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Detection of gamma rays from dark matter annihilation in the galactic center is one of the feasible
techniques to search for dark matter. We evaluate the gamma-ray flux in the case that the dark matter has
an electroweak SU�2�L charge. Such dark matter is realized in the minimal supersymmetric standard
model (MSSM) when the lightest SUSY particle is the Higgsino- or Wino-like neutralino. When the dark
matter is heavy compared to the weak gauge bosons, the leading-order calculation of the annihilation cross
sections in perturbation breaks down due to a threshold singularity. We take into account nonperturbative
effects by using the nonrelativistic effective theory for the two-body states of the dark matter and its
SU�2�L partner(s), and evaluate precise cross sections relevant to the gamma-ray fluxes. We find that the
annihilation cross sections may be enhanced by several orders of magnitude due to resonances when the
dark matter mass is larger than 1 TeV. Furthermore, the annihilation cross sections in the MSSM may be
changed by factors even when the mass is about 500 GeV. We also discuss sensitivities to gamma-ray
signals from the galactic center in the GLAST satellite detector and the large Air Cerenkov Telescope
arrays.
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I. INTRODUCTION

Recent cosmological observations determine precisely
the mean densities of matter and baryon in the Universe
[1], and existence of nonbaryonic dark matter is estab-
lished. Weakly interacting massive particles (WIMPs) are
considered to be good candidates of the dark matter [2].
They act as the cold dark matter in the structure formation
of the Universe. High resolution N-body simulations show
that the cold dark matter hypothesis explains well the
structure larger than about 1 Mpc [3]. On the other hand,
fundamental problems, such as (i) the constituent of the
dark matter and the origin in the thermal history and (ii) the
dark matter distribution in the galactic scale, are not still
resolved. It is important to detect the dark matter in direct
or indirect methods in order to answer the questions.

Many detection methods have been proposed and some
of the experiments are now operating. Among those, the
detections of exotic cosmic ray fluxes, such as positrons,
antiprotons, and gamma rays, are feasible techniques to
search for the dark matter particles [4–9]. In particular, an
excess of monochromatic (line) gamma rays due to the pair
annihilation would be a robust signal if observed, because
diffused gamma-ray background must have a continuous
energy spectrum [9]. The GLAST satellite detector [10]
and the large Atmospheric Cerenkov Telescope (ACT)
arrays, such as CANGAROO III [11], HESS [12],
MAGIC [13], and VERITAS [14], can search for the exotic
gamma rays from the galactic center, the galactic halo, and
even from extra galaxies.

In this paper, we discuss SU�2�L nonsinglet WIMPs and
the gamma-ray fluxes from the galactic center due to the
pair annihilation. We refer to such dark matter as
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electroweak-interacting massive particle (EWIMP) dark
matter [15]. Because of their SU�2�L nonsinglet nature,
EWIMPs have interactions with the SU�2�L gauge bosons
such as W and Z bosons. If EWIMPs have a vector cou-
pling to Z boson, the current bound obtained from direct
dark matter searches through their spin-independent inter-
action is stringent [16]. This means that the EWIMP dark
matter should be a Majorana fermion or a real scalar if the
mass is around one TeV. In this paper, we consider the
former case. We especially study triplet and doublet
EWIMP dark matters, which are neutral components of
an SU�2�L-triplet fermion whose hypercharge is zero and
of a pair of SU�2�L-doublet fermions with hypercharges
�1=2, respectively. When the EWIMP mass is around
1 TeV, the thermal relic abundance may be consistent
with the cosmological observation.

The EWIMP is realized in the minimal supersymmetric
standard model (MSSM) when the lightest SUSY particle
(LSP) is the Higgsino- or Wino-like neutralino [17]. Wino
is the superpartner of the SU�2�L gauge boson, and
Higgsino is that of SU�2�L doublet Higgs bosons. The
thermal relic density is too low if the LSP mass is smaller
than 1 TeV. However, decays of gravitino or other quasi-
stable particles may produce the LSPs nonthermally so that
the relic abundance is consistent with the cosmological
observation. While the LSP with the mass about 1 TeV
may lead to the naturalness problem, such possibilities are
discussed in the split SUSY scenario [18].

The line and continuum gamma-ray fluxes from the
EWIMP dark matter annihilation in the galactic center
are proportional to the cross section to two photons and
those to other modes whose final states fragment into �0s,
respectively. The leading-order cross sections in perturba-
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tion have been calculated by many authors [19]. However,
if the EWIMP mass is large compared to the weak gauge
boson masses, usual perturbative expansion for the anni-
hilation cross sections cannot be applied [15]. This can be
seen in the violation of unitarity of the one-loop annihila-
tion cross section into two photons. The fact comes from
the degeneracy of the EWIMP and its SU�2�L partner(s) in
mass and the nonrelativistic motion of the dark matter in
the current Universe. The transition between EWIMP and
its partner pairs is induced by the t-channel weak gauge
boson exchange. When the EWIMP mass is much larger
than the weak gauge boson masses, the weak interaction
behaves as a long-range force. The wave functions of
EWIMP and its partner pairs are modified from plane
waves at the nonrelativistic limit, and the mixing between
those states is enhanced. This phenomenon is related to so-
called a threshold singularity, and we have to consider the
effects of the long-range force on the annihilation cross
sections for reliable calculation.

In this paper we work in the nonrelativistic effective
theory for EWIMPs. Nonrelativistic effective theories [20]
are often used in calculations of the threshold productions
of heavy particles, the quarkonium mass spectrums and so
on [21]. In this technique, we can factorize short-distance
physics, such as pair annihilation, from long-range effects
on the wave functions due to the optical theorem [22]. The
long-range effects are evaluated by solving the wave func-
tions under the potential.

We found that the annihilation cross sections may be
enhanced by several orders of magnitude compared to the
leading-order calculation in perturbation when the EWIMP
mass is larger than about 1 TeV. The mixture of the pairs of
EWIMPs and the SU�2�L partners can form a bound state
whose binding energy is close to zero, and it contributes to
the annihilation cross sections in the nonrelativistic limit.
The enhancement of the cross sections originates from the
resonance by the bound state. Furthermore, the annihila-
tion cross section to two photons, which is suppressed by a
loop factor in perturbation, becomes comparable to those
to the other modes around the resonance. As a result, the
continuum and line gamma-ray fluxes from the galactic
center due to the EWIMP annihilation are enhanced. The
indirect dark matter searches by the large ACT detectors,
which have sensitivities to TeV-scale gamma rays, may be
promising, if dark matter is a TeV EWIMP.

It is also found that the nonperturbative corrections to
the cross sections are sizable for the triplet (doublet)
EWIMP even when the EWIMP mass is about 500
(1500) GeV. Thus, the correction should be taken into
account in the evaluation of the gamma-ray fluxes in the
MSSM, especially when the LSP is Wino-like.

This paper is organized as follows. We first summarize
the properties of EWIMPs and discuss the threshold singu-
larity in the EWIMP pair annihilation in the next section. In
Sec. III the nonrelativistic effective actions for the triplet
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and the doublet EWIMP pairs are derived. In Sec. IV the
cross section formula is obtained using the optical theorem
and the effective actions. While the obtained annihilation
cross section to two photons in our formula is reduced to
the one-loop result in the perturbative expansion, it also
satisfies the unitarity bound in the limit of an infinite
EWIMP mass. The one-loop cross section does not satisfies
the bound.

In Sec. V some numerical results for the annihilation
cross sections are presented. The fitting formulae for the
annihilation cross sections are also derived from the nu-
merical results. The resonance behaviors of the cross sec-
tions are studied using a toy model in which the
electroweak Yukawa potentials are approximated by a
well potential. In Sec. VI we evaluate the gamma-ray
fluxes from the EWIMP annihilation in the galactic center
and discuss the sensitivities in the future experiments. In
Secs. Vand VI the cross sections and the gamma-ray fluxes
for the Wino- and the Higgsino-like neutralinos are also
evaluated in the wide range of the MSSM parameters.
Sec. VII is devoted to summary of the paper.
II. PROPERTIES OF EWIMPS AND THRESHOLD
SINGULARITY

In this section the mass spectrums of EWIMPs and the
SU�2�L partners and their low-energy interactions are sum-
marized. We also discuss the threshold singularity in the
nonrelativistic EWIMP pair annihilation. The perturbative
expansion of the annihilation cross sections is spoiled due
to the singularity when the EWIMP mass is heavy com-
pared to the weak gauge boson masses.

A. Properties of EWIMPs

The EWIMP dark matter ~�0 is a neutral component of
SU�2�L multiplet(s). In this paper, we consider two cases.
One is an SU�2�L triplet fermion whose hypercharge is
zero. In this case, the EWIMP is accompanied with the
SU�2�L partner, a charged Dirac fermion ~��. They are
almost degenerate in mass, and the mass difference 	m is
caused by the electroweak symmetry breaking. If 	m
comes from the radiative correction of the gauge boson
loops [23],

	mrad �
�2m
4�

�
f
�
mW
m

�
� c2Wf

�
mZ
m

�
� s2Wf�0�

�
;

f�a� �
Z 1

0
dx2�1� x� log�x2 � �1� x�a2�;

(1)

where m is the EWIMP mass, �2 is the SU�2�L gauge
coupling, mW�mZ� is the W�Z� gauge boson mass, and
cW�sW� � cos�W�sin�W�, where �W is the Weinberg angle.
The gauge interactions of the EWIMP and its SU�2�L
partner are given by
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L int � �
e
sW
�~�0W6 y ~�� � h:c:� � e

cW
sW
~��Z6 ~��

� e~��A6 ~��; (2)

where e �
����������
4��
p

and � is the fine structure constant. The
mass difference 	mrad is induced by the custodial SU�2�L
symmetry breaking in the gauge sector, and 	mrad ’
0:18 GeV if m mW and mZ. Effective higher-
dimensional operators may also generate the mass differ-
ence, however it is suppressed by m4W=�

3, where � is a
new particle mass scale.

