Schwarz anomaly
cancellation mechanism. When � � 0, the Q direction is
flat. It is lifted by the superpotential leading to the quin-
tessence potential. In supergravity, negative contributions
to the scalar potential arise from the vacuum expectation
value (vev) of the superpotential. Notice that we have here

hWquinti � 0; (4)

implying that no negative contribution appears in the scalar
potential.

We are now in a position where the scalar potential can
be computed. In supergravity, it is given by

V �
1

�2
eG�GAGA � 3�; (5)

where the matrix GA 
B which is used to raise and lower the
index A is defined by

GA 
B �
@2

@’A@�’B�y

�Kquint � ln��3jWquintj

2��; (6)

where ’A � fX; Y;Qg are the fields in the quintessence
sector. Straightforward calculations leads to a matrix
which is block diagonal, namely,

GA 
B � �
1 0 0
0 ��QQy�p 0
0 0 1

2
64

3
75: (7)

Then the complete SUGRA potential becomes

Vquint�Q� � e�Q
2���2M

4�2p

Q2p ; (8)

where the mass scaleM characterizing the potential can be
expressed as M4�2p � �2�4��p. It is easy to find that
�Kquint�QQy � 1 which means that the real part field Q is
in fact not correctly normalized. Therefore, one has to
redefine the fieldQ according toQ! Q=

���
2

p
and this gives

Vquint�Q� � e�Q
2=2���2M

4�2p

Q2p ; (9)

where we have slightly redefined the mass scale M such
that M4�2p ! M4�2p � 2p. The main feature of the above
potential is that supergravity corrections have been expo-
nentiated and appear in the prefactor. Phenomenologically,
this potential has the nice feature that the equation of state
-2
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! � pQ=�Q can be closer to �1 than with the Ratra-
Peebles potential.

B. Inflation in supergravity

Let us now give a brief description of the inflation
models we will concentrate on. We will consider a class
of models described by the following Kähler potential:

Kinf � �
3

�
ln
�1=2��� �y� � �K����y��

� G����y�; (10)

where K and G are arbitrary functions. The field � is the
inflaton while � represents, for instance, a moduli of a
string compactification. The superpotential Winf �
Winf��;�� is not specified at this stage. This form is
justified by the fact that one can obtain flat enough poten-
tials in supergravity by requiring that a shift symmetry
�! �� c, where c is a real constant, is a symmetry of
the Kähler potential, later broken mildly. The Kähler po-
tential given by Eq. (10) obviously possesses this symme-
try. Indeed, a striking feature of F-term inflation in
supergravity is the natural presence of O�Hinf� corrections
to the inflaton mass which would spoil the flatness of the
potential. These problems can be avoided by considering
the above class of models.

To go further, one must specify the functions K, G, and
the superpotential. We choose an example of chaotic in-
flation as can be found in Ref. [31] where a similar case is
treated. Explicitly, one assumes

K � �
1

2
����y�2; G � �

1

2
����y�2; (11)

and for the superpotential

Winf��;�� �
�
2
m�2: (12)

The factor � in the superpotential is free and can be chosen
for future convenience. Notice that the shift symmetry is
preserved by our choice of the functions K and G while,
on the contrary, the superpotential breaks this symmetry
explicitly. Then, straightforward calculations lead to

Vinf��;�� �
1

�2�3���
�2m2�2; (13)

where � � �1=2��� �y�. It is easy to see that the moduli
can be stabilized if� � 2. Furthermore, one can check that
the normalization of the inflaton is given by �Kinf���y �

3=�� 1 � 1=2 and, hence, is correct. In this case, the
potential takes the form

Vinf��� �
�2

4
m2�2; (14)

which is nothing but the usual chaotic inflation potential if
one chooses � �

���
2

p
.
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Of course, it is possible to discuss more complicated
and/or general inflationary models. The one considered
here has the advantage to lead to the prototypical single
field inflationary model, namely, chaotic inflation. Since
our main goal is not to study inflation itself but the cou-
pling of the inflaton with the quintessence field, this model
is sufficient. However, it is clear that the next step would be
to study how the form of the coupling term that we are
going to derive below depends on the assumed inflationary
model.

C. Coupling the inflaton to the quintessence field

We now turn to our main goal, namely, the calculation of
the coupling between the inflaton field and the quintes-
sence field. Our basic assumption is that the quintessence
and inflation sectors are decoupled, i.e. that the total Kähler
potential and superpotential can be written as

K � Kquint�X; Y;Q� � Kinf��;��; (15)

W � Wquint�X; Y;Q� �Winf��;��; (16)

where the quintessential Kähler potential and superpoten-
tial have been given before but where, at least at this stage,
the inflationary part is still arbitrary. However, later , we
will restrict our considerations to the (chaotic) inflation
model studied in the preceding section. From the above
equations, one deduces that the matrix GA 
B, where now
’A � fX; Y;Q; �;�g, is diagonal by blocks. Explicitly, one
has

GA 
B �

G��y G��y 0 0 0
G��y G��y 0 0 0
0 0 � 0 0
0 0 0 ���QQy�p 0
0 0 0 0 �

2
666664

3
777775: (17)

Then, the scalar potential takes the form (recall that the
D-terms contribution vanishes)

V � e��
2

�
e�Q

2=2Vinf��;�� � e
�KinfVquint�Q�

� �2
	
�2 �

Q2

2



jWinf j

2e��Kinf�Q
2=2�

�
; (18)

where

Vinf��;�� �
1

�2
eGinf 
GAinf�Ginf�A � 3�; (19)