Another example of the EWIMP dark matter is a neutral
component in a pair of SU�2�L doublet fermions with the
hypercharges �1=2. After the symmetry breaking, two
neutral mass eigenstates, ~�0 and ~�0N , appear. The lightest
one is a candidate of the EWIMP dark matter. A charged
Dirac fermion ~�� is also accompanied with them, and they
are also degenerate in mass in the SU�2�L symmetric limit.
The mass differences among them are generated by effec-
tive operators via the electroweak symmetry breaking.
Unlike the triplet EWIMP case, the mass difference is
O�m2W=�� and it is not strongly suppressed by �. The
gauge interactions of the doublet EWIMP dark matter
and its partners are given by

Lint � �
e
2sW

�~�0W6 y ~�� � ~�0NW6
y ~�� � h:c:�

�
e

sWcW

�
1

2
� c2W

�
~��Z6 ~�� � e~��A6 ~��

�
e

2sWcW
~�0Z6 ~�0N: (3)

An example of the EWIMP dark matter is the lightest
neutralino in the MSSM. Neutralinos ~�0i (i � 1 � � � 4) are
linear combinations of the supersymmetric partners of
gauge bosons and Higgs bosons, Bino ( ~B), neutral Wino
( ~W0), and neutral Higgsinos ( ~H01 , ~H

0
2). While those four

fields have SU�2�L � U�1�Y invariant masses, they are
mixed with each other via the electroweak symmetry
breaking [17],

~� 0i � Zi1 ~B� Zi2 ~W
0 � Zi3 ~H

0
1 � Zi4 ~H

0
2: (4)

Coefficients Zij are determined by diagonalizing the neu-
tralino mass matrix,

M~�0 �

M1 0 �mZsWc� mZsWs�
0 M2 mZcWc� �mZcWs�

�mZsWc� mZcWc� 0 ��
mZsWs� �mZcWs� �� 0

0
BBB@

1
CCCA;

(5)

which is written in the � ~B; ~W0; ~H01 ; ~H
0
2� basis. HereM1 and

M2 are the Bino and Wino masses, respectively, and � is
the supersymmetric Higgsino mass. The variable tan� is
given by the ratio of the vacuum expectation values of two
Higgs fields, and c� � cos� and s� � sin�. The lightest
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neutralino is Wino-like when M2 � j�j;M1, and
Higgsino-like when j�j � M1;M2. These two neutralinos
have SU�2�L charges and are candidates of the EWIMP
dark matter; the Wino-like neutralino is a triplet EWIMP
and the Higgsino-like neutralino is a doublet EWIMP.

Neutralinos are accompanied with charginos ��i (i �
1; 2), which are linear combinations of charged Wino ~W�

and charged Higgsino ~H� � ~H�1L � ~H�2R [17]. The com-
positions of charginos are determined by diagonalizing the
chargino mass matrix,

M�� �
M2

���
2
p
mWs����

2
p
mWc� �

 !
; (6)

which is written in the � ~W�; ~H�� basis.
From the above matrices in Eqs. (5) and (6) the mass

difference 	mtree between the lightest neutralino and char-
gino at tree level can be calculated. If the LSP is Wino-like
(mZ;M2 � M1; j�j), 	mtree is approximately given by

	mtree ’
m4Z
M1�2

s2Wc
2
Wsin

22�; (7)

which is suppressed by the third power of the high energy
scale M1�

2 as discussed before. Since their masses are
highly degenerate at tree level, the radiative correction to
the mass difference in Eq. (1) is also important.

The mass splitting for the Higgsino-like LSP in a case
with mZ; j�j � M1;M2 is O�m2Z=mSUSY� and given by

	m ’
1

2

m2Z
M2
c2W�1� sin2�� �

1

2

m2Z
M1
s2W�1� sin2��: (8)

The second lightest neutralino is also degenerate with the
LSP and the chargino in mass, because they are in common
SU�2�L multiplets. The mass difference 	mN between
the LSP and the second lightest neutralino is again
O�m2Z=mSUSY�,

	mN ’
m2Z
M2
c2W �

m2Z
M1
s2W; (9)

and this is 2� 	m when tan� 1.
In Figs. 1 and 2, we show contours of the lightest

neutralino mass and the mass difference between the neu-
tralino and the lightest chargino in ��;M2� planes with
tan� � 4; 40. These figures are obtained by diagonalizing
the mass matrices in Eqs. (5) and (6) numerically. In Fig. 1,
we assume the GUT relation between the gaugino masses,
M2 � 2M1. In this case, the Higgsino-like neutralino (dou-
blet EWIMP) may be the dark matter if j�j & M1. The
shaded areas in these figures correspond to the Higgsino-
like region �jZ13j2 � jZ14j2 > 0:9), and the lightest neutra-
lino is degenerate with the lightest chargino, especially at a
large mass.

Figure 2 is the same plots except that we assume the
relation M2 � M1=3, which is predicted in the anomaly
mediated supersymmetry breaking scenario [24]. In this
-3
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case the Wino-like (triplet EWIMP) or the Higgsino-like
(doublet EWIMP) dark matter may be realized. The lighter
shaded areas (as bright as the shaded areas in Fig. 1) are the
Higgsino-like region (jZ13j2 � jZ14j2 > 0:9), and the
darker shaded areas are the Wino-like one (jZ12j2 > 0:9).
The Wino-like neutralino is highly degenerate with the
lightest chargino in mass as expected.

When the triplet EWIMP mass is around 1:7 TeV, the
thermal relic density of the dark matter is consistent with
the WMAP data. In the doublet EWIMP case, the mass
around 1 TeV explains the WMAP data [25]. However,
note that the dark matter in the Universe may be produced
thermally [26], or nonthermally [27]. Therefore, we do not
assume any scenarios for the dark matter relic density in
this paper. Instead, we assume the dark matter forms the
dark halo in our galaxy with the appropriate mass density.

B. Threshold singularity

In the calculations of the EWIMP annihilation cross
sections, a threshold singularity appears due to the gauge
interactions. For investigating the singularity, let us con-
sider the EWIMP annihilation cross section to two photons
!�~�0 ~�0 ! ""� as an example. The signal line gamma-ray
flux from the galactic center is proportional to !�~�0 ~�0 !
""�. This process is a radiative one, and the full one-loop
nonrelativistic cross section in the MSSM context has al-
ready been calculated in Ref. [19]. It is found that the cross
section is suppressed only by theW boson mass, not by the
neutralino mass as

!v�
�2�22
m2W

; (10)

if the neutralino is heavy and almost Wino- or Higgsino-
like. The dominant diagram is shown in Fig. 3.

On the other hand, the cross section must be bounded
from above by the unitarity limit,

!v<
4�

vm2
: (11)

Thus, the one-loop cross section exceeds the bound for the
extremely heavy neutralino. It means that the higher-order
corrections should be included. The dominant higher-order
contribution comes from the ladder diagrams. The nth
FIG. 3. Dominant diagram in the Wino- or Higgsino-like neu-
tralino annihilation to two photons at one-loop level, when the
neutralino is heavy compared to the weak gauge bosons.

063528
order (�n2) ladder diagram, in which n weak gauge bosons
are exchanged, is depicted in Fig. 4. The corresponding
amplitude An of the diagram is roughly given by

A n ’ �
�
�2m
mW

�
n
: (12)

When the neutralino mass m is large enough, the diagrams
are enhanced by a factor of �2m=mW for each weak gauge
boson exchange. The higher-order loop diagrams become
more and more important when �2m * mW .

Enhancement of ladder diagrams in nonrelativistic lim-
its is related to a threshold singularity. Recall that a thresh-
old singularity appears in the nonrelativistic ���� pair
annihilation cross section. When the relative velocity v of
the muon pair is smaller than �, the amplitude of the
n-order ladder diagram, in which n photons are exchanged
between the muon pair, is proportional to ���=v�n, and the
perturbative expansion by � breaks down. The internal
muons are close to nonrelativistic on-shell states. The
muon and photon propagaters are proportional to 1=v2

and each loop integration gives �v5. Thus, the diagrams
are enhanced by �=v for each photon exchange. This is
because the kinetic energy of muon pair, m�v2=4, is
smaller than the Coulomb potential energy, �2m�, and
the wave function of the incident particles is deformed
from plane waves. We need to systematically resum the
ladder diagrams or to use the wave function under the
Coulomb potential in order to get the precise annihilation
cross section.

In the nonrelativistic EWIMP pair annihilation, the sub-
diagram corresponding to the process ~�0 ~�0 ! ~�� ~�� in
each ladder diagram is very close to the threshold when the
mass difference 	m is negligible. In this case, the spatial
momentums for EWIMPs and the SU�2�L partners in the
internal lines are regularized by the weak gauge boson
masses. Their propagators and the weak gauge boson
ones behave as m=m2W and 1=m2W , respectively, and the
loop integration gives �2m5W=m. Thus, the diagrams are
enhanced by �2m=mW for each weak gauge boson ex-
change, as shown above. This implies that when �2m *

mW , the weak interaction becomes a long-range force and
the wave function is significantly modified inside the
Yukawa potentials induced by the weak gauge boson ex-
changes in the nonrelativistic limit. In the following sec-
tions, we will introduce a systematic method to derive the
FIG. 4. Dominant diagram in the Wino- or Higgsino-like neu-
tralino annihilation at O���n2�, in which n weak gauge bosons
are exchanged.
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annihilation cross sections in the threshold singularity
region by using the nonrelativistic action.

The elastic scattering cross section of dark matter with
nucleon is important for the direct search for dark matter
[28]. If the dark matter is an EWIMP and much heavier
than the weak gauge boson masses, the one-loop correction
to the cross section is suppressed only by the weak gauge
boson masses and it may be dominant over the tree-level
contribution [29]. However, the perturbative expansion is
still reliable, unlike the case of the annihilation cross
sections. This is because the reduced mass in the
EWIMP and nucleon two-body system is not heavy enough
for nonperturbative corrections to be sizable.
III. TWO-BODY STATE EFFECTIVE ACTION

In this section we derive the effective actions for the
nonrelativistic two-body states including pairs of EWIMPs
and the SU�2�L partners. The action is derived by following
steps. (i) We integrate out all fields except EWIMPs and
the SU�2�L partners such as the lightest neutralino and
chargino in the MSSM action. (ii) The nonrelativistic
action SNR is obtained by integrating out large momentum
modes of EWIMPs and the SU�2�L partners. The action
includes the effect of the EWIMP annihilation as the
absorptive parts. (iii) The action SNR is expanded by the
velocities of EWIMPs. (iv) At last, we introduce auxiliary
fields to the action SNR, which represent two-body states of
EWIMPs and the SU�2�L partners. The two-body state
effective action S�II� is obtained by integrating out all fields
except those auxiliary fields in the nonrelativistic action
SNR.

In the following, we derive the two-body state effective
action for the triplet EWIMP (Wino-like neutralino). For
the doublet EWIMP (Higgsino-like neutralino), only the
final result is presented, because the derivation is essen-
tially the same as that of the triplet one.

A. Integrating out all fields except ~�0 and ~��

Relevant interactions to the annihilation cross section
for the triplet EWIMP are the gauge interaction in Eq. (2).
In the MSSM, the lightest neutralino and chargino have
other interactions with sfermions and Higgs bosons.
However, the contributions to the annihilation cross sec-
tions are suppressed by the sfermion masses or the
gaugino-Higgsino mixing. We assume that these contribu-
tions are small, and neglect them.

After integrating out the gauge bosons, the effective
action for the triplet EWIMP and its charged SU�2�L
partner becomes

Seff �
Z
d4x

�
1

2
~�0�i@6 �m�~�0 � ~���i@6 �mc�~�

�

�
� Sint�~�

0; ~���; (13)
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Sint � 2i��
Z
d4x1d4x2

�
2

s2W
j�yW �x1�G

�W�
�( �x1 � x2�j(W�x2�

� j����x1�
�
G�"��(�x1 � x2�

�
c2W
s2W
G�Z��(�x1 � x2�

�
j����x2�

�
; (14)

where the parameter mc is the mass of the charged SU�2�L
partner. The functions G�W��( �x�, G

�Z�
�(�x�, and G�"��(�x� are the

Feynman propagators of the W, Z bosons and photon,
respectively. The currents j�W�x� and j����x� are defined as

j�W�x� � ~�0�x�"� ~���x�; j����x� � ~���x�"� ~���x�:

(15)

Here we include the effects of the nonvanishing mass
difference between the EWIMP and its SU�2�L partner,
	m�� mc �m�, which comes from the electroweak sym-
metry breaking. The nonvanishing 	m gives sizable effects
on the annihilation cross sections when 	m is not negli-
gible compared with �2mW as will be shown in Sec. V. On
the other hand, theSU�2�L � U�1�Y breaking in the gauge
interactions gives at most corrections up to O�m2W=�

2�
to the cross sections, and they can be ignored as far as
mW � �.

B. Integrating out large momentum modes of ~�0

and ~��

We now derive the action which describes the nonrela-
tivistic motion of the EWIMP and its SU�2�L partner.
Namely, we integrate out the large momentum modes of
these particles in Seff . We divide the fields ~�0 and ~�� into
two parts, the nonrelativistic part and the other,

~�0�x� � ~�0NR�x� � 	~�
0�x�;

~�0NR�x� �
Z
�NR�

d4p

�2��4
+0�p�e�ipx;

	~�0�x� �
Z
�NR�

d4p

�2��4
+0�p�e�ipx;

(16)

where the +0�p� is the Fourier coefficient of the EWIMP
field. The region of the integration �NR� is defined roughly
by �NR� � f�p0; ~p�jp0 � �m�O�mj ~vj2�; ~p � O�m ~v�;
j ~vj � 1g, and �NR� means the complementary set of
�NR�. The SU�2�L partner field ~�� is also divided into
~��NR and 	~�� in the same way. After integrating out large
momentum modes 	~�0 and 	~�� in the action Seff , the
nonrelativistic effective action SNR is obtained as

SNR �
Z
d4x

�
1

2
~�0NR�i@6 �m�~�

0
NR� ~��NR�i@6 �mc�~�

�
NR

�
�Sint�~�

0
NR; ~�

�
NR� � 	S�~�

0
NR; ~�

�
NR�: (17)
-6
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All effective interactions induced from the integration by
	~�0 and 	~�� are included in 	S. Though they are sup-
pressed by the EWIMP mass in comparison with interac-
tions in Sint, they give leading contributions to the
imaginary part (absorptive part) of the nonrelativistic ac-
tion. The action is further simplified in the next step.

C. Nonrelativistic expansion of the action SNR

Here, we expand the action SNR by the velocity of the
EWIMP. For the expansion, it is convenient to use two-
components spinor fields - , ., and / instead of ~�0NR and
~��NR. These spinor fields are defined by

~�0NR �
e�imt- � ieimt

~r� ~!
2m -

c

eimt-c � ie�imt
~r� ~!
2m -

0@ 1A;

~��NR �
e�imt.� ieimt

~r� ~!
2m /

eimt/� ie�imt
~r� ~!
2m .

0@ 1A:
(18)

The spinor -c is the charge conjugation of - , -c �
�i!2-�, where !2 is the Pauli matrix. Spinors - and .
annihilate one ~�0 and one ~��, respectively, while / creates
one ~��.

The nonrelativistic action SNR is systematically ex-
panded by the velocity of the two-components spinor
fields. The kinetic terms in Eq. (17) become

SNRjkinetic terms �
Z
d4x

�
-y
�
i@t �

r2

2m

�
-

� .y
�
i@t � 	m�

r2

2m

�
.

� /y
�
i@t � 	m�

r2

2m

�
/
�
: (19)

The interactions in Sint of Eq. (17) are reduced as

Sint �
Z
d4xd3y

�
�

2j ~x� ~yj

�
1�

c2W
s2W
e�mZj ~x� ~yj

�
.y�x�/� ~y; x0�

� /y� ~y; x0�.�x� �
�2e

�mW j ~x� ~yj

2j ~x� ~yj

� f-y�x�-c� ~y;x0� � /y� ~y; x0�.�x� � h:c:g
�
; (20)

where we keep terms which dictate the transitions between
states with both spin and isospin singlet. The EWIMP
S-wave state is spin-singlet due to the Majorana nature,
and only those terms are kept to calculate the EWIMP
annihilation cross sections at the nonrelativistic limit.
The first term in the parenthesis describes the Coulomb
force and the force by one Z-boson exchange between ~��

and ~��. The second term is for the transition between ~�0 ~�0

and ~�� ~�� by one W boson exchange.
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The imaginary part (absorptive part) of the action SNR is
in 	S in Eq. (17). It comes from following box diagrams:
(a) transitions from ~�� ~�� to ~�� ~�� with intermediate
W�W�, Z0Z0, "Z and "" states, (b) a transition from
~�0 ~�0 to ~�0 ~�0 with an intermediate W�W� state, and (c)
a transition from ~�0 ~�0 to ~�� ~�� with an intermediate
W�W� state. These effective interactions are simplified
in the nonrelativistic expansion as

	S �
i��22
m2

Z
d4x

��
1

2
� c4W � 2s

2
Wc

2
W � s

4
W

�
.y/ � /y.

� 2-y-c � -cy- �
1

2
�-y-c � /y.� h:c:�

�
: (21)

Here, we assume that the EWIMP mass m is much heavier
than the weak gauge boson masses,m mW;mZ. The first
term of the right-hand side in Eq. (21) corresponds to the
box diagrams (a). Each term in the parenthesis comes from
the diagrams with intermediate W�W�, Z0Z0, "Z, and ""
states, respectively. The second and third terms correspond
to the diagrams of (b) and (c), respectively.

D. Two-body state effective action

The nonrelativistic action for the triplet EWIMP is now
given by Eqs. (19)–(21). We now introduce auxiliary fields
!N and !C, which describe the two-body states ~�0 ~�0 and
~�� ~�� with both spin and isospin singlet, respectively. We
thus insert identities

1 �
Z

D!NDs
y
N exp

�
i
2

Z
d4xd3y!N�x; ~y�

�

�
syN� ~y; x� �

1

2
-y�x�-c� ~y; x0�

��
;

1 �
Z

D!CDs
y
C exp

�
i
2

Z
d4xd3y!C�x; ~y�

�

�
syC� ~y; x� � .

y�x�/� ~y; x0�
��
; (22)

and their conjugates into the partition function described
by the nonrelativistic action. After integrating out ., /, - ,
sN , sC and their conjugates, the two-body state effective
action S�II� is obtained as

S�II� �
Z
d4xd3r(y�x; ~r�

��
i@x0 �

r2x
4m
�
r2r
m

�

� V� ~r� � 2i)	�~r�
�
(�x; ~r�; (23)

where the argument x denotes the center of mass coordi-
nate in the two-body system and ~r is the relative coordi-
nate. The two-components two-body state field (�x; ~r� is
defined by
-7
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(�x; ~r� �
�
+C�x; ~r�
+N�x; ~r�

�

� ��V�r� � 2i)	� ~r���1
�
!C�x; ~r�
!N�x; ~r�

�
: (24)

The components, +N and +C, describe pairs of the
EWIMPs and the SU�2�L partners, respectively. These
can be also written as

+C�x; ~r� �
1���
2
p /y� ~x� ~r=2; x0�.� ~x� ~r=2; x0�; (25)

+N�x; ~r� �
1

2
-cy� ~x� ~r=2; x0�-� ~x� ~r=2; x0�; (26)

by using - , ., and / fields. The difference between the
normalizations of+C in Eq. (25) and+N in Eq. (26) comes
from the fact that +N describes a pair of the identical
Majorana fermions.

The electroweak potential V�r� in Eq. (23) is given by

V �r� �
2	m� �

r � �2c
2
W
e�mZr
r �

���
2
p
�2

e�mWr
r

�
���
2
p
�2

e�mWr
r 0

 !
: (27)

The absorptive (imaginary) part ) is decomposed as ) �
)W�W� � )Z0Z0 � )"Z0 � )"" where each component is

HISANO, MATSUMOTO, NOJIRI, AND SAITO
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)W�W� �
��22
4m2

2
���
2
p���

2
p

4

 !
; )Z0Z0 �

��22
m2

c4W 0
0 0

� �
;

)"Z0 �
���2
m2

2c2W 0
0 0

� �
; )"" �

��2

m2
1 0
0 0

� �
:

(28)

The two-body state effective action Eq. (23) is the final
result of this section.