Vquint�Q� � e�Q
2=2M

4�2p

Q2p : (20)

Let us notice that, for convenience, we have slightly
changed the notation for Vquint�Q�. Now, we no longer
include the factor exp���2� in its definition; see Eq. (8).
As explained before, we have also redefined the quintes-
sence field according to Q! Q=

���
2

p
in order to work with

correctly normalized fields. The above expression repre-
-3



FIG. 1 (color online). Upper panel: Potential V��;Q� for the
following choice of parameters: p � 3, m � 10�5mPl, � �
10�30mPl, and �M=mPl�

4�2p � 10�122. The absolute minimum
located at Q ’ 0:4886�mPl and � � 0 cannot be viewed with
the scales used. Bottom panel: zoom in the region of the
potential where the minimum is located. It is clear that the
tiny values of the inflaton field are, in this panel, not interesting
from a physical point of view (there is no inflation for such small
values).
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sents the general form of the coupling between the SUGRA
model of quintessence and inflation in supergravity.

We now specify the inflaton model and consider the
model described in the previous subsection with � �

���
2

p
.

It is convenient to work in terms of dimensionless quanti-
ties. In particular, we define the dimensionless potential
f��;Q� by V��;Q� � m4

Plf��;Q� and this quantity can be
written as

f��;Q� � finf � fquint � finter; (21)

where

finf �
1

2

	
m
mPl



2
	
�
mPl



2
e8��

2=m2
Pl�4�Q

2=m2
Pl ;

fquint �
1

8

	
M
mPl



4�2p

	
Q
mPl



�2p
e8��

2=m2
Pl�4�Q

2=m2
Pl ;

finter � 4�2
	
m
mPl



2
�	
�
mPl



2
�
1

2

	
Q
mPl



2
�

�

	
�
mPl



4
e8��

2=m2
Pl�4�Q

2=m2
Pl :

(22)

At this point, some remarks are in order. A priori, there is
no clear separation between the inflaton and the quintes-
sence fields in the term finf because of the presence of the
exponential term. However, in the regime we will be study-
ing (during inflation), Q� mPl and, therefore, the expo-
nential term will be very close to 1. In this case, one
recovers the simple chaotic model Vinf � m2�2=2. The
term fquint is nothing but the SUGRA potential studied in
Refs. [12–15] but, during inflation, it will reduce to the
Ratra-Peebles case. Let us notice that we have an extra
factor 1=8 originating from the term exp��Kinf�. This
comes from the fact that �Kinf � �3 ln�2� since the mod-
uli is stabilized at � � 2. Finally, in the regime Q� mPl,
the interaction term reads Vinter / m2�4Q2=m4

Pl. This is
due to the fact that we have Q� � as will be discussed
below. The coupling constant between the inflaton and the
quintessence fields reads m2=m4

Pl. The Planck mass ap-
pears in this expression because the coupling between the
two fields has been entirely fixed by the supergravity.
Notice also that the quintessence field picks up an inflaton
dependent mass term during inflation. The competition
between this mass term and the Ratra-Peebles potential
will be studied in the next section. Finally, using the fact
that

@f
@��=mPl�

� e8��
2=m2

Pl�4�Q
2=m2

Pl

	
m
mPl



2

�
�
mPl

�
1� 16�2

�	
�
mPl



2

�
1

2

	
Q
mPl



2
�	
�
mPl



2


; (23)
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@f
@�Q=mPl�

� e8��
2=m2

Pl�4�Q
2=m2

Pl
1

8

	
M
mPl



4�2p

	
Q
mPl



�2p

�

�
8�

Q
mPl

� 2p
	
Q
mPl



�1
�

� e8��
2=m2

Pl�4�Q
2=m2

Pl

	
m
mPl



2
	
�
mPl



2

�
Q
mPl

�
4�� 4�2

�
1� 8�

	
�
mPl



2

� 4�
	
Q
mPl



2
�	
�
mPl



2


; (24)

it is easy to show that this potential possesses an absolute
minimum given by

�
mPl

� 0;
Q
mPl

�

�������
2p
8�

s
: (25)
-4



COUPLING QUINTESSENCE TO INFLATION IN . . . PHYSICAL REVIEW D 71, 063530 (2005)
The potential is represented in Fig. 1. The value � � 0 is
the minimum of the inflaton potential without interaction
while Q �

����������������
p=�4��

p
is the minimum of the SUGRA po-

tential. At the absolute minimum, the value of the potential
is nonvanishing and given by V � Vquint � �m4

Pl=8��
�M=mPl�

4�2p�4�=p�p exp���2� exp�p�.