In the case of the doublet EWIMP, the derivation of the
effective action is parallel to that of the triplet one. The
EWIMP is accompanied with the neutral SU�2�L partner in
addition to the charged one. The two-body effective action
becomes 3� 3 matrix form, and the two-body state field
(�x; ~r� has three components,

(�x; ~r� �
+C�x; ~r�
+N�x; ~r�
+N2�x; ~r�

0
B@

1
CA; (29)

where+N ,+C, and+N2 describe pairs of the EWIMPs, the
charged and the neutral partners, respectively. The electro-
weak potential is
V �r� �

2	m� �
r �

�2�1�2c2W �
2

4c2W

e�mZr
r �

��
2
p
�2e�mWr

4r �
��
2
p
�2e�mWr

4r

�
��
2
p
�2e�mWr

4r 0 � �2e�mZr

4c2Wr

�
��
2
p
�2e�mWr

4r � �2e�mZr

4c2Wr
2	mN

0BBBB@
1CCCCA; (30)

where 	mN is the mass difference between the EWIMP and its neutral SU�2�L partner. The absorptive part ) in this case is
given by ) � )W�W� � )Z0Z0 � )"Z0 � )"", where

)W�W� �
��22
64m2

8
���
2
p ���

2
p

���
2
p

4 4���
2
p

4 4

0
BB@

1
CCA; )Z0Z0 �

��22
64c4Wm

2

4�1� 2s2W�
4

���
2
p
�1� 2s2W�

2
���
2
p
�1� 2s2W�

2���
2
p
�1� 2s2W�

2 2 2���
2
p
�1� 2s2W�

2 2 2

0
BB@

1
CCA;

)"Z0 �
���2
2c2Wm

2

�1� 2s2W�
2 0 0

0 0 0

0 0 0

0BB@
1CCA; )"" �

��2

m2

1 0 0

0 0 0

0 0 0

0BB@
1CCA: (31)

IV. OPTICAL THEOREM AND ANNIHILATION CROSS SECTIONS

We now derive the EWIMP pair annihilation cross sections by using the two-body state effective actions in Eq. (23).
Using the formula, we also show that the one-loop cross section of ~�0 ~�0 ! 2" is reproduced in the perturbative expression
while the cross section in a limit of m! 1 satisfies the unitarity bound.

A. Annihilation cross section formula

Because of the optical theorem, the total EWIMP pair annihilation cross section is written by the imaginary part of the
amplitude as
-8
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����������������������
s2 � 4m2s

p
! � =�Mii�; (32)

where
���
s
p

is the center of mass energy, and Mii is the
invariant amplitude of the process, ~�0 ~�0 ! ~�0 ~�0. When
the incident EWIMPs are highly nonrelativistic, the rele-
vant initial state for the pair annihilation is only the spin-
singlet S-wave state as mentioned before. We thus project
the above Eq. (32) to the 1S0 state by using the projection
operator

R
d3Pdkj ~P; k; 1S0;Nih ~P; k;

1S0;Nj,

j ~P; k; 1S0;Ni �
k
4
����
�
p

Z
d,k�a

y
�� ~P=2� ~k�a

y
�� ~P=2� ~k�

� ay�� ~P=2� ~k�a
y
�� ~P=2� ~k��j0i; (33)

where ~P is the total momentum and ~k is the relative
momentum in the EWIMP two-body system. The variable
k is k � j ~kj. The state vector j ~P; k; 1S0i is normalized as
h ~P0; k0; 1S0;Nj ~P; k;

1S0;Ni � 	� ~P� ~P0�	�k� k0�. The op-
erator ay�� ~k� creates one ~�0 with the momentum ~k and the
spin �1=2, and satisfies the anticommutation relation
fas� ~p�; a

y
s0 � ~p

0�g � 	� ~p� ~p0�	ss0 .
If the ~�� ~�� annihilation cross section is considered in a

spin-singlet and S-wave system, the projection operatorR
d3Pdkj ~P; k; 1S0;Cih ~P; k;

1S0;Cj is used instead of one in
Eq. (33), where

j ~P; k; 1S0;Ci �
k

2
�������
2�
p

Z
d,k�b

y
�� ~P=2� ~k�d

y
�� ~P=2� ~k�

� by�� ~P=2� ~k�d
y
�� ~P=2� ~k��j0i: (34)

The operators by�� ~k� and dy�� ~k� create one ~�� and one ~��

with the momentum ~k and the spin �1=2, respectively.
They satisfy the anticommutation relations
fbs� ~p�; b

y
s0 � ~p

0�g � fds� ~p�; d
y
s0 � ~p

0�g � 	� ~p� ~p0�	ss0 .

After the projection, the S-wave cross sections !�S�i �i �
1; 2� become

!�S�i � ci
32�5

m2v3
=�M�S�

i �v��; (35)

where v is the relative velocity between incident particles.
The cross section !�S�i is for ~�0 ~�0 annihilation (i � 2) and
~�� ~�� annihilation (i � 1). The coefficient ci is given by
c1 � 1 and c2 � 2. M�S�

i �v� is the invariant amplitude
from the 1S0 state to the 1S0 state. We use the nonrelativ-
istic approximation as s ’ 4m2 �m2v2 for deriving the
cross sections.

The invariant amplitude M�S�
i �v� is obtained from the

S-wave Green function of the two-body state field(. From
the two-body state effective action in Eq. (23), the
Schwinger-Dyson equation (equation of motion for the
Green function) is derived as
063528
�
i@x0 �

r2x
4m
�
r2r
m
� V�r� � i)

	�r�

2�r2

�
�h0jT(�x; ~r�(y�y; ~r0�j0i

� i	�4��x� y�	�3�� ~r� ~r0�: (36)

The potential V�r� and the absorptive part ) are defined in
Eqs. (27) and (28) for the triplet case, and in Eqs. (30) and
(31) for the doublet case. Since the potential depends on
only r, the Green function can be expanded by the
Legendre polynomials as

h0jT(�x; ~r�(y�y; ~r0�j0i �
Z d4P

�2��4
e�iP�x�y�

�
X
l

2l� 1
4�

Pl�cos"���i�

�G�E;l��r; r0�; (37)

where " is the angle between ~r and r0. The variable E in the
superscript is the internal energy of the two-body state
(E � P0 � ~P2=4m). The equation for the function
G�E;l��r; r0� is then given by�
�E�

1

mr
d2

dr2
r�

l�l� 1�

mr2
� V�r� � i)

	�r�

2�r2

�
G�E;l��r; r0�

�
	�r� r0�

r2
: (38)

The invariant amplitude M�S�
i �v� is written by the

�i; i� component of the S-wave Green function G�E;0�ii as

M �S�
i �v� �

k2

4�4
lim

E!k2=m

�
E�

k2

m

�
2

�
Z 1

0
r2drr02dr0j0�kr�j0�kr0�G

�E;0�
ii �r; r0�;

(39)

where k � mv=2 and j0�x� is the zeroth order of the
spherical Bessel function. By using this expression, we
obtain the formula for the total S-wave annihilation cross
section !�S�i ,

!�S�i v � ci
2�

k2
lim

E!k2=m

�
E�

k2

m

�
2 Z 1

0
rdrr0dr0 sin�kr�

� sin�kr0�=�G�E;0�ii �r; r0��: (40)

In general, the function G�E;0�ii �r; r0� cannot be solved ana-
lytically, therefore we need to solve the Schwinger-Dyson
equation (38) numerically to obtain the cross sections.

B. Solving the Schrödinger equation

When a function, g�r; r0� � rr0G�E;0��r; r0�, is defined,
Eq. (38) becomes the standard Schrödinger equation in one
dimension,
-9
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�
1

m
d2

dr2
g�r; r0� �

�
V�r� � i)

	�r�

2�r2

�
g�r; r0� � Eg�r; r0�

� 	�r� r0�: (41)

In the following we expand the solution g�r; r0� perturba-
tively by the absorptive part ).

At the leading-order, the solution g0�r; r0� satisfies the
equation

�
1

m
d2

dr2
g0�r; r0� � V�r�g0�r; r0� � Eg0�r; r0�

� 	�r� r0�: (42)

The boundary conditions of the equation are determined by
the following two requirements: (i) The Green function
G�E;0��r; r0� must be finite for any r and r0. (ii) The Green
function has only an outgoing wave at jr� r0j ! 1. Then
the solution g0�r; r0� is obtained as

g0�r;r0��mg>�r�gT<�r
0���r�r0��mg<�r�gT>�r

0���r0 �r�;

(43)

where g>�<��r� is the solution of the homogeneous equa-
tion,

�
1

m
d2

dr2
g>�<��r� � V�r�g>�<��r� � Eg>�<��r�: (44)

Here, g>�<� is given by a 2� 2 �3� 3�matrix in the triplet
(doublet) EWIMP case. The solution g<�r� satisfies the
boundary conditions, (i) g<�0� � 0 and (ii) g0<�0� � 1,
while the conditions for g>�r� are (i) g>�0� � 1 and
(ii) g>�r� has only an outgoing wave at r! 1.

At the first order of ), the solution of Eq. (41), g1�r; r0�,
is simply given by the leading-order solution g0�r; r0� as

g1�r; r0� � �
Z
dr00g0�r; r00�

�
�i)

	�r00�

2�r002

�
g0�r00; r0�

�
im2

2�
g>�r�)g>�r0�: (45)

The S-wave cross sections in Eq. (40) are proportional to
the imaginary part of the Green function G�E;0�ii . The imagi-
nary part is related to not only the annihilation cross
section but also the elastic cross section of the process,
~�0 ~�0 ! ~�0 ~�0 or ~�� ~�� ! ~�� ~��. After extracting the
contribution of the annihilation processes from =�G�E;0�ii �,
the total S-wave annihilation cross section is obtained as

!�S�i v � ci
m2

k2
lim

E!k2=m

�
E�

k2

m

�
2X
a;b

)abAiaA
�
ib;

Aia �
Z 1

0
dr sin�kr��g>�r��ia:

(46)

It is found that only the asymptotic behavior of the
function g>�r� is relevant in the calculation of the cross
sections. The function g>�r� has only an outgoing wave at
r! 1 as stated above. When the SU�2�L partners do not
063528
appear in the asymptotic state (E< 2	m), the function
g>�r� should behave as

�g>�r��ijjr!1 � 	i2d2j�E�ei
������
mE
p

r: (47)

Thus, the total EWIMP pair annihilation cross section is
given in a simple form,

!�S�2 v � 2
X
a;b

)abd2a�mv
2=4�d�2b�mv

2=4�: (48)

If the potential term in Eq. (42) is neglected (in other
words, the long-distance effects are negligible), the coef-
ficient d2a�E� is given by 	2a and the cross section is
simply given by !�S�2 v � 2)22, which is consistent with
the tree-level cross section as expected. Below we omit the
subscript 2 for the EWIMP annihilation cross section for
simplicity.

C. One-loop result in ~�0 ~�0 ! �� process

For a demonstration of the validity of Eq. (48), we show
that the EWIMP annihilation cross section to two photons
agrees with the one-loop cross section when the potential
term V is treated perturbatively.

From Eq. (48), the annihilation cross section to two
photons is given by

!�S�vj"" � 2�)""�11jd21�mv2=4�j2; (49)

where the partial absorptive part to two photons )"" is
given in Eq. (28) for the triplet EWIMP case and in
Eq. (31) for the doublet EWIMP case, respectively. Here
we show only the result in the triplet EWIMP case for
simplicity. The coefficient d21 is obtained by solving the
Schrödinger equation (44). When we expand the solution
by the potential term V�r�, �g>�r��21 is obtained at leading-
order as

�g>�r��21 � d21�E�ei
������
mE
p

r ’
�m

���
2
p
�2

mW �
��������������
2m	m
p ei

������
mE
p

r: (50)

Here, we take E< 2	m and m mW . Thus, the annihi-
lation cross section to two photons is given as

!�S�vj"" ’
4��2�22
m2W

�
1�

��������������
2m	m

m2W

s �
�2
: (51)

This agrees with the result obtained in the full one-loop
calculation in a heavy EWIMP mass limit [19], including
the correction due to the nonvanishing 	m.

D. Cross section for ~�0 ~�0 ! �� in a limit of m! 1

When the EWIMP mass m is much heavier than the
weak gauge boson masses, we can not deal with the
potential term perturbatively. Equation (44) can be solved
analytically in the limit of m! 1, and the qualitative
behavior of the cross sections can be discussed. This is
because the weak gauge boson masses mW and mZ and the
-10
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mass difference 	m can be neglected in this limit. The
Schrödinger equation for g>�r� becomes

�
1

m
d2

dr2
g>�r� �

1

r
Ug>�r� � Eg>�r�; (52)

where U is the coefficient matrix for the electroweak
potential, and defined by U � �rV�r��r!0. Because all
forces in the potential become Coulomb-type, the solution
of above equation is determined by using the confluent
hypergeometric function as

�g>�r��ij �
X
i0
Oii0�i0 �r�OTi0j;

�i�r� � )
�
1�

i:i
2

����
m
E

r �
W
��i:i=2�

�������
m=E
p

;�1=2�
��2i

��������
mE
p

r�:

(53)

The function )�z� is the Euler’s Gamma function and
W<;��z� is the Whittaker function. The matrix O is the
diagonalization matrix, OTUO � diag:�:1; � � ��, and :i is
the eigenvalue of the matrix U.

The EWIMP annihilation cross section to two photons is
then derived as

!�S�v �
��2

m2

��������X
i

Oi2)
�
1�

i:i
2

����
m
E

r �
Oi1

��������2

’

�
2:8� 10�5=vm2 �Triplet EWIMP�;
3:2� 10�6=vm2 �Doublet EWIMP�;

(54)

in the limit of m! 1. Here, we use the approximation
v� 1 to derive the last equation. The cross section be-
haves as !v� 1=�vm2�, and satisfies the unitarity condi-
tion in Eq. (11) as expected.

V. ANNIHILATION CROSS SECTIONS AND
ZERO-ENERGY RESONANCES

When the EWIMP mass is heavy enough so that the
effects of the long-distance force by the electroweak po-
tential cannot be ignored but not heavy enough to take the
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FIG. 5. Annihilation cross sections (!v) to "" and W�W� when
Here, v=c � 10�3. The leading-order cross sections in perturbation
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limit ofm! 1, we have to solve the Schrödinger equation
(44) numerically for the precise annihilation cross sections.
In this section we show some numerical results, and dis-
cuss the behaviors using a toy model.

A. Numerical result and zero-energy resonances

First, we show numerical results for the triplet and
doublet EWIMP annihilation cross sections to "" and
W�W�. In Fig. 5, the cross sections with some fixed
mass differences (	m � 0:1; 1 GeV) are shown as func-
tions ofm. We set to the mass difference 	mN to be 	mN �
2	m for the doublet EWIMP. In this calculation, the rela-
tive velocity of the incident EWIMPs v=c is taken to be
10�3, which is the typical velocity of dark matter in the
galactic halo. We also show the leading-order cross sec-
tions in perturbation as dotted lines. When the EWIMP
mass m is around 100 GeV, the cross sections to "" and
W�W� are almost the same as the perturbative ones.
However, when m is large enough (m * 0:5 TeV for the
triplet EWIMP andm * 1:5 TeV for the doublet EWIMP),
the cross sections are significantly enhanced and have
resonance behaviors.

The qualitative behavior of the cross sections, especially
around the resonances, may be understood by using a toy
model, in which the electroweak potential is approximated
by a well potential. Here we discuss the triplet EWIMP
case, and the extension to the doublet case is straightfor-
ward. Taking cW � 1 and 	m � 0 for simplicity, the elec-
troweak potential is approximated as

V �r�� �b1�2mW �b1
���
2
p
�2mW

�b1
���
2
p
�2mW 0

 !
���b2mW��1�r�;

(55)

where b1 and b2 are numerical constants. By comparing
the annihilation cross sections to "" in this potential and in
the perturbative calculation Eq. (51) for small m, we find
b1 � 8=9 and b2 � 2=3. Under this potential, the two-
body states of 2~�0 and ~�� ~�� have attractive and repulsive
0.1 1 10
m (TeV)

Annihilation cross section to

Triplet
Doublet

δ

δ

m = 0.1 (GeV)

m
 =

 0.1 (G
eV

)

δ

δ

m
 =

 1 (G
eV

)

m = 1 (GeV)

W  W
+ -

-3

10
-28

10
-26

10
-24

10
-22 ( v/c = 10    )

( 
cm

   
se

c 
  )

- 1
3

	m � 0:1; 1 GeV for both the triplet and the doublet EWIMPs.
are also shown for 	m � 0 (broken lines).
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states, whose potential energies are :� � �V11 �
������������������������
V211 � 4V

2
12

q
�=2with Vij�i; j � 1; 2� elements in V. The attractive state

is cos�+N � sin�+C with tan2� � �:�=:�.
By virtue of the approximation, the pair annihilation cross sections for the triplet EWIMP are obtained analytically,

�!v�W�W� �
��22
9m2

�jd21j2 �
���
2
p
<�d21d�22� � 2jd22j

2�; �!v�"" �
2��2

9m2
jd21j2;

d21 �
� ���
2
p �

cos�pc
����������������������
v2=v2c � 2

q
� � i

��������������������
v2

v2 � 2v2c

s
sin�pc

����������������������
v2=v2c � 2

q
�

�
�1

�
���
2
p �

cos�pc
����������������������
v2=v2c � 1

q
� � i

�����������������
v2

v2 � v2c

s
sin�pc

����������������������
v2=v2c � 1

q
�

�
�1
�
;

d22 �
��
cos�pc

����������������������
v2=v2c � 2

q
� � i

��������������������
v2

v2 � 2v2c

s
sin�pc

����������������������
v2=v2c � 2

q
�

�
�1

� 2
�
cos�pc

����������������������
v2=v2c � 1

q
� � i

�����������������
v2

v2 � v2c

s
sin�pc

����������������������
v2=v2c � 1

q
�

�
�1
�
; (56)
where pc and vc are defined by pc �
����������������������
2�2m=mW

p
and

vc �
���������������������������
32�2mW=9m

p
, respectively.

If the kinetic energy of the EWIMP pair is much larger
than the potential energy (v vc) or the electroweak
potential is pointlike (pc � 1), the cross sections coincide
with the results in leading-order calculation in perturbation
as expected. However, when v is much smaller than vc,
such as in the case of dark matter in the current Universe,
the d21 and d22 become

d21 ’
���
2
p
�cos

���
2
p
pc��1 �

���
2
p
�coshpc��1;

d22 ’ �cos
���
2
p
pc�

�1 � 2�coshpc�
�1:

(57)

Therefore, when
���
2
p
pc ’ �2n� 1��=2�n � 1; 2; � � ��, the

coefficients d21 and d22 are enhanced by several orders of
magnitude. As the result, the cross sections show the
resonance features as in Fig. 5. These resonances are
called zero-energy resonances [30], because the condition���
2
p
pc ’ �2n� 1��=2 is nothing but existence of a bound

state with zero binding energy. The bound states consist of
mixtures of pairs of the EWIMPs and the charged partners.

In Fig. 5, the first resonance in small 	m (that is 	m�
0:1 GeV) appears at m� 2 TeV. On the other hand, the
well potential model predicts the first resonance at m�
1:8 TeV. Thus, the model describes the behavior around
the first resonance well. Also, notice that the cross section
to two photons, which is induced by the one-loop diagrams
in perturbation, is suppressed only by �2=�22 compared
with that to W�W� for pc * 1. This behavior is also seen
in Fig. 5.