III. COSMOLOGICAL EVOLUTION

A. Fixing the free parameters

Let us now discuss the values of the free parameters that
appear in Eqs. (21) and (22). If we assume that the quin-
tessential part is responsible for the acceleration now then
one should have

e��
2��Q2

0=2
M4�2p

Q2p
0

’ m2
PlH

2
0 ; (26)

where Q0 and H0 denote the values of the quintessence
field and of the Hubble parameter (respectively) now, at
vanishing redshift. In order to have a successful model of
quintessence, the field should be on track today which in
turn implies that Q0 � O�mPl�. Strictly speaking, this con-
clusion is valid for the Ratra-Peebles potential only, but it
has been shown in Refs. [12,13] that this is also valid for
the SUGRA potential despite the presence of the exponen-
tial correction (this is simply because, except at small
redshifts, we have Q� mPl and the exponential SUGRA
correction does not play an important role). This gives	

M
mPl



4�2p

’
H2
0

m2
Pl

’ 10�122: (27)

Using the fact that M4�2p ’ �2�4��p and assuming no
fine-tuning of the coupling constant, i.e. � � O�1�, one
deduces that

�
mPl

’

��������
H0

mPl

s
’ 10�30: (28)

In a sense this is the usual fine-tuning of the cosmological
constant; it reappears here in the guise of the tuning of the
vev of a field leading to the quintessence potential.
However, if one works with an effective model valid up
to a cutoff scalemC, then it has been shown in Ref. [15] that
the previous problem can be solved provided the scale is
chosen such that mC � mPl . Then the value of the Fayet-
Iliopoulos term can even be above the weak scale.
However, again, our purpose here is not to study the details
of the dark energy model and, therefore, in the following,
we will ignore these subtleties and work with the value of �
derived before. Let us notice that even with a Fayet-
Iliopoulos term above the weak scale, in general, we still
have Q> � and then the form of the coupling is not
modified when one works with a cutoff scale much below
the Planck scale; see also the discussion after Eq. (22).

We now discuss the constraint on the parameter charac-
terizing the inflaton sector, i.e. the mass m of the field. In
order to simplify the discussion, we will assume that the
063530
initial conditions are such that the quintessence field is
always subdominant. In this situation the quantum fluctua-
tions of the inflaton field are at the origin of the CMB
anisotropy observed today. As a consequence, and as is
well known, the Cosmic Background Explorer (COBE)
and Wilkinson Microwave Anisotropy Probe (WMAP)
normalizations fix the coupling constant of the inflaton
potential, namely, the mass m in the present context.
More precisely, for small ‘, the multipole moments are
given by

C‘ �
2H2

inf

25&m2
Pl

1

‘�‘� 1�
(29)

and what has been actually measured by the COBE and
WMAP satellites is Q2

rms�PS=T
2 � 5C2=�4�� ’

�18� 10�6=2:7�2 ’ 36� 10�12. The quantity Hinf is the
Hubble parameter during inflation and is related to the
potential by the slow-roll equation H2

inf ’ �Vinf=3 eval-
uated at the Hubble radius crossing. Putting everything
together, we find that the inflaton mass is given by	

m
mPl



2
’ 45�

	
N� �

1

2



�2Q2

rms�PS

T2
; (30)

that is to say
m ’ 1:3� 10�6 �mPl: (31)

All the parameters of the potential are now specified.
Let us now discuss in more detail the conditions under

which the inflaton field is always dominant. The quintes-
sence energy density must be smaller than the inflaton
energy density. This gives a lower bound on the possible
values of the field Q which can be expressed as

Qlow

mPl
’

	
m
H0

�
mPl



�1=p

’ 10�55=p
	
�
mPl



�1=p

; (32)

where we have used the value ofm ’ 10�6 �mPl obtained
before. The fact that we obtain a lower bound is consistent
with the fact that the potential is an inverse power law of
the quintessence field: the smaller the field, the larger the
corresponding energy density. Second, there exists also an
upper bound coming from the fact that the interaction
energy density must be smaller than the inflaton energy
density. Concretely, this gives

Qup

mPl
’

��������������������������������������������������
1

4�2

	
�
mPl



�2

� 2
	
�
mPl



2

s
’

	
�
mPl



�1
; (33)

where we have used the fact that the maximal value of the
inflaton field is � ’ 106 �mPl; see below.

Under the condition that Qlow <Q<Qup, the behavior
of the background is determined by the energy density of
the inflaton and it is well known that, in this case, the slow-
roll approximation is valid. The slow-roll approximation is
controlled by two parameters (in fact, at leading order,
there are three relevant slow-roll parameters but we will
not need the third one) defined by [7]
-5
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& � �
_H

H2 ; * � �
_&

2H&
� &: (34)

In the present context, where the inflaton potential is
proportional to m2�2, the slow-roll parameters are given
by

& �
1

2N� � 1
; * � 0; (35)

where N� ’ 60 is the number of e folds between the time at
which scales of astrophysical interest today left the Hubble
radius during inflation and the end of inflation. In the
situation where these parameters are small, namely, &�
1 and *� 1, the equation of motion of the inflaton field
can be easily integrated. For this purpose, it is convenient
to express everything in terms of the number of e folds (not
to be confused with N�) defined by

N � ln
	
a
aini



; (36)

such that, at the beginning of inflation, one has N � 0.
Then, in the slow-roll approximation, one obtains that the
evolution of the field is given by

�
mPl

�

����������������������������	
�ini

mPl



2
�
N
2�

s
; (37)

where �ini is the initial value of the field. This value is
related to the total number of e folds given by

NT � 2�
	
�ini

mPl



2
�
1

2
: (38)

If Nmin is the minimum number of e folds required in order
to solve the problems of the hot big-bang model (Nmin ’
60) then one has

�ini >mPl

�������������������������������
1

2�

	
Nmin �

1

2


s
’ 3:1�mPl: (39)

There exists also an upper bound for the value of the
inflaton field which corresponds to the situation where
the potential energy density m2�2=2 is Planckian. Using
that m ’ 10�6 �mPl this immediately gives that �max ’
106 �mPl. This is the value of �max that we considered
before.