On the resonance, the coefficients d21 and d22 in Eq. (57)
behave as

d21 ’ i
vc
v
; d22 ’ i

���
2
p
vc
v
; (58)

for the small relative velocity v� vc. Thus the cross
063528
sections !v are proportional to v�2. However, this is not
a signature for breakdown of the unitarity condition in
Eq. (11). We find from study in the one-flavor system under
the well potential V that !v would be saturated by the
finite width for the two-body system (that is, the absorptive
part) ) when v� mV), and the unitarity is not broken.

So far we have ignored the mass difference 	m in
Eq. (55). When 	m is not negligible compared with
��2mW , the potential energy for the attractive state is
reduced as j:�j ’ 16�2mW=9� 4	m=3 for 	m & �2mW
and j:�j ’ 128��2mW�2=�81	m� for 	m * �2mW , and
the attractive force becomes weaker. Also, the component
of the EWIMP pair in the attractive state becomes smaller.
Then, the zero-energy resonances move to heavier m for
larger 	m, and the EWIMP annihilation cross sections
around the resonances become smaller, as in Fig. 5. This
effect is more significant in the doublet EWIMP case than
in the triplet one, since the potential energy by the weak
gauge boson exchanges is smaller.

Now we have discussed importance of the zero-energy
resonances for the EWIMP annihilation cross sections.
One might consider that the thermal relic EWIMP abun-
dance is also modified due to the zero-energy resonances.
The answer to the question is no. The typical relative
velocity is given by v� 1=3 at the freezout temperature
T �m=20. Note that the critical velocity vc for the triplet
EWIMP is given by vc � 2�2 � 0:07 at the first zero-
energy resonance where

���
2
p
pc � �=2. The critical veloc-

ity for the doublet EWIMP is smaller than that of the triplet
one. Thus the relative velocity at the freezout temperature
is not small enough to affect the thermal relic abundance.

One might have another question relevant to the annihi-
lation in the Universe at very low temperature. Since the
cross sections are proportional to v�2 on the zero-energy
resonance, the EWIMP annihilation rate (the annihilation
cross section multiplied by the EWIMP number density
-12
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nEW) becomes much larger after the freezingout phenome-
non stated above. If the annihilation rate becomes larger
than the Hubble constant H at low temperature, the
EWIMP begins to annihilate again (recoupling). The usual
calculation of dark matter abundance might be changed.

For studying the possibility, we use the previous toy
model for the triplet EWIMP. The thermal-averaged anni-
hilation cross section h!vi on the first zero-energy reso-
nance at temperature T is derived as

h!vi � q
�
1GeV

T

�
; �in the unit of GeV�2�; (59)

where q� 7� 10�9. It is found that the condition of the
‘‘recoupling,’’ h!vinEW >H, attributes to the inequality,

?EW
s
 7� 10�8�GeV�; (60)

where ?EW�� mnEW� is the EWIMP mass density and s is
the entropy of the Universe. The lower bound is larger than
the cosmological observation for dark matter (?=s ’ 7�
10�9 GeV). Thus the recoupling does not occur in our
Universe.

B. Fitting functions

The numerical calculation of the EWIMP annihilation
cross sections takes huge CPU power. It is thus convenient
to derive the fitting functions which reproduce the numeri-
cal results with enough precision. We performed two pa-
rameter fitting of the annihilation cross sections for the
doublet and triplet EWIMPs, the EWIMP mass m and the
mass difference between the EWIMP and its charged part-
ner 	m. The velocity dependence of the cross sections is
weak except for very narrow regions in the vicinity of the
resonances and ignored. For the doublet EWIMP, the cross
sections further depend on the mass difference between the
EWIMP and its neutral partner 	mN . We fix 	mN � 2	m
in the derivation of the fitting functions for simplicity. This
relation is valid in the MSSM when tan� is large.

We use the fitting function,

!v�m;	m�jfit � 10�14�cm3s�1�

�

"X6
i;j�0

aij

�
m

1TeV

�
i
�
	m
1GeV

�
j
#
�1

; (61)

in the range 0:2 TeV ! m ! 10 TeV and 0:1 GeV !
	m ! 1 GeV. By performing the least-square method be-
tween the fitting function and the numerical integration, the
coefficients aij in each process are obtained. The numerical
values of the coefficients aij for the annihilation cross
sections to "" and W�W� in the triplet EWIMP case
and "", W�W� and Z0Z0 in the doublet EWIMP case
are given in Table I. Other annihilation cross sections are
evaluated from the cross sections to two photons as
063528
!v�~�0 ~�0 ! "Z0� � !v�~�0 ~�0 ! ""� �
2�2c2W
�

;

!v�~�0 ~�0 ! Z0Z0� � !v�~�0 ~�0 ! ""� �
�22c

4
W

�2
;

(62)

in the triplet EWIMP case, and

!v�~�0 ~�0 ! "Z0� � !v�~�0 ~�0 ! ""� �
�2�1� 2s2W�

2

2�c2W
;

(63)

in the doublet EWIMP case. This is because these pro-
cesses are induced via the transition of the EWIMP pair to
the charged partner pair.

C. Annihilation cross sections in the MSSM parameters

By using above fitting functions, we scan the annihila-
tion cross sections on the MSSM parameters. The input
parameters are the Bino mass M1, the Wino mass M2, the
Higgsino mass �, and tan�. We assume that the other
supersymmetric scalar particles, sleptons and squarks, are
heavy enough, and neglect the contributions to the cross
sections. Furthermore we consider two situations, in which
relations betweenM1 andM2 are different. The first one is
the GUT relation M1 � 0:5M2, which is frequently as-
sumed in the minimal supergravity scenario. Another one
isM1 � 3M2, which is predicted in the anomaly mediated
supersymmetry breaking scenario. The lightest neutralino
massm and the mass difference between the neutralino and
the chargino 	m in these two cases are given in Figs. 1 and
2 in Sec. II.

The nonperturbative effects due to the existence of the
resonances are important for the calculation of the annihi-
lation cross sections when the neutralino is Wino- or
Higgsino-like and heavy enough. On the other hand, the
leading-order calculation is precise enough in other regions
of the parameters. We thus match the fitting functions
derived in the previous section to the leading-order cross
sections in perturbation atm � 250 and 	m � 1 GeVwith
jZ12j

2  0:9 for the Wino-like and jZ13j2 � jZ14j2  0:9
for the Higgsino-like neutralino. Here, Zij is defined in
Eq. (4).

The results are shown in Fig. 6 and 7 which are contour
plots of the cross sections toW�W� and "". In Fig. 6, the
relation M1 � 0:5M2 is imposed. The regions j�j &

0:5M2 correspond to the Higgsino-like regions. As in
Fig. 1, the mass difference between the neutralino and
the chargino is larger than 1 GeV in most of the parameter
space. As the result, the first resonance appears at j�j �
10 TeV, which is out of the range of these figures. In the
regions with 0:5M2 & j�j the LSP is the Bino-like
neutralino.

The relationM1 � 3M2 is imposed in Fig. 7. In addition
to the Higgsino-like regions, which appears in the same
place as ones in Fig. 6, the Wino-like regions also appear in
-13



TABLE I. Coefficients of the fitting function Eq. (61) for the EWIMP annihilation cross sections to "" and W�W� in the triplet
case, and to "", W�W� and Z0Z0 in the doublet case.

(Triplet EWIMP, to "")
aij j � 0 j � 1 j � 2 j � 3 j � 4 j � 5 j � 6

i � 0 2:565 21� 10�1 2:886 49� 10�1 1:248 74� 10�1 �4:975 29� 10�1 8:487 60� 10�1 �6:976 38� 10�1 2:235 88� 10�1

i � 1 �1:101 91� 10�1 8:276 05� 10�1 �3:134 17� 10�0 7:526 92� 10�0 �1:024 29� 10�1 7:277 70� 10�0 �2:093 85� 10�0

i � 2 �1:593 40� 10�2 �4:836 05� 10�1 2:292 88� 10�0 �5:906 29� 10�0 8:317 12� 10�0 �6:031 57� 10�0 1:759 85� 10�0

i � 3 �8:783 12� 10�3 2:299 27� 10�1 �1:116 37� 10�0 2:820 55� 10�0 �3:869 27� 10�0 2:730 75� 10�0 �7:760 46� 10�1

i � 4 4:665 94� 10�3 �5:841 55� 10�2 2:720 64� 10�1 �6:651 70� 10�1 8:860 46� 10�1 �6:083 12� 10�1 1:684 06� 10�1

i � 5 �5:443 63� 10�4 6:002 90� 10�3 �2:738 28� 10�2 6:566 10� 10�2 �8:586 39� 10�2 5:790 81� 10�2 �1:575 71� 10�2

i � 6 1:954 07� 10�5 �2:100 46� 10�4 9:487 64� 10�4 �2:246 20� 10�3 2:898 95� 10�3 �1:929 89� 10�3 5:185 40� 10�4

(Triplet EWIMP, to W�W�)
aij j � 0 j � 1 j � 2 j � 3 j � 4 j � 5 j � 6

i � 0 �3:369 85� 10�3 1:232 15� 10�2 �4:081 64� 10�2 5:964 07� 10�2 �2:635 76� 10�2 �1:426 61� 10�2 1:137 21� 10�2

i � 1 5:617 68� 10�2 �6:025 47� 10�2 1:318 88� 10�1 �3:548 16� 10�2 �2:971 69� 10�1 4:061 16� 10�1 �1:579 62� 10�1

i � 2 �4:184 99� 10�2 8:093 53� 10�2 �1:055 70� 10�1 �1:609 18� 10�1 6:667 42� 10�1 �7:107 08� 10�1 2:522 66� 10�1

i � 3 6:548 65� 10�3 �4:195 56� 10�4 �8:612 35� 10�2 3:596 11� 10�1 �6:421 37� 10�1 5:317 27� 10�1 �1:668 97� 10�1

i � 4 1:433 30� 10�4 �6:788 93� 10�3 4:156 98� 10�2 �1:209 26� 10�1 1:830 77� 10�1 �1:379 81� 10�1 4:080 85� 10�2

i � 5 �8:331 19� 10�5 1:037 57� 10�3 �5:220 51� 10�3 1:366 54� 10�2 �1:930 28� 10�2 1:386 78� 10�2 �3:963 80� 10�3

i � 6 4:086 25� 10�6 �4:382 10� 10�5 2:047 33� 10�4 �5:070 69� 10�4 6:863 53� 10�4 �4:773 00� 10�4 1:330 68� 10�4

(Doublet EWIMP, to "")
aij j � 0 j � 1 j � 2 j � 3 j � 4 j � 5 j � 6

i � 0 1:049 98� 10�0 �1:922 20� 10�1 2:605 36� 10�0 �8:257 66� 10�0 1:242 56� 10�1 �9:119 21� 10�0 2:617 07� 10�0

i � 1 �4:170 41� 10�1 4:248 14� 10�0 �1:961 45� 10�1 5:231 45� 10�1 �7:398 32� 10�1 5:285 33� 10�1 �1:497 73� 10�1

i � 2 1:030 08� 10�1 �1:930 97� 10�0 1:056 26� 10�1 �2:973 10� 10�1 4:291 37� 10�1 �3:100 93� 10�1 8:821 03� 10�0

i � 3 �2:422 93� 10�2 4:156 16� 10�1 �2:280 85� 10�0 6:200 20� 10�0 �8:497 79� 10�0 5:801 86� 10�0 �1:529 47� 10�0

i � 4 2:248 03� 10�3 �3:438 65� 10�2 1:661 00� 10�1 �3:657 44� 10�1 3:379 53� 10�1 �9:302 67� 10�2 �2:821 21� 10�2

i � 5 �6:516 87� 10�5 6:856 71� 10�4 �2:517 09� 10�4 �1:228 16� 10�2 4:228 29� 10�2 �5:144 71� 10�2 2:242 06� 10�2

i � 6 �1:476 04� 10�7 1:743 90� 10�5 �2:403 49� 10�4 1:190 10� 10�3 �2:719 81� 10�3 2:870 46� 10�3 �1:164 60� 10�3

(Doublet EWIMP, to W�W�)
aij j � 0 j � 1 j � 2 j � 3 j � 4 j � 5 j � 6

i � 0 �6:511 80� 10�3 2:794 81� 10�2 �5:263 01� 10�2 4:492 24� 10�2 9:137 89� 10�3 �4:385 70� 10�2 2:110 67� 10�2

i � 1 1:713 30� 10�1 �1:787 24� 10�1 5:133 63� 10�1 �8:985 39� 10�1 8:560 09� 10�1 �3:752 30� 10�1 4:874 11� 10�2

i � 2 �5:421 60� 10�2 1:855 41� 10�1 �5:404 50� 10�1 9:570 81� 10�1 �8:895 08� 10�1 3:572 43� 10�1 �3:192 27� 10�2

i � 3 2:445 45� 10�3 �9:058 49� 10�4 �3:640 07� 10�2 1:576 25� 10�1 �3:137 15� 10�1 2:947 01� 10�1 �1:036 43� 10�1

i � 4 2:494 69� 10�4 �3:592 10� 10�3 2:137 27� 10�2 �6:520 43� 10�2 1:084 66� 10�1 �9:075 32� 10�2 2:954 80� 10�2

i � 5 �2:492 63� 10�5 3:331 27� 10�4 �2:029 85� 10�3 6:391 48� 10�3 �1:076 14� 10�2 9:004 77� 10�3 �2:920 73� 10�3

i � 6 6:513 35� 10�7 �9:636 36� 10�6 6:242 83� 10�5 �2:041 90� 10�4 3:500 50� 10�4 �2:951 51� 10�4 9:607 57� 10�5

(Doublet EWIMP, to Z0Z0)
aij j � 0 j � 1 j � 2 j � 3 j � 4 j � 5 j � 6

i � 0 �4:388 74��5 �9:723 21��3 7:535 13��2 �2:210 45��1 3:212 56��1 �2:320 73��1 6:643 97��2

i � 1 1:449 64��1 8:692 20��2 �5:063 89��1 1:347 05��0 �1:869 44��0 1:317 57��0 �3:720 03��1

i � 2 �6:164 30��3 �1:647 03��1 8:628 52��1 �2:172 91��0 2:927 30��0 �2:024 60��0 5:638 88��1

i � 3 �1:362 78��2 1:291 07��1 �5:707 25��1 1:357 08��0 �1:778 04��0 1:208 97��0 �3:326 09��1

i � 4 2:051 91��3 �1:945 24��2 8:764 60��2 �2:133 19��1 2:864 59��1 �1:995 25��1 5:613 27��2

i � 5 �1:069 00��4 1:079 90��3 �5:087 39��3 1:288 77��2 �1:796 73��2 1:295 91��2 �3:762 93��3

i � 6 1:937 36��6 �2:093 70��5 1:036 37��4 �2:741 83��4 3:978 11��4 �2:977 43��4 8:938 56��5
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the regions M2 & j�j. The first zero-energy resonance of
the Wino-like neutralino is shown up at M2 � 2 TeV.

We also show the ratios of the annihilation cross sections
including the effects of the resonances and the leading-
063528
order ones in perturbation in Figs. 8 and 9. All parameters
for depicting these figures are the same as the those for
Figs. 6 and 7. Huge enhancements are found in the vicin-
ities of the zero-energy resonances. Furthermore, the cross
-14



FIG. 6. Contour maps of the neutralino annihilation cross sections (!v) toW�W� (four top figures) and "" (four bottom figures) in
(M2; �) planes with tan� � 4; 40 in the MSSM. M1 � 0:5M2 is assumed.

NONPERTURBATIVE EFFECT ON DARK MATTER . . . PHYSICAL REVIEW D 71, 063528 (2005)

063528-15



10

1

0.1

10

1

0.1

M
  (

T
eV

)
2

M
  (

T
eV

)
2

10

1

0.1

10

1

0.1

M
  (T

eV
)

2
M

  (T
eV

)
2

0.1 1 10-0.1-1-10
µ (TeV)

βtan   = 40 βtan   = 40

tan   = 4β tan   = 4β

1 2[M  = 3M  ]Cross Section to W  W
+ -

( 10    cm  sec   )3 -1-25

0.03 0.
03

0.1

0.03

0.1

0.
03

0.
1

0.
1

0.3
0.3

0.
3

0.
3

1
1

1
1

30

3030

30

10

1010

10

3

3

3

3

3

3

3

3

10

1

0.1

10

1

0.1

M
  (T

eV
)

2
M

  (T
eV

)
2

0.1 1 10-0.1-1-10
µ (TeV)

1 2[M  = 3M  ]
10

1

0.1

10

1

0.1

M
  (

T
eV

)
2

M
  (

T
eV

)
2

Cross Section to γ γ
1 1

11

1

10.3

0.3

0.1

0.1

3

3

3

3

10

10

30

30

30

100

100
βtan   = 4

βtan   = 40βtan   = 40

βtan   = 4
1

1 13

1
3

10

30
100

0.1

0.3

30

100

30

30

0.3

0.1

10

1

3

1 13

30

( 10    cm  sec   )3 -1-28
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(M2; �) planes with tan� � 4; 40 in the MSSM. M1 � 3M2 is assumed.
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sections are enhanced by factors even for m * 500 GeV
when the lightest neutralino is Wino-like. Thus, the non-
perturbative effect is important to obtain the precise anni-
hilation cross sections. The ratios in the Higgsino-like
regions in Fig. 9 are larger than that in Fig. 8. This is
because the mass difference 	m is smaller in Fig. 9 than
in Fig. 8. The nonperturbative effects should also be in-
cluded for the Higgsino-like neutralino with m *

500 GeV when the accurate cross sections are required.
VI. GAMMA-RAY FLUX FROM THE GALACTIC
CENTER

The enhancement of the dark matter annihilation cross
sections has significant implication for indirect searches
for dark matter using cosmic rays. In this section, we
discuss the searches for gamma rays resulting from the
dark matter annihilation in the galactic center and the
future prospects.

A. Flux formula

The spectrum of gamma rays from the dark matter
annihilation consists of two components. One is the line
gamma rays and the other is the continuum gamma rays.
The line gamma rays are produced by the radiative pro-
cesses such as the dark matter annihilations to "" and Z"
[19]. Since the dark matter is nonrelativistic in the galactic
halo, the resulting spectrum is monochromatic. The signal
is robust for the dark matter search, because the diffused
gamma-ray background from the astrophysical sources has
a continuous energy spectrum.

The continuum gamma-ray signal comes from jets in the
dark matter annihilation. For example, the dark matter
annihilates to W bosons, the W bosons fragment into �
mesons, and finally �0 mesons decay to "". The energy
spectrum thus becomes continuous. The observation of the
continuum gamma rays may also constrain the properties
of dark matter if the astrophysical background is under-
stood well.

The gamma-ray flux from the dark matter annihilation,
F "�E�, is given by

dF "��; E�

d,dE
�

1

4�m2
X
f

dN�"�f
dE

h!vif
2

�
Z
line of sight

dl���?2�l�; (64)

where � is the angle between the direction of the galactic
center and that of observation. The function N�"�f �E� is the
number of photons with energy E in the fragmentation of
the final state f, and h!vi is the dark matter annihilation
cross section averaged with respect to the velocity distri-
bution function. The density ? in the integrand is the dark
matter mass density profile in our galaxy.
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After integrating out Eq. (64) by the solid angle with the
appropriate angular resolution of the detector, we obtain

dF "�E�

dE
� 9:3� 10�12�cm�2sec�1GeV�1�

�

�
100 GeV

m

�
2X
f

dN�"�f
dE

�

�
h!vif

10�27 cm3 sec�1

�
2J3,: (65)

The angular resolution of the detector, 3,, is taken to be
10�3 in this paper, which is a typical value for the ACT
detectors. The information of the dark matter density pro-
file is included in a dimensionless function,

2J �
Z
line of sight

dl���
8:5kpc

Z
3,

d,
3,

�
?