B. Analytical study of the Klein-Gordon equation

We now turn to the resolution of the quintessence equa-
tion of motion, i.e. the Klein-Gordon equation. It can be
written as

"Q� 3H _Q�
@
@Q
V��;Q� � 0; (40)

where H � _a=a is the Hubble parameter which depends
only on the inflaton energy density. A dot denotes a de-
rivative with respect to cosmic time. We now work with the
new time variable introduced before, namely, the number
of e folds. One gets

d2

dN2

	
Q
mPl



�

	
3�

1

H
dH
dN



d
dN

	
Q
mPl




�

	
mPl

H



2 @f
@�Q=mPl�

� 0: (41)
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The main feature of the above equation is that the potential
is now explicitly time dependent because of the interaction
of Q with the inflaton, i.e. we have f��;Q� � f�N;Q�.
This renders this equation very difficult to solve exactly.
Therefore, in order to get some analytical approximate
solution, it is necessary to make some assumptions. With
a very good accuracy, the fact thatQlow <Q<Qup implies
that the potential contains two dominant terms and can be
approximated as �Q�2p �Q2. As a consequence, its de-
rivative can expressed as
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@�Q=mPl�

’ �
p
4

	
M
mPl



4�2p

	
Q
mPl



�2p�1

� 4�2
	
m
mPl
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mPl
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mPl



4
: (42)

This means that the quintessence field evolves in a time-
dependent potential which possesses a minimum. Of
course, this minimum is explicitly time dependent and
can be expressed as

Qmin�N� � mPl

�
p

16�2

	
H0

mPl



2
	
m
mPl



�2

�

�
��N�
mPl

�
�4


1=
2�p�1��

: (43)

As shown below, this equation turns out to be one of the
main results of the present article. Indeed, we will demon-
strate that, after a period of rapid oscillations, the quintes-
sence field always tends toward the above solution.
Therefore, in the case where the interaction between the
inflaton and the quintessence field is important, Qmin can
be viewed as a kind of attractor solution since, regardless of
the initial conditions, the final value of the field is always
given by Qmin.

Several remarks are in order at this stage. First, let us
evaluate the typical time of evolution of the minimum. It is
given by �N ’ Qmin=�dQmin=dN� � 
d lnQmin=dN�

�1.
From Eq. (43), one has Qmin / H�2=�p�1�. Therefore, this
implies that

�Nmin ’
��������p� 1

2&

��������� 1; (44)

where & � ��dH=dN�=H is the first slow-roll parameter.
Second, it is interesting to calculate the effective mass of

the quintessence field at the minimum of its time-
dependent potential. Using Eq. (43), one obtains

m2
eff

m2
Pl

�
@f2

@�Q=mPl�
2

��������min
’8�2�p�1�

	
m
mPl



2
�
��N�
mPl

�
4
: (45)

Therefore, one has

m2
eff

H2
� 6��p� 1�

�
��N�
mPl

�
2
> 1; (46)

and we conclude that, at its minimum, the quintessence
field is not a light field.

Third, we are now in a position where one can study how
small fluctuations behave around the time-dependent mini-
-6
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mum. The fluctuations are given by *Q � Q�Qmin and
their evolution is governed by the equation

d2

dN2

	
*Q
mPl



� 3

d
dN

	
*Q
mPl



�

	
meff

H



2 *Q
mPl

� 0; (47)

where, in the damping term, we have neglected the deriva-
tive of the Hubble parameter which is nothing but the slow-
roll parameter &. Using the expression of the effective mass
established before and the expression of the inflaton in the
slow-roll approximation, one finds that the solution can be
expressed as

*Q
mPl

� e�3N=2
A1Ai��x� � A2Bi��x��; (48)

where A1 and A2 are two constants determined by the
initial conditions. The functions Ai and Bi are the Airy
functions [32]1 and the quantity x is defined by
1Another method to solve the Klein-Gordon equation, under
the assumption that the slow-roll hypothesis is valid for the
inflaton, is the following. Instead of directly neglecting & �
��dH=dN�=H in the damping term of Eq. (41) as we did before,
one works with the dimensionless field q�N� defined by

Q
mPl

� g�N�q�N� �
	
H
mPl



�1=2

e�3N=2q�N�: (49)

Then, from Eq. (41), it is easy to show that the field q�N� obeys

d2q

dN2�

�
�

1

2H
d2H

dN2 �
1

4H2

	
dH
dN



2
�
15

4H
dH
dN

�
9

4

�
q

�
1

g�N�

	
H
mPl



�2 @f
@�Q=mPl�

��������Q=mPl�g�N�q�N�
� 0: (50)

In the second term between squared brackets, the various de-
rivatives of the Hubble parameter can be expressed in terms of
the slow-roll parameters. Explicitly, this term reads &�3&�
2*�=2� &2=4� 15&=4� 9=4 ’ �9=4. Therefore, the Klein-
Gordon equation can be simplified further and we obtain

d2q

dN2
�
9

4
q�

1

g�N�

	
H
mPl



�2 @f
@�Q=mPl�

��������g�N�q�N�’ 0: (51)

Using the fact that the potential is given by m2
eff�

2=2, hence we
are now studying *Q � g�N�q�N�, the above equation takes the
form

d2q

dx2
� xq � 0; (52)

where x is defined in Eq. (54). As before, this equation can be
solved in terms of Airy functions and this gives

*Q
mPl

�

	
H
mPl



�1=2

e�3N=2
B1Ai��x� � B2Bi��x��: (53)

This solution should be compared with Eq. (48). We see that the
equations are similar up to the factor �H=mPl�

�1=2. As our
approximation is valid during a few e folds only, the Hubble
parameter can be considered as a constant and then the two
solutions are identical.
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x � 3�2=3�p� 1��2=3
�
6��p� 1�

�
��N�
mPl

�
2
�
9

4



: (54)

Initially, and during a few e foldings, one has x� 1. In this
case, one can use the asymptotic expression of the Airy
function [32] and one obtains

*Q
mPl

’ e�3N=2��1=2x�1=4
�
A1 sin
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3
x3=2 �

�
4




� A2 cos
	
2

3
x3=2 �

�
4


�
: (55)

From this expression, one sees that one has damped oscil-
lations. The period of the oscillations can be very easily
estimated. One has

�Nosci ’
2��������������������

3�p� 1�
p N�1=2

T ; (56)

where we recall that NT is the total number of e folds
during inflation. For a typical model with p � 3 and NT ’
60, one gets �Nosci ’ 0:24. The previous equation also
means that if the inflaton field starts at large values, then
the period of the oscillations will be extremely rapid. For
instance, if inflation starts at Planckian density, then �ini ’
106mPl which implies that NT ’ 1012. As a consequence,
one can get values as small as �Nosci ’ 10�6.

Therefore, from the above considerations, one reaches
the conclusion that

�Nmin
�Nosci

� O�1�

�������
NT

p

&
� 1: (57)

This means that the oscillatory phase is very quick in
comparison with the typical time scale of evolution of
the minimum. To put it differently, the minimum can be
considered as motionless or as ‘‘adiabatic’’ as the field
rapidly oscillates and quickly joins its minimum.
Therefore, Qmin�N� can be viewed as an attractor since it
does not depend on the initial conditions for the quintes-
sence field.

We have established the above result under the assump-
tion that the initial deviation from the attractor Qmin is not
too large (or, in other words, that *Q is not too large). What
happens if this is not the case, i.e. if jQini �Qminj � 1 or
*Qini � 1? Is the attractor still joined rapidly enough (i.e.
before the end of inflation)? A priori, to answer this ques-
tion requires a full integration of the equation of motion (or
a numerical integration, see the next subsection) which is
not possible. However, we can gain some partial insights
using the following considerations. If one hasQini � Qmin

then the term proportional to Q�2p dominates in the po-
tential and the Klein-Gordon equation remains nonlinear
and hence difficult to integrate. But if we now assume that
we start from a situation where Qini � Qmin, then the term
proportional to Q2 dominates in the potential. As a con-
-7
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sequence, the derivative of the potential can be written as,
see Eq. (42),

@f
@�Q=mPl�

’ 4�2
	
m
mPl



2
	
�
mPl



4 Q
mPl

: (58)

Therefore, the Klein-Gordon equation is now linear and
can be integrated. In fact, one obtains the same potential as
before for *Q, up to an unimportant factor 2�p� 1�,
except that now Q�Qmin > 0 need not be small. As a
consequence the solution will read the same, that is to say,
roughly speaking, Q ’ Qini exp��3N=2�, this solution
being valid provided Q� Qmin.

Equipped with this solution, one can now estimate how
many e folds are necessary for the field to roll down the
potential from a given initial condition and to reach the
region of the minimum. When the field enters this region,
the previous solution is no longer valid because the term
Q�2p starts playing a role but, on the other hand, since the
field is now close to Qmin the calculation of *Q applies. In
order to get an upper bound on the number of e folds, let us
assume that Q is initially as far as possible from the
minimum, i.e. Qini � Qup; see Eq. (33). Then the number
of e folds N is the solution of the algebraic equation

Qmin�N�
mPl

�

	
�ini

mPl



�1
e�3�N=2: (59)

The solution can be expressed in terms of the Lambert
functionW0 [33] defined by the relationW�z� exp
W�z�� �
z. Explicitly, one obtains

�N � ��p� 1�NT �
2

3
W0

�
3

2
�p� 1�NT

	
�ini

mPl



�3�p�=�1�p�
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16�2
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m2
Pl
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2�p�1��

e3�p�1�NT=2


: (60)

Since the argument of the Lambert function W0 is very
large, one can use the approximation W0�z� ’ ln�z�. In this
case, one gets

�N �
2

3
ln
�
3

2
�p� 1�NT

�
�
2�3� p�
3�1� p�

ln
	
�ini

mPl




�
2

3�p� 1�
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H0

mPl



�

2

3�p� 1�
ln
	
m
mPl



: (61)

For the fiducial model with p � 3, �ini � 3:1mPl and
NT � 60 one obtains �N ’ 26< 60. Therefore, even in
the extreme case where the quintessence field starts at Qup,
inflation lasts enough e folds so thatQ has time to reach the
attractor.

In conclusion, in this subsection, we have shown that,
during inflation, the evolution of the quintessence field is
characterized by two very different time scales. One scale
describes the evolution of the adiabatic time-dependent
minimum while the second one represents the period of
the rapid oscillations around this minimum. We have dem-
onstrated that Qmin is in fact an attractor and that, regard-
063530
less of the initial conditions, the quintessence field always
has enough e folds during inflation to join this attractor.
Although the above conclusion has been established in the
quadratic part of the potential, it is in fact true even in the
regime where the potential is proportional to Q�2p as
confirmed by a numerical study of the Klein-Gordon
equation.