0:3GeVcm�3

�
2
: (66)

We need three quantities for evaluating the gamma-ray
fluxes; the dark matter annihilation cross sections to final
states f (h!vif), the fragmentation functions (dN"f =dE),
and the mass density profile of the dark matter (?). The
cross sections are obtained in the previous section. We
discuss the fragmentation functions and the mass density
profile in the following subsections.

B. Fragmentation function

Since we focus on the SU�2�L nonsinglet dark matter,
such as the Wino- or Higgsino-like neutralino in the
MSSM, the continuum gamma-ray signal come mainly
from the dark matter annihilation modes into W�W� and
Z0Z0. We thus need two fragmentation functions, N�"�W�W�
and N�"�

Z0Z0
. We simulate the photon spectrums from these

weak gauge boson states by the HERWIG Monte Carlo code
[31]. We derive fitting functions from the simulated frag-
mentation functions for m � 200 GeV and m � 5 TeV by
introducing the scaling variable x � E=m.

In Fig. 10, the HERWIG simulation data for the fragmen-
tation functions are shown. In these figures, the fitting
functions are also depicted as solid lines. The functions
are given by

dN�"�f
dx

�
0:73e�7:76x

x1:5 � cf
; (67)

where the parameter cf is 2� 10�4 for f � W�W� and
1:5� 10�4 for f � Z0Z0.

In the previous studies in Refs. [15], the cutoff parameter
cf is not introduced in the fitting functions. However, the
behaviors of the simulated fragmentation functions at x &

10��2�3� are more moderate than the fitting functions with
cf � 0. In this paper we consider cases of heavy EWIMPs
��10 TeV� and compare the predicted gamma-ray fluxes
with the EGRET data around 1� 10 GeV. Thus, the effect
of nonvanishing cf is not negligible.
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The function N�"�"" for the line gamma-ray flux is simply
given by

dN�"�""
dE

� 2	�E�m�; (68)

because the dark matter particle is almost at rest in the
galactic halo.

C. Mass density profile of dark matter

The gamma-ray flux depends strongly on the dark matter
density profile, because it is proportional to the density
squared. Many N-body simulations show that the dark
matter halo profiles are given by a universal spherical
functional form,

?�r� �
?0

�r=a�"�1� �r=a������"�=�
; (69)

where �, �, and " are the model parameters. After choos-
0.1 1
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the EWIMP dark matters. The left (right) figure is for the triplet
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FIG. 13. Contour maps of the line gamma-ray flux in (M2; �) planes with tan� � 4; 40 in the MSSM.M1 � 0:5M2 is assumed in the
four top figures whileM1 � 3M2 is assumed in the four bottom figures. These figures are depicted by using the NFW profile ( 2J � 500)
and the angular resolution, 3, � 10�3.
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ing the model parameters, ?0 and a are uniquely deter-
mined by the mass and the rotational speed of the galaxy.

A famous and frequently used halo model is the
Navarro, Frenk, and White (NFW) profile [32], which
corresponds to ��;�; "� � �1; 3; 1� in Eq. (69). The profile
is obtained by the numerical N-body simulation of point
particles. Recently higher statistical simulations have been
performed, and even higher values of " are obtained. For
example, Moore et al. found the profile corresponding to
��;�; "� � �1; 3; 1:4� 1:5� [33]. The halo profiles in all
N-body simulations have cuspy structures and the density
diverges at r � 0. On the other hand, a no-cuspy model has
been used for a long time, and the model parameters for the
King-profile are ��;�; "� � �1; 3; 0�. It is argued that the
rotation curve measurements of low surface brightness
galaxies disfavor the cuspy profiles [34], though this dis-
agreement may be resolved by taking into account the
effect of halo triaxiality [35]. This cusp/core problem is
still under debate.

In Fig. 11, 2J in Eq. (66) is shown as a function of the
model parameter ". Here we fix � � 1 and � � 3. We use
the mass of galaxy interior to 100 kpc [Mh�100 kpc� �
6� 1011Msun with Msun the solar mass] and the rotational
speed at r � 8 kpc [vh�8kpc� � 150 km=s] for the deter-
mination of ?0 and a in Eq. (69). In the figure 2J is sensitive
to the value of ". In the following, we use a moderate value
2J � 500, which is typical for the NFW profile.

D. Line gamma-ray flux from the galactic center

We discuss the line gamma-ray flux from the galactic
center due to the EWIMP dark matter annihilation by using
the cross sections derived in the previous section.

In Fig. 12, we show the line gamma fluxes from the
galactic center in the cases of the triplet and doublet
EWIMP dark matters. Here, we take the mass difference
between the EWIMP and the charged partner as 	m �
0:1; 1; 10 GeV. For the doublet EWIMP, 	mN � 2	m is
063528
assumed. We also plot the flux obtained from the leading-
order cross sections in perturbation by broken lines for
comparison. In Fig. 13, we show the contour maps of the
line gamma-ray flux in the MSSM. The range of the MSSM
parameters is the same as that for Figs. 6 and 7 in the
previous section.

The large ACT detectors have high sensitivity for TeV-
scale gamma rays. For example, MAGIC [13] and
VERITAS [14] in the northern hemisphere might reach
10�14 cm�2 s�1 at the TeV-scale while CANGAROO III
[11] and HESS [12] in the southern hemisphere might
reach 10�13 cm�2 s�1. From Figs. 12 and 13, it is found
that these ACT detectors may cover broad regions in the
parameter space.

It has been known that the line gamma-ray signal is
sensitive to the heavier dark matter with the mass of the
order of TeV, because the annihilation cross section at one-
loop level is not suppressed by the dark matter mass if the
dark matter has the SU�2�L charge. Our studies reveal
importance of the nonperturbative effects on the EWIMP
annihilation cross section. After including the effects, the
sensitivity of the line gamma-ray signal to the heavier
EWIMP dark matter is enhanced furthermore.

E. Continuum gamma-ray flux from the galactic center

In addition to the line gamma rays, the EWIMP annihi-
lation produces the continuum gamma rays, which come
mainly from the decay of �0 in the fragmentation of the
final state particles. Though the number of photons in the
continuum gamma rays is expected to be higher than that in
the line gamma rays, its spectrum may lack the distinctive
feature. Since the flux of the diffused gamma-ray back-
ground, especially from the galactic center, is not well
known, it is difficult to extract the annihilation signal (S)
from the background (B) as far as S < B. The EGRET has
observed the diffused gamma-ray emission from the galac-
tic center up to about 10 GeV [36]. If the power law falloff
-22



FIG. 15. Contour maps of the excluded region by the EGRET measurement of the gamma-ray flux from the galactic center in
(M2; �) planes in the MSSM for different dark matter profiles.M1 � 0:5M2 is assumed in the four top figures while it isM1 � 3M2 in
the four bottom figures. tan� � 4; 40. These figures are depicted by using the 2J factors for " � 0; 0:6; 1; 1:4. We also set the angular
resolution to be 3, � 10�3.
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of the energy for the diffused gamma-ray flux 5BG�E� is
assumed, the background B is evaluated from the EGRET
result as [9],

d5BG�E�
dE

� 9:1� 10�5�cm�2 sec�1 GeV�1�

�

�
E

1GeV

�
�2:7

3,: (70)

In Fig. 14 we show the contour plots of the continuum
gamma-ray fluxes from the galactic center for the triplet
and doublet EWIMPs. Here we fix 2J � 500, 3, � 10�3,
and 	m � 0:1 GeV. The shaded regions correspond to S >
B, in which B is given by Eq. (70). From this figure, it is
found that even small regions around the resonances, in
addition to areas with m� 100 GeV, are already con-
strained from the EGRET measurement of the gamma-
ray flux with the energy 1� 10 GeV.

In Fig. 15 regions excluded by the EGRET observation is
shown in �M2; �� planes assuming the MSSM. The MSSM
parameters are the same as in Fig. 13. In this figure we use
2Js with " � 0, 0.6, 1, and 1.4. The excluded regions
become broader for larger ".

In the near future the GLAST satellite [10] may observe
gamma rays with energies in the range 1 GeV & E &

300 GeV if the flux is larger than about
10�10 cm�2 3sec�1. The ACT and GLAST detectors will
constrain broader regions in the parameter space with S >
B, or will find the signature of the dark matter.
VII. SUMMARY

In this paper we have calculated the pair annihilation
cross sections of the EWIMP dark matters, which have an
SU�2�L charge of the standard model gauge group. The
leading-order calculation of the cross sections in perturba-
tion is no longer valid when the mass is heavy compared to
the weak gauge bosons due to the threshold singularity
coming from the mass degeneracy between the EWIMP
and its SU�2�L partner(s). The problem have been known
for a while for the cases of the Wino and Higgsino-like
dark matters in the MSSM. We have developed a method to
063528
take in the singularity and obtain the precise annihilation
cross sections.

We find that if the mass of the EWIMP dark matter is
larger than about 1 TeV, the attractive Yukawa potentials
induced by the weak gauge boson exchanges have signifi-
cant effects on the annihilation processes and the cross
sections are enhanced by several orders of magnitude due
to the zero-energy resonances under the potentials. As a
result, the gamma-ray flux from the galactic center due to
the EWIMP annihilation is enhanced compared to the
leading-order calculation in perturbation. The line
gamma-ray flux exceeds the typical sensitivity of the large
ACT detectors such as CANGAROO III, HESS,
VERITAS, and MAGIC, 10��13�14� cm�2 sec�1, in the
wide range of the MSSM parameters. We also calculated
the continuum gamma-ray flux from the EWIMP dark
matter annihilation. The MSSM parameter space which is
not consistent with the EGRET observation of the gamma
rays with 1 GeV & E" & 10 GeV is increased by the
nonperturbative effects.

Current observations of TeV-scale gamma rays from the
galactic center by the CANGAROO and HESS disagree
each other in the spectrum. Once it is converged, the result
may be used to constrain the EWIMP dark matter.

The nonperturbative effect would also enhance antipro-
ton and positron fluxes from the dark matter annihilation.
In particular the enhancement of the positron flux through
the ��! W�W� process is interesting, because W bo-
sons can decay directly into hard leptons and it gives the
clear signature of EWIMP annihilation. These will be
discussed elsewhere [37].
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