C. Numerical study of the Klein-Gordon equation

We have just seen that the equation of motion cannot be
analytically integrated with the complete potential. As a
consequence, the part where the potential is proportional to
Q�2p has not been explored for values of the initial con-
ditions far from the minimum. In this subsection, we
perform the integration numerically. The difficulty is that
we have to deal with very small quantities. It is therefore
necessary to absorb these small quantities into a redefini-
tion of the quintessence field which greatly facilitates the
numerical integration. For this purpose, we write

Q
mPl

� 1Q; (62)

where 1 is a constant. It is easy to show that, if 1 is chosen
to be

1 �

	
m
mPl



�1=�p�1�

	
H0

mPl



1=�p�1�

; (63)

then we can remove the dangerous coefficients from the
equation of motion which now reads

d2Q

dN2 �

	
3�

1

H
dH
dN
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�
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mPl
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�
�
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4
Q�2p�1 � 4�2

	
�
mPl



4
Q

�
� 0: (64)

In particular, it is interesting to evaluate how the time-
dependent minimum looks after the rescaling. From
Eq. (43), one gets

Qmin�N� �
	
p

16�2



1=�2p�2�

	
�
mPl



�2=�p�1�

: (65)

The results of the numerical integration are presented in
Figs. 2 and 3 for two different initial conditions. We always
assume that the inflaton field starts at�ini � 3:1mPl which,
as already mentioned, means that the total number of e
folds during inflation is NT � 60. The quintessence poten-
tial has been chosen such that p � 3. This also completely
specifies Qmin and, in particular, we have Qmin�N � 0� ’
0:34 as can be checked directly on the figures. The evolu-
tion of Qmin�N� is represented by the red dotted curve in
Figs. 2 and 3. Moreover, with the values of H0 and m
discussed before, the rescaling constant 1 is equal to 1 ’
1:6� 10�14 and, therefore, the initial value of the attractor
is in fact Qmin�N � 0� ’ 5:6� 10�15mPl.
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In Fig. 2, one has Qini � 0:05 orQini ’ 8:3� 10�16mPl.
Initially, the field is therefore in the region where the
potential is proportional to Q�2p, i.e. the region which
was explored analytically before. We see that the evolution
is very similar to what was discussed before. We have a
period of rapid oscillations and then, after a few e folds, the
attractor is joined. We notice that the period of these
oscillations is in full agreement with the estimate of
Eq. (56). One can check that the amplitude of the oscil-
lations decreases as exp��3N=2� as demonstrated in the
previous subsection. We conclude that all the properties
established before are confirmed by the numerical study,
even in the part of the potential where it is proportional to
Q�2p. However, one should also notice that, if the field is
FIG. 3. Upper panel: Evolution of the quintessence field during
inflation (solid black line) with the initial condition Qini � 20 or
Qini ’ 3:3� 10�13mPl. This initial condition corresponds to a
situation where Qini >Qmin. The parameters characterizing the
model are identical to those used in Fig. 2. The dotted red curve
represents the time-dependent minimum Qmin�N�. Bottom panel:
a zoom of the upper figure at the beginning of inflation.

FIG. 2. Upper panel: Evolution of the quintessence field during
inflation (solid black line). The model of inflation is chaotic
inflation with a massive potential and the initial value of the
inflaton is chosen to be�ini � 3:1�mPl corresponding to a total
number of e folds NT � 60. The potential of the quintessence
field is of the Ratra-Peebles type with p � 3. The initial value of
the quintessence field is taken to be Qini � 0:05 or Qini ’ 8:3�
10�16mPl. This initial value is such that Qini <Qmin where Qmin

is the time-dependent minimum of the effective potential. The
evolution of Qmin�N� is given by the dotted red curve. Bottom
panel: a zoom of the upper figure at the beginning of inflation.

063530
initially very displaced from its minimum such thatQini �
Qmin, then the simple Fortran code used to integrate the
equation of motion can quickly run into numerical prob-
lems. This is probably due to the fact that Q�2p is a very
steep potential. Despite this remark, one sees no reason
why, in this regime, the evolution of Q should be different
from what has been described before.

In Fig. 3, one has Qini � 20 or Qini ’ 3:3� 10�13mPl.
This time, one starts from the other part of the potential,
where Qin >Qmin and V�Q� / Q2. The remarks made
before also apply to this case which appears to be in full
agreement with the analytical estimates of the previous
subsection.
IV. DISCUSSION AND CONCLUSIONS

In order to study the influence of the interaction term and
to compare its effect with the standard case, it is interesting
-9
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to give the evolution of the quintessence field when this
one does not interact with the inflaton (and when Q re-
mains a test field). In particular, we are interested in
calculating, for a given initial condition at the beginning
of inflation, the value of Q at the end of inflation (or at the
beginning of the radiation dominated era) in both cases (i.e.
with and without interaction). The case without interaction
can be easily treated because the Klein-Gordon equation
can be integrated in the slow-roll approximation; see
Ref. [34]. In fact, this equation can be rewritten as

"Q

H��� _Q
� �

V 00
RP�Q�

3H2���
� &; (66)

where a dot denotes a derivative with respect to cosmic
time. In the above equation VRP�Q� now means the Ratra-
Peebles potential, namely, VRP�Q� / Q�2p since this is the
potential for the quintessence field in the absence of any
interaction with the inflaton field. Because of the smallness
of the parameter &, the slow-roll approximation can be
applied to the equations describing the motion of the
063530
quintessence field without interaction if the following con-
dition is satisfied:

V00
RP�Q�

3H2���
� 1: (67)

If one applies this condition to the Ratra-Peebles potential,
one gets	
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This formula is similar to Eq. (48) of Ref. [34]. It can also
be rewritten as

1�1
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where F �p� � 
p�2p� 1�=�2���1=
2�p�1�� ’ O�1�. Then,
integrating the Klein-Gordon equation leads to the follow-
ing expression:
Qno inter�N� � Qini
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; (71)
where in the last equality we have used the fact that the
evolution of the inflaton field can be approximated by � ’
�ini
1� N=�2NT��. The subscript ‘‘no inter’’ just reminds
that the above equation gives Q in the case where there is
no interaction between Q and �. From this expression, we
deduce that the quintessence field is frozen if

1�1
Qini

mPl
* 1: (72)

If this condition is satisfied, then obviously the condition
(69) is also satisfied. The contrary is not necessarily true
but, as shown for instance in Fig. 3 of Ref. [34], this
concerns only a small range of initial conditions.
Therefore, we can consider that Qno inter ’ Qini.

We are now in a position where the values of the
quintessence field with and without interaction can be
compared at the end of inflation. Inflation stops when the
slow-roll parameter & is equal to unity corresponding to
�end=mPl � 1=�2

����
�

p
�. With the interaction term taken into

account, the field will be on the attractor Qmin and, there-
fore, its value at the end of inflation is just the value ofQmin

at the end of inflation, namely,

Qmin

mPl
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�2=�p�1�

(73)

� H �p�1: (74)
As already mentioned, the striking feature of this expres-
sion is that it does not depend on Qini. For orders of
magnitude estimate, one can consider that H �p� �
O�1�. For p � 3, which is our fiducial model, one has
Qmin�N � NT� ’ 1:9� 10�14mPl. Therefore the ratio of
Q at the end of inflation without the interaction term taken
into account toQ at the end of inflation with the interaction
term into account is given by

Qno inter

Qinter

��������end
’
Qini

mPl

	
m
mPl



1=�p�1�

	
H0
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�1=�p�1�

(75)

� 1055=�p�1�
Qini

mPl
: (76)

This ratio is necessarily greater than 1, see Eq. (72), and for
‘‘large’’ initial conditions can be much bigger than 1. This
means that, generically, Qno inter � Qinter, i.e. the effect of
the interaction is to force the quintessence field to remain
small during inflation.

We are now in a position to comment on the role of the
attractor during inflation as initial conditions for the late
time behavior of the quintessence field, which was one of
the main motivations of the present study. As is well
known, the main property of quintessence models in the
radiation or matter era is that there is a tracking behavior
with an attractor [9]. This means that there is no need to
fine-tune the initial conditions and that the solution will be
-10
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on track today for a large range of initial conditions. If one
fixes the initial conditions at the end of inflation, i.e. z ’
1028, then, the allowed initial values for the energy density
are approximatively such that [12,13] 10�37 � �Q �

1061 GeV4, where 10�37 GeV4 is the background energy
density at equality whereas 1061 GeV4 represents the back-
ground energy density (i.e. the radiation energy density) at
the initial redshift. If, for instance, p � 3 and if the scalar
field starts at rest, this means that the initial values of the
field are such that 10�18mPl � Qin � 10�2mPl just after
inflation. As can be seen, we have found that the quintes-
sence attractor during inflation leads to initial values within
this range, hence such that the quintessence field is on track
now. Therefore, the quintessence attractor during inflation
guarantees natural initial conditions for the subsequent
evolution of the quintessence field.

Two loopholes could modify the above conclusion. First,
we have seen that the numerical integration, on which our
study is based, is valid only if the initial value of Q is not
too far from the initial value of the minimum. We have
used the results obtained under this condition and have
extrapolated them for any initial conditions. If the initial
value of the quintessence field is far from the time-
dependent minimum, we still expect a phase of oscilla-
tions. However, since we have noticed that the amplitudes
of the oscillations tend to be quite big even if the initial
displacement from the minimum remains reasonable (this
is not surprising for a potential like Q�2p which is very
‘‘abrupt’’), it could actually happen that the amplitudes of
the oscillations, in the case where the initial displacement
is large, are so big that the assumption that the quintessence
field is a test field becomes violated. This is a regime that
has not been studied in the present article. Some new
interesting effects could occur in this case. However, we
suspect that the numerical study of this situation could be
quite tricky.

Second, it has been shown in Ref. [34] that the quantum
effects could strongly modify the evolution of Q during
inflation. These quantum effects have been calculated in
Ref. [34] by means of the stochastic inflation formalism for
a free field. Therefore, what should now be done is to
compute these effects in the case where the interaction
term is present. This is clearly a difficult task which is
beyond the scope of the present paper. In Ref. [34], it has
been shown that the quantum effects can push the quintes-
sence field to quite large values at the end of inflation. As a
consequence, the attractor solution could be joined only at
a late time and even after the present time. In this case the
quintessential scenario would lose an attractive feature,
namely, its insensitivity to the initial conditions. In this
respect, the results reached in the present article are good
news since the effect of the interaction term seems to retain
the field to quite small values. One could speculate that this
could maybe compensate the influence of the quantum
effects.
063530
Finally, a last comment is in order. In this paper, we have
investigated the coupling of quintessence to inflation in the
very early universe. In particular, we have shown that
nonrenormalizable operators suppressed by the Planck
mass play a crucial role. Later in the evolution of the
Universe, one may inquire about couplings between quin-
tessence and matter in supergravity models. As is well
known, the quintessence field cannot couple strongly to
matter fields. Indeed, this would lead to a possible fifth
force or violation of the equivalence principle [23]. Such
couplings have to be extremely suppressed. There are two
dangerous types of couplings. First of all, the electromag-
netic gauge coupling constant is allowed to become field
dependent in supergravity 1=g2 � f where f is a holomor-
phic function of the fields. However, in the minimal super-
gravity framework, the time variation of the fine structure
constant is suppressed since f has no dependence on the
quintessence field (but, of course, it would be possible to
work in a nonminimal supergravity framework). This guar-
antees that the quintessence field plays no role in the
possible time variation of the fine structure constant.
Similarly, from the form of the SUGRA Lagrangian, it is
easy to see that particle masses such as the fermions of the
standard model pick a quintessence dependent part

m�Q� � e�Q
2=2j*�Q� i ~Q�jv; (77)

where v� hHi is one of the Higgses vevs (which is field
independent here). The overall exponential prefactor is
similar to the one appearing in the SUGRA potential, and
*�Q� i ~Q� is a Yukawa coupling which may be field
dependent. Supersymmetry requires this coupling to be a
holomorphic function of the field, therefore involving both
the quintessence field Q and its associated imaginary part
~Q in the quintessence chiral multiplet. To avoid fifth-force
experiments such as the recent Cassini spacecraft experi-
ment, one must require that the Eddington (post-
Newtonian) parameter j4� 1j � 5� 10�5; see
Ref. [35]. This can be realized by imposing that �2Q �

10�5 and �2~Q � 10�5, where �Q � ��1=2d
lnm�Q��=dQ

and � ~Q � ��1=2d
lnm�Q��=d ~Q. Explicitly, the coeffi-
cients �Q and � ~Q are given by

�Q � �1=2Q� ��1=2
d lnj*j
dQ

: (78)

As Q goes to mPl in the recent past, the first term becomes
of order 1. It is precisely at this point that model building
issues show up. The possibility of violating the above
constraints depends on the Q dependence of the Yukawa
couplings. Although it is not the main purpose of the
present paper, as we focus on the behavior of Q in the
very early universe, it is worth presenting a model where
no problem occurs. If the Yukawa couplings possess the
following explicit dependence on Q:
-11
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*�Q� � e��Q
2=2*0; (79)

where *0 is a constant coinciding with the standard model
Yukawa coupling, then one has �Q � 0. Now, the imagi-
nary part of the quintessence chiral multiplet ~Q has no
potential, i.e. it is a flat direction. As a consequence, we
find that

� ~Q � ��1=2 ~Q: (80)

Compatibility with experiments implies that the value of ~Q
now must be almost vanishing. As this field does not have
any dynamics, this can be achieved by putting ~Q � 0 in the
early universe. Hence, we conclude that one can satisfy the
fifth-force experiment constraints in quintessence models
based on supergravity. Of course, justifying the above
Yukawa couplings would necessitate a thorough study
and a well-motivated model.

The results obtained in this article concern the early
universe and are independent of the above discussion on
063530
the variation of masses in the recent past of the universe.
On the contrary, nonrenormalizable couplings between the
quintessence field and cold dark matter may have a crucial
impact on the late time physics of the quintessence field,
i.e. on the coincidence problem. This is left for future work.

In conclusion, we have shown that the nonrenormaliz-
able interactions between the inflaton and the quintessence
field have drastic consequences during inflation. The quin-
tessence field follows an attractor and remains small com-
pared to the Planck scale at the end of inflation. This sets
initial conditions for the quintessence field such that Q is
on track today.
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[21] P. F. González-Diáz, Phys. Rev. D 62, 023513 (2000); T.
-12



COUPLING QUINTESSENCE TO INFLATION IN . . . PHYSICAL REVIEW D 71, 063530 (2005)
Matos and L. A. Urena-Lopez, Phys. Rev. D 63, 063506
(2001); C. Skordis and A. Albrecht, Phys. Rev. D 66,
043523 (2002); A. D. Chernin, D. I. Santagio, and A. S.
Silbergleit, Phys. Lett. A 294, 79 (2002); M. Malquarti
and A. R. Liddle, Phys. Rev. D 66, 023524 (2002); M. K.
Mak and T. Harko, Int. J. Mod. Phys. D 11, 1389 (2002);
V. Sahni, astro-ph/0403324; S. Bludman, Phys. Rev. D 69,
122002 (2004).

[22] K. Choi, Phys. Rev. D 62, 043509 (2000); A. Masiero, M.
Pietroni, and F. Rosati, Phys. Rev. D 61, 023504 (2000);
J. E. Kim, J. High Energy Phys. 06 (2000) 016; T.
Barreiro, E. J. Copeland, and N. J. Nunes, Phys. Rev. D
61, 127301 (2000); E. J. Copeland, N. J. Nunes, and F.
Rosati, Phys. Rev. D 62, 123503 (2000); M. Gasperini,
Phys. Rev. D 64, 043510 (2001); P. F. González-Diáz,
